Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture Conditions
2.2. Thyroglobulin (Tg) and TSHR Expression Determination Using a Quantitative Polymerase Chain Reaction (qRT-PCR)
2.3. Proliferation Assays of K1 and TPC-1 Cells
2.3.1. Treatment with Recombinant Human TSH and/or Recombinant Human Insulin
2.3.2. Crystal Violet Assay
2.4. Wound Healing Assays of K1 and TPC-1 Cells
2.5. Creation of the K1-TSHR and TPC-1-TSHR Cell Lines Using the Lenti-X Tet-On Advanced System
2.5.1. Transduction of K1 and TPC-1 Cells Using Lentiviral Vectors
2.5.2. Transformation Validation Using a Polymerase Chain Reaction
2.6. TSHR mRNA Overexpression Validation in K1-TSHR and TPC-1-TSHR Cells
2.6.1. Stimulation with Doxycycline and the Quantitative Polymerase Chain Reaction (qRT-PCR)
2.6.2. Receptor Synthesis Validation with Western Immunoblotting
2.7. Proliferation and Migration Assays of K1-TSHR and TPC-1-TSHR Cells
2.8. Statistical Analysis
3. Results
3.1. Effects of Escalating Rh-TSH Concentrations on Thyroglobulin Expression and Proliferation and the Migration Rates of K1 and TPC-1 Cells
3.2. Creation of TSHR-Overexpressing PTC Cells and TSHR Synthesis Determination
3.3. Effects of Rh-TSH Concentrations, on Thyroglobulin Expression, Proliferation, and the Migration of K1-TSHR and TPC-1-TSHR Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. Off. J. Am. Thyroid. Assoc. 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Malaguarnera, R.; Vella, V.; Pellegriti, G.; Belfiore, A. Editorial: Clinical and Molecular Epidemiology of Thyroid Cancer of Follicular Origin. Front. Endocrinol. 2018, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Van Der Zwan, J.M.; Mallone, S.; Van Dijk, B.; Bielska-Lasota, M.; Otter, R.; Foschi, R.; Baudin, E.; Links, T.P.; Zielonk, N.; Van Eycken, E.; et al. Carcinoma of Endocrine Organs: Results of the RARECARE Project. Eur. J. Cancer 2012, 48, 1923–1931. [Google Scholar] [CrossRef]
- Fagin, J.A.; Wells, S.A. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016, 375, 1054–1067. [Google Scholar] [CrossRef] [PubMed]
- Diessl, S.; Holzberger, B.; Mäder, U.; Grelle, I.; Smit, J.W.A.; Buck, A.K.; Reiners, C.; Verburg, F.A. Impact of Moderate vs Stringent TSH Suppression on Survival in Advanced Differentiated Thyroid Carcinoma. Clin. Endocrinol. 2012, 76, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Bartalena, L.; Cooper, D.S.; Hegedüs, L.; Laurberg, P.; Kahaly, G.J. The 2015 European Thyroid Association Guidelines on Diagnosis and Treatment of Endogenous Subclinical Hyperthyroidism. Eur. Thyroid. J. 2015, 4, 149–163. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Gao, C.; Tian, L. Effect of Thyroid-Stimulating Hormone Suppression Therapy on Cardiac Structure and Function in Patients With Differentiated Thyroid Cancer After Thyroidectomy: A Systematic Review and Meta-Analysis. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2024, 30, 177–186. [Google Scholar] [CrossRef]
- Einspieler, H.; Walter, C.; Hacker, M.; Karanikas, G.; Tamandl, D. Effects of Short- and Long-Term TSH Suppression on Lumbar Bone Mineral Density in Both Genders Using PET/CT. Sci. Rep. 2023, 13, 22640. [Google Scholar] [CrossRef]
- Lee, E.K.; Ahn, H.Y.; Ku, E.J.; Yoo, W.S.; Lee, Y.K.; Nam, K.H.; Chai, Y.J.; Moon, S.; Jung, Y.S. Cardiovascular Outcomes in Thyroid Cancer Patients Treated With Thyroidectomy: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2021, 106, 3644–3654. [Google Scholar] [CrossRef]
- Biondi, B. TSH Suppression in Differentiated Thyroid Cancer Patients. Still More Questions than Answers after 30 Years. Thyroid 2024, 34. [Google Scholar] [CrossRef]
- Jonklaas, J.; Sarlis, N.J.; Litofsky, D.; Ain, K.B.; Bigos, S.T.; Brierley, J.D.; Cooper, D.S.; Haugen, B.R.; Ladenson, P.W.; Magner, J.; et al. Outcomes of Patients with Differentiated Thyroid Carcinoma Following Initial Therapy. Thyroid. Off. J. Am. Thyroid. Assoc. 2006, 16, 1229–1242. [Google Scholar] [CrossRef]
- Sugitani, I.; Fujimoto, Y. Does Postoperative Thyrotropin Suppression Therapy Truly Decrease Recurrence in Papillary Thyroid Carcinoma? A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2010, 95, 4576–4583. [Google Scholar] [CrossRef] [PubMed]
- Gubbi, S.; Al-Jundi, M.; Foerster, P.; Cardenas, S.; Butera, G.; Auh, S.; Wright, E.C.; Klubo-Gwiezdzinska, J. The Effect of Thyrotropin Suppression on Survival Outcomes in Patients with Differentiated Thyroid Cancer: A Systematic Review and Meta-Analysis. Thyroid 2024, 34. [Google Scholar] [CrossRef]
- Kleinau, G.; Neumann, S.; Grüters, A.; Krude, H.; Biebermann, H. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction. Endocr. Rev. 2013, 34, 691–724. [Google Scholar] [CrossRef]
- Durante, C.; Hegedüs, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association Clinical Practice Guidelines for Thyroid Nodule Management. Eur. Thyroid. J. 2023, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.K.; Lin, C.L.; Chang, Y.J.; Cheng, F.T.F.; Peng, C.L.; Sung, F.C.; Cheng, Y.H.; Kao, C.H. Cancer Risk in Patients with Graves’ Disease: A Nationwide Cohort Study. Thyroid 2013, 23, 879. [Google Scholar] [CrossRef]
- Jaeschke, H.; Undeutsch, H.; Patyra, K.; Löf, C.; Eszlinger, M.; Khalil, M.; Jännäri, M.; Makkonen, K.; Toppari, J.; Zhang, F.P.; et al. Hyperthyroidism and Papillary Thyroid Carcinoma in Thyrotropin Receptor D633H Mutant Mice. Thyroid. Off. J. Am. Thyroid. Assoc. 2018, 28, 1372–1386. [Google Scholar] [CrossRef]
- Westermark, B.; Karlsson, F.A.; Walinder, O. Thyrotropin Is Not a Growth Factor for Human Thyroid Cells in Culture. Proc. Natl. Acad. Sci. USA 1979, 76, 2022–2026. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.F.; Platzer, M.; Schwartz, A.E.; Friedman, E.W. Short- and Long-Term Evaluation of Normal and Abnormal Human Thyroid Cells in Monolayer Culture. Clin. Endocrinol. 1985, 23, 469–479. [Google Scholar] [CrossRef]
- Morgan, S.J.; Neumann, S.; Marcus-Samuels, B.; Gershengorn, M.C. Thyrotropin Stimulates Differentiation Not Proliferation of Normal Human Thyrocytes in Culture. Front. Endocrinol. 2016, 7, 168. [Google Scholar] [CrossRef]
- Hishinuma, A.; Yamanaka, T.; Kasai, K.; So, S.; Tseng, C.C.; Bamba, N.; Ohtake, H.; Shimoda, S.I. Different Growth Control of the Two Human Thyroid Cell Lines of Adenomatous Goiter and Papillary Carcinoma. Thyroid. Off. J. Am. Thyroid. Assoc. 1995, 5, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Bechtner, G.; Schopohl, D.; Rafferzeder, M.; Gärtner, R.; Welsch, U. Stimulation of Thyroid Cell Proliferation by Epidermal Growth Factor Is Different from Cell Growth Induced by Thyrotropin or Insulin-like Growth Factor I. Eur. J. Endocrinol. 1996, 134, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, X.; Wang, Y. Reactivity of Thyroid Papillary Carcinoma Cells to Thyroid Stimulating Hormone-Dominated Endocrine Therapy. Oncol. Lett. 2017, 14, 7405–7409. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, M.; Weintraub, B.D.; Szkudlinski, M.W. Novel Insights into the Molecular Mechanisms of Human Thyrotropin Action: Structural, Physiological, and Therapeutic Implications for the Glycoprotein Hormone Family. Endocr. Rev. 1997, 18, 476–501. [Google Scholar] [CrossRef]
- Huber, G.K.; Fong, P.; Concepcion, E.S.; Davies, T.F. Recombinant Human Thyroid-Stimulating Hormone: Initial Bioactivity Assessment Using Human Fetal Thyroid Cells. J. Clin. Endocrinol. Metab. 1991, 72, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Roger, P.; Taton, M.; Van Sande, J.; Dumont, J.E. Mitogenic Effects of Thyrotropin and Adenosine 3′,5′-Monophosphate in Differentiated Normal Human Thyroid Cells in Vitro. J. Clin. Endocrinol. Metab. 1988, 66, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Han, H.; Wu, S.; Wang, H. Crosstalk Between Abnormal TSHR Signaling Activation and PTEN/PI3K in the Dedifferentiation of Thyroid Cancer Cells. Front. Oncol. 2021, 11, 718578. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, A.; Jia, X.; Li, X.; Liang, Y.; Liu, Y.; Xie, X.; Qu, X.; Wang, Q.; Zhang, Y.; et al. Sinomenine Hydrochloride Promotes TSHR-Dependent Redifferentiation in Papillary Thyroid Cancer. Int. J. Mol. Sci. 2022, 23, 10709. [Google Scholar] [CrossRef] [PubMed]
- Saiselet, M.; Floor, S.; Tarabichi, M.; Dom, G.; Hébrant, A.; van Staveren, W.C.G.; Maenhaut, C. Thyroid Cancer Cell Lines: An Overview. Front. Endocrinol. 2012, 3, 133. [Google Scholar] [CrossRef]
- Yakushina, V.D.; Lerner, L.V.; Lavrov, A.V. Gene Fusions in Thyroid Cancer. Thyroid 2018, 28, 158–167. [Google Scholar] [CrossRef]
- Al-Jundi, M.; Thakur, S.; Gubbi, S.; Klubo-Gwiezdzinska, J. Novel Targeted Therapies for Metastatic Thyroid Cancer-A Comprehensive Review. Cancers 2020, 12, 2104. [Google Scholar] [CrossRef] [PubMed]
- Krieger, C.C.; Neumann, S.; Gershengorn, M.C. TSH/IGF1 Receptor Crosstalk: Mechanism and Clinical Implications. Pharmacol. Ther. 2020, 209, 107502. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M. The Insulin and Insulin-like Growth Factor Receptor Family in Neoplasia: An Update. Nat. Rev. Cancer 2012, 12, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Sakaguchi, M.; Kleinridders, A.; Gonzalez-Del Pino, G.; Dreyfuss, J.M.; O’Neill, B.T.; Ramirez, A.K.; Pan, H.; Winnay, J.N.; Boucher, J.; et al. Domain-Dependent Effects of Insulin and IGF-1 Receptors on Signalling and Gene Expression. Nat. Commun. 2017, 8, 14892. [Google Scholar] [CrossRef]
- Boucher, J.; Tseng, Y.H.; Kahn, C.R. Insulin and Insulin-like Growth Factor-1 Receptors Act as Ligand-Specific Amplitude Modulators of a Common Pathway Regulating Gene Transcription. J. Biol. Chem. 2010, 285, 17235–17245. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, H.; Si, Y.; Hu, D.; Yu, Y.; Zhang, Y.; Gao, M.; Zhang, H. Iodine Promotes Tumorigenesis of Thyroid Cancer by Suppressing Mir-422a and Up-Regulating MAPK1. Cell. Physiol. Biochem. 2017, 43, 1325–1336. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016, 2016, 343–346. [Google Scholar] [CrossRef]
- Bravo-Miana, R.D.C.; Vedova, A.B.D.; De Paul, A.L.; Remedi, M.M.; Guantay, M.L.; Gilardoni, M.B.; Pellizas, C.G.; Donadio, A.C. Thyroid Tumor Cells-Fibroblasts Crosstalk: Role of Extracellular Vesicles. Endocr. Connect. 2020, 9, 506. [Google Scholar] [CrossRef]
- Liao, T.; Qu, N.; Shi, R.L.; Guo, K.; Ma, B.; Cao, Y.M.; Xiang, J.; Lu, Z.W.; Zhu, Y.X.; Li, D.S.; et al. BRAF-Activated LncRNA Functions as a Tumor Suppressor in Papillary Thyroid Cancer. Oncotarget 2017, 8, 238. [Google Scholar] [CrossRef]
- Nguyen, J.; Joseph, D. Locally Invasive Classical Papillary Thyroid Carcinoma with TSH Receptor I568T Mutation: Case Report. Endocrinol. Diabetes Metab. Case Rep. 2022, 2022, 1. [Google Scholar] [CrossRef] [PubMed]
- Huth, S.; Jaeschke, H.; Schaarschmidt, J.; Paschke, R. Controversial Constitutive TSHR Activity: Patients, Physiology, and in Vitro Characterization. Horm. Metab. Res. 2014, 46, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, H.; Schaarschmidt, J.; Eszlinger, M.; Huth, S.; Puttinger, R.; Rittinger, O.; Meiler, J.; Paschke, R. A Newly Discovered TSHR Variant (L665F) Associated with Nonautoimmune Hyperthyroidism in an Austrian Family Induces Constitutive TSHR Activation by Steric Repulsion between TM1 and TM7. J. Clin. Endocrinol. Metab. 2014, 99, E2051–E2059. [Google Scholar] [CrossRef] [PubMed]
- Koutras, N.; Morfos, V.; Konnaris, K.; Kouvela, A.; Shaukat, A.N.; Stathopoulos, C.; Stamatopoulou, V.; Nika, K. Integrated Signaling and Transcriptome Analysis Reveals Src Family Kinase Individualities and Novel Pathways Controlled by Their Constitutive Activity. Front. Immunol. 2023, 14, 1224520. [Google Scholar] [CrossRef] [PubMed]
- Suarez-arnedo, A.; Torres, F.; Id, F.; Clavijo, C.; Arbela, P.; Cruz, C.; Mu, C. An Image J Plugin for the High Throughput Image Analysis of in Vitro Scratch Wound Healing Assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, W.; Phay, J.E.; Shen, R.; Pellegata, N.S.; Saji, M.; Ringel, M.D.; De La Chapelle, A.; He, H. Primary Cell Culture Systems for Human Thyroid Studies. Thyroid 2016, 26, 1131. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Ma, C.; Zheng, G.; Lin, X.; Wei, S.; Wu, G.; Zheng, H. TSHR Promotes Proliferation and Invasion of Papillary Thyroid Carcinoma by Regulating NF-κB Signal Pathway. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Pilli, T.; Prasad, K.V.; Jayarama, S.; Pacini, F.; Prabhakar, B.S. Potential Utility and Limitations of Thyroid Cancer Cell Lines as Models for Studying Thyroid Cancer. Thyroid 2009, 19, 1333. [Google Scholar] [CrossRef]
- van Staveren, W.C.G.; Solís, D.Y.W.; Hébrant, A.; Detours, V.; Dumont, J.E.; Maenhaut, C. Human Cancer Cell Lines: Experimental Models for Cancer Cells in Situ? For Cancer Stem Cells? Biochem. Biophys. 2009, 1795, 92–103. [Google Scholar] [CrossRef]
- Meireles, A.M.; Preto, A.; Rocha, A.S.; Rebocho, A.P.; Máximo, V.; Pereira-Castro, I.; Moreira, S.; Feijão, T.; Botelho, T.; Marques, R.; et al. Molecular and Genotypic Characterization of Human Thyroid Follicular Cell Carcinoma-Derived Cell Lines. Thyroid. Off. J. Am. Thyroid. Assoc. 2007, 17, 707–715. [Google Scholar] [CrossRef]
- Song, H.; Fares, M.; Maguire, K.R.; Sidén, Å.; Potácová, Z. Cytotoxic Effects of Tetracycline Analogues (Doxycycline, Minocycline and COL-3) in Acute Myeloid Leukemia HL-60 Cells. PLoS ONE 2014, 9, e114457. [Google Scholar] [CrossRef] [PubMed]
- Hoelting, T.; Tezelman, S.; Siperstein, A.E.; Duh, Q.Y.; Clark, O.H. Biphasic Effects of Thyrotropin on Invasion and Growth of Papillary and Follicular Thyroid Cancer in Vitro. Thyroid. Off. J. Am. Thyroid. Assoc. 1995, 5, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Morgan, S.J.; Klubo-Gwiezdzinska, J.; Banga, J.P.; Neumann, S.; Gershengorn, M.C. Thyrotropin, but Not Thyroid-Stimulating Antibodies, Induces Biphasic Regulation of Gene Expression in Human Thyrocytes. Thyroid. Off. J. Am. Thyroid. Assoc. 2020, 30, 270–276. [Google Scholar] [CrossRef]
- Leone, V.; D’Angelo, D.; Pallante, P.; Croce, C.M.; Fusco, A. Thyrotropin Regulates Thyroid Cell Proliferation by Up-Regulating miR-23b and miR-29b That Target SMAD3. J. Clin. Endocrinol. Metab. 2012, 97, 3292–3301. [Google Scholar] [CrossRef]
- Boutin, A.; Neumann, S.; Gershengorn, M.C. TSH Elicits Cell-Autonomous, Biphasic Responses: A Mechanism Inhibiting Hyperstimulation. Endocrinology 2020, 161, bqaa103. [Google Scholar] [CrossRef] [PubMed]
- Derwahl, M.; Kuemmel, M.; Goretzki, P.; Schatz, H.; Broecker, M. Expression of the Human TSH Receptor in a Human Thyroid Carcinoma Cell Line That Lacks an Endogenous TSH Receptor: Growth Inhibition by cAMP. Biochem. Biophys. Res. Commun. 1993, 191, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Pozdeyev, N.; Korch, C.; Marlow, L.A.; Smallridge, R.C.; Copland, J.A.; Henderson, Y.C.; Lai, S.Y.; Clayman, G.L.; Onoda, N.; et al. Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Cassinelli, G.; Favini, E.; Degl’Innocenti, D.; Salvi, A.; De Petro, G.; Pierotti, M.A.; Zunino, F.; Borrello, M.G.; Lanzi, C. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation. Neoplasia 2009, 11, 10–21. [Google Scholar] [CrossRef]
- Harahap, A.S.; Subekti, I.; Panigoro, S.S.; Asmarinah; Lisnawati; Werdhani, R.A.; Agustina, H.; Khoirunnisa, D.; Mutmainnah, M.; Salinah; et al. Profile of BRAFV600E, BRAFK601E, NRAS, HRAS, and KRAS Mutational Status, and Clinicopathological Characteristics of Papillary Thyroid Carcinoma in Indonesian National Referral Hospital. Appl. Clin. Genet. 2023, 16, 99. [Google Scholar] [CrossRef]
- Trovisco, V.; Soares, P.; Sobrinho-Simões, M. B-RAF Mutations in the Etiopathogenesis, Diagnosis, and Prognosis of Thyroid Carcinomas. Hum. Pathol. 2006, 37, 781–786. [Google Scholar] [CrossRef]
- Schweppe, R.E.; Klopper, J.P.; Korch, C.; Pugazhenthi, U.; Benezra, M.; Knauf, J.A.; Fagin, J.A.; Marlow, L.A.; Copland, J.A.; Smallridge, R.C.; et al. Deoxyribonucleic Acid Profiling Analysis of 40 Human Thyroid Cancer Cell Lines Reveals Cross-Contamination Resulting in Cell Line Redundancy and Misidentification. J. Clin. Endocrinol. Metab. 2008, 93, 4331. [Google Scholar] [CrossRef] [PubMed]
- Van Keymeulen, A.; Dumont, J.E.; Roger, P.P. TSH Induces Insulin Receptors That Mediate Insulin Costimulation of Growth in Normal Human Thyroid Cells. Biochem. Biophys. Res. Commun. 2000, 279, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Van Keymeulen, A.; Golstein, J.; Fusco, A.; Dumont, J.E.; Roger, P.P. Regulation of Thyroid Cell Proliferation by TSH and Other Factors: A Critical Evaluation of in Vitro Models. Endocr. Rev. 2001, 22, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Santistebansli, P.; Kohns, L.D.; Lauroj, R.D. Thyroglobulin Gene Expression Is Regulated by Insulin and Insulin-like Growth Factor I, As Well As Thyrotropin, in FRTL-5 Thyroid Cells*. J. Biol. Chem. 1987, 262, 4048–4052. [Google Scholar] [CrossRef]
- Annunziata, M.; Granata, R.; Ghigo, E. The IGF System. Acta Diabetol. 2011, 48, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, D.R. Metabolic Actions of IGF-I in Normal Physiology and Diabetes. Endocrinol. Metab. Clin. N. Am. 2012, 41, 425. [Google Scholar] [CrossRef] [PubMed]
- García-Mato, Á.; Cervantes, B.; Murillo-Cuesta, S.; La Rosa, L.R.D.; Varela-Nieto, I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes 2021, 12, 1553. [Google Scholar] [CrossRef]
- Roger, P.P.; van Staveren, W.C.G.; Coulonval, K.; Dumont, J.E.; Maenhaut, C. Signal Transduction in the Human Thyrocyte and Its Perversion in Thyroid Tumors. Mol. Cell. Endocrinol. 2010, 321, 3–19. [Google Scholar] [CrossRef]
- Saji, M.; Akamizu, T.; Sanchez, M.; Obici, S.; Avvedimento, E.; Gottesman, M.E.; Kohn, L.D. Regulation of Thyrotropin Receptor Gene Expression in Rat FRTL-5 Thyroid Cells. Endocrinology 1992, 130, 520–533. [Google Scholar] [CrossRef]
- Medina, D.L.; Suzuki, K.; Pietrarelli, M.; Okajima, F.; Kohn, L.D.; Santisteban, P. Role of Insulin and Serum on Thyrotropin Regulation of Thyroid Transcription Factor-1 and Pax-8 Genes Expression in FRTL-5 Thyroid Cells. Thyroid. Off. J. Am. Thyroid. Assoc. 2000, 10, 295–303. [Google Scholar] [CrossRef]
- Zakarija, M.; McKenzie, J.M. Variations in the Culture Medium for FRTL5 Cells: Effects on Growth and Iodide Uptake. Endocrinology 1989, 125, 1253–1259. [Google Scholar] [CrossRef]
- Tsuzaki, S.; Moses, A.C. Somatostatin Inhibits Deoxyribonucleic Acid Synthesis Induced by Both Thyrotropin and Insulin-like Growth Factor-I in FRTL5 Cells. Endocrinology 1990, 126, 3131–3138. [Google Scholar] [CrossRef]
- Takada, K.; Amino, N.; Tada, H.; Miyai, K. Relationship between Proliferation and Cell Cycle-Dependent Ca2+ Influx Induced by a Combination of Thyrotropin and Insulin-like Growth Factor-I in Rat Thyroid Cells. J. Clin. Investig. 1990, 86, 1548–1555. [Google Scholar] [CrossRef]
- Honegger, A.; Humbel, R.E. Insulin-like Growth Factors I and II in Fetal and Adult Bovine Serum. Purification, Primary Structures, and Immunological Cross-Reactivities. J. Biol. Chem. 1986, 261, 569–575. [Google Scholar] [CrossRef]
- Yang, L.; Tan, Z.; Li, Y.; Zhang, X.; Wu, Y.; Xu, B.; Wang, M. Insulin-like Growth Factor 1 Promotes Proliferation and Invasion of Papillary Thyroid Cancer through the STAT3 Pathway. J. Clin. Lab. Anal. 2020, 34, e23531. [Google Scholar] [CrossRef]
- Kyrilli, A.; Paternot, S.; Miot, F.; Corvilain, B.; Vassart, G.; Roger, P.P.; Dumont, J.E. Commentary: Thyrotropin Stimulates Differentiation Not Proliferation of Normal Human Thyrocytes in Culture. Front. Endocrinol. 2017, 8, 214. [Google Scholar] [CrossRef]
- Nagayama, Y.; Yamashita, S.; Hirayu, H.; Izumi, M.; Uga, T.; Ishikawa, N.; Ito, K.; Nagataki, S. Regulation of Thyroid Peroxidase and Thyroglobulin Gene Expression by Thyrotropin in Cultured Human Thyroid Cells. J. Clin. Endocrinol. Metab. 1989, 68, 1155–1159. [Google Scholar] [CrossRef]
- Vassart, G.; Dumont, J.E. The Thyrotropin Receptor and the Regulation of Thyrocyte Function and Growth. Endocr. Rev. 1992, 13, 596–611. [Google Scholar] [CrossRef]
- Van Staveren, W.C.G.; Solís, D.W.; Delys, L.; Duprez, L.; Andry, G.; Franc, B.; Thomas, G.; Libert, F.; Dumont, J.E.; Detours, V.; et al. Human Thyroid Tumor Cell Lines Derived from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer Res. 2007, 67, 8113–8120. [Google Scholar] [CrossRef]
- Ogundipe, V.M.L.; Plukker, J.T.M.; Links, T.P.; Coppes, R.P. Thyroid Gland Organoids: Current Models and Insights for Application in Tissue Engineering. Tissue Eng. Part A 2022, 28, 500–510. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalampounias, G.; Varemmenou, A.; Aronis, C.; Mamali, I.; Shaukat, A.-N.; Chartoumpekis, D.V.; Katsoris, P.; Michalaki, M. Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines. Cancers 2024, 16, 2604. https://doi.org/10.3390/cancers16142604
Kalampounias G, Varemmenou A, Aronis C, Mamali I, Shaukat A-N, Chartoumpekis DV, Katsoris P, Michalaki M. Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines. Cancers. 2024; 16(14):2604. https://doi.org/10.3390/cancers16142604
Chicago/Turabian StyleKalampounias, Georgios, Athina Varemmenou, Christos Aronis, Irene Mamali, Athanasios-Nasir Shaukat, Dionysios V. Chartoumpekis, Panagiotis Katsoris, and Marina Michalaki. 2024. "Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines" Cancers 16, no. 14: 2604. https://doi.org/10.3390/cancers16142604
APA StyleKalampounias, G., Varemmenou, A., Aronis, C., Mamali, I., Shaukat, A. -N., Chartoumpekis, D. V., Katsoris, P., & Michalaki, M. (2024). Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines. Cancers, 16(14), 2604. https://doi.org/10.3390/cancers16142604