Imaging Recommendations for Diagnosis, Staging, and Management of Central Nervous System Neoplasms in Adults: CNS Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Risk Factors, Epidemiology
3. Clinical Presentation
4. Clinical Work Up
5. Imaging Guidelines (When and How)
5.1. Role of Screening
5.2. Role of Imaging in Diagnosis
5.3. Role of Imaging in Follow Up
6. Aspects of Imaging with Various Treatment Methods of BMs
6.1. Radiation
6.2. Surgery
6.3. Immunotherapy (ICI)
6.3.1. Recent Advances [34]
6.3.2. Brain Metastasis Velocity (BMV)
6.3.3. Cellular MRI Using Iron Oxide Nanoparticles
6.3.4. Chemical Exchange Saturation Transfer (CEST) Imaging
6.3.5. MRI-Guided Laser Interstitial Thermal Therapy (LITT)
6.3.6. Theranostics
6.3.7. Artificial Intelligence
7. Imaging Aspects of Specific Primary Tumor Biology
7.1. Lung
7.2. Breast
7.3. Others
8. Spine Imaging
9. Etiopathogenesis
10. Presentation
11. Imaging Findings
12. Work-Up
13. Management
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adua, S.; Zhao, M.; Parent, M.; Hyder, F.; Nguyen, D. Mechanisms of Heterogeneous Targeted Therapy Response in Brain Metastasis. J. Thorac. Oncol. 2017, 12, S1547. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: A population-based study. Neuro Oncol. 2017, 19, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rich, B.J.; Kwon, D.; Soni, Y.S.; Bell, J.B.; John, D.; Azzam, G.; Mellon, E.A.; Yechieli, R.; Meshman, J.; Abramowitz, M.C.; et al. Survival and Yield of Surveillance Imaging in Long-Term Survivors of Brain Metastasis Treated with Stereotactic Radiosurgery. World Neurosurg. 2022, 167, e738–e746. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.H.; Kotecha, R.; Chao, S.T.; Ahluwalia, M.S.; Sahgal, A.; Chang, E.L. Current approaches to the management of brain metastases. Nat. Rev. Clin. Oncol. 2020, 17, 279–299. [Google Scholar] [CrossRef] [PubMed]
- Dono, A.; Takayasu, T.; Yan, Y.; Bundrant, B.E.; Arevalo, O.; Lopez-Garcia, C.A.; Esquenazi, Y.; Ballester, L.Y. Differences in Genomic Alterations Between Brain Metastases and Primary Tumors. Neurosurgery 2021, 88, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Boire, A. Metastasis to the Central Nervous System. Contin. (Minneap Minn) 2020, 26, 1584–1601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, B.; Li, Q.; Nie, W.; Liu, S. Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: A meta-analysis. Eur. J. Radiol. 2014, 83, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Krajewski, K.M.; Jagannathan, J.P.; Nishino, M.; Shinagare, A.B.; Hornick, J.L.; Ramaiya, N.H. Cancer of unknown primary sites: What radiologists need to know and what oncologists want to know. AJR Am. J. Roentgenol. 2013, 200, 484–492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wanleenuwat, P.; Iwanowski, P. Metastases to the central nervous system: Molecular basis and clinical considerations. J. Neurol. Sci. 2020, 412, 116755. [Google Scholar] [CrossRef] [PubMed]
- Hutter, A.; Schwetye, K.E.; Bierhals, A.J.; McKinstry, R.C. Brain neoplasms: Epidemiology, diagnosis, and prospects for cost-effective imaging. Neuroimaging Clin. N. Am. 2003, 13, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Pope, W.B. Brain metastases: Neuroimaging. Handb. Clin. Neurol. 2018, 149, 89–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaufmann, T.J.; Smits, M.; Boxerman, J.; Huang, R.; Barboriak, D.P.; Weller, M.; Chung, C.; Tsien, C.; Brown, P.D.; Shankar, L.; et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro-Oncol. 2020, 22, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Karbhari, A.; Rastogi, S.; Agarwal, U.; Rai, P.; Mahajan, A. Bench-to-bedside imaging in brain metastases: A road to precision oncology. Clin. Radiol. 2024, 79, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Lee, E.Q.; Lin, N.U.; Margolin, K.; Ahluwalia, M.S.; Bendszus, M.; Chang, S.M.; Dancey, J.; de Vries, E.G.E.; Harris, G.J.; et al. Clinical trial design for systemic agents in patients with brain metastases from solid tumours: A guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol. 2018, 19, e20–e32. [Google Scholar] [CrossRef] [PubMed]
- Soffietti, R.; Abacioglu, U.; Baumert, B.; Combs, S.E.; Kinhult, S.; Kros, J.M.; Marosi, C.; Metellus, P.; Radbruch, A.; Villa Freixa, S.S.; et al. Diagnosis and treatment of brain metastases from solid tumors: Guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 2017, 19, 162–174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gidwani, M.; Chang, K.; Patel, J.B.; Kim, A.E.; Gerstner, E.R.; Huang RYCramer, J.K. Defining the optimal millimeter threshold for target lesion inclusion in the Response Assessment in Neuro-Oncology for Brain Metastases (RANO-BM) based on outcome prediction. J. Clin. Oncol. 2022, 40 (Suppl. S16), e14003. [Google Scholar] [CrossRef]
- Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Bendszus, M.; Brown, P.D.; Camidge, D.R.; Chang, S.M.; et al. Response Assessment in Neuro-Oncology (RANO) group. Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol. 2015, 16, e270–e278. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, F.; Spallanzani, A.; Fontana, A.; Depenni, R.; Luppi, G. Brain metastases: An overview. CNS Oncol. 2015, 4, 37–46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moore, J.B.; Pera, A.; Frumkin, N.L. Magnetic resonance imaging in the CNS. J. Am. Osteopath. Assoc. 1989, 89, 636–644. [Google Scholar] [CrossRef]
- Derks, S.H.A.E.; van der Veldt, A.A.M.; Smits, M. Brain metastases: The role of clinical imaging. Br. J. Radiol. 2022, 95, 20210944. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kiesel, B.; Thomé, C.M.; Weiss, T.; Jakola, A.S.; Darlix, A.; Pellerino, A.; Furtner, J.; Kerschbaumer, J.; Freyschlag, C.F.; Wick, W.; et al. Perioperative imaging in patients treated with resection of brain metastases: A survey by the European Association of Neuro-Oncology (EANO) Youngsters committee. BMC Cancer. 2020, 20, 410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Essig, M.; Anzalone, N.; Combs, S.E.; Dörfler, À.; Lee, S.K.; Picozzi, P.; Rovira, A.; Weller, M.; Law, M. MR imaging of neoplastic central nervous system lesions: Review and recommendations for current practice. AJNR Am. J. Neuroradiol. 2012, 33, 803–817. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galloway, R.; Gikas, N.; Golomohammad, R.; Sherriff, J.; Czyz, M., Sr. Separation Surgery, Fixation With Carbon-Fiber Implants, and Stereotactic Body Radiotherapy for Oligometastatic Spinal Disease. Cureus 2022, 14, e31370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moravan, M.J.; Fecci, P.E.; Anders, C.K.; Clarke, J.M.; Salama, A.K.S.; Adamson, J.D.; Floyd, S.R.; Torok, J.A.; Salama, J.K.; Sampson, J.H.; et al. Current multidisciplinary management of brain metastases. Cancer 2020, 126, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.D.; Trifiletti, D.M.; Gondi, V.; Chan, M.; Minniti, G.; Rusthoven, C.G.; Schild, S.E.; Mishra, M.V.; Bovi, J.; Williams, N.; et al. Multidisciplinary patient-centered management of brain metastases and future directions. Neurooncol. Adv. 2020, 16, vdaa034. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galldiks, N.; Kocher, M.; Ceccon, G.; Werner, J.M.; Brunn, A.; Deckert, M.; Pope, W.B.; Soffietti, R.; Le Rhun, E.; Weller, M.; et al. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: Response, progression, and pseudoprogression. Neuro Oncol. 2020, 22, 17–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strong, M.J.; Garces, J.; Vera, J.C.; Mathkour, M.; Emerson, N.; Ware, M.L. Brain Tumors: Epidemiology and Current Trends in Treatment. Brain Tumors Neurooncol 2015, 1, 102. [Google Scholar] [CrossRef]
- Popat, S.; Welsh, L. Brain metastases in solid tumours: New guidelines for a new era. Ann. Oncol. 2021, 32, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.N. Brain metastases: Advances over the decades. Ann. Palliat. Med. 2015, 4, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Seano, G.; Jain, R.K. Vessel co-option in glioblastoma: Emerging insights and opportunities. Angiogenesis 2020, 23, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Han, R.H.; Dunn, G.P.; Chheda, M.G.; Kim, A.H. The impact of systemic precision medicine and immunotherapy treatments on brain metastases. Oncotarget 2019, 10, 6739–6753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Irfan, T.; Turner, N.M.; Johnston, S.; Smith, I.; O’Brien, M.; Parton, M.; Ring, A.; Noble, J.; Stanway, S.; Somaiah, N.; et al. Central nervous system (CNS) disease during trastuzumab emtansine (T-DM1) for HER2 positive advanced breast cancer (ABC): A single institution experience. Ann. Oncol. 2016, 27, vi68–vi99. [Google Scholar] [CrossRef]
- Aasen, S.N.; Espedal, H.; Keunen, O.; Adamsen, T.C.H.; Bjerkvig, R.; Thorsen, F. Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis. Neurooncol Adv. 2021, 3, vdab151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leone, J.P.; Leone, B.A. Breast cancer brain metastases: The last frontier. Exp. Hematol. Oncol. 2015, 4, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mielczarek, M.; Kubica, A.; Szylberg, M.; Zielińska, K.; Przybył, J.; Sierzputowska, A.; Harat, M. An update on the epidemiology, imaging and therapy of brain metastases. Nowotw. J. Oncol. 2020, 70, 111–117. [Google Scholar] [CrossRef]
- Han, L. Brain metastases: Nanomedicine-boosted diagnosis and treatment. Med. Drug Discov. 2022, 13, 100111. [Google Scholar] [CrossRef]
- Sunwoo, L.; Kim, Y.J.; Choi, S.H.; Kim, K.G.; Kang, J.H.; Kang, Y.; Bae, Y.J.; Yoo, R.E.; Kim, J.; Lee, K.J.; et al. Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study. PLoS ONE 2017, 12, e0178265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Young, G.S.; Chen, H.; Li, J.; Qin, L.; McFaline-Figueroa, J.R.; Reardon, D.A.; Cao, X.; Wu, X.; Xu, X. Deep-Learning Detection of Cancer Metastases to the Brain on MRI. J. Magn. Reson. Imaging. 2020, 52, 1227–1236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, S.J.; Sunwoo, L.; Baik, S.H.; Bae, Y.J.; Choi, B.S.; Kim, J.H. Brain metastasis detection using machine learning: A systematic review and meta-analysis. Neuro Oncol. 2021, 23, 214–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yohena, T.; Yoshino, I.; Kitajima, M.; Uehara, T.; Kanematsu, T.; Teruya, T.; Ikeda, J.; Ichinose, Y. Necessity of preoperative screening for brain metastasis in non-small cell lung cancer patients without lymph node metastasis. Ann. Thorac. Cardiovasc. Surg. 2004, 10, 347–349. [Google Scholar] [PubMed]
- Shin, D.Y.; Na, I.I.; Kim, C.H.; Park, S.; Baek, H.; Yang, S.H. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J. Thorac. Oncol. 2014, 9, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Vachha, B.A.; Huang, S.Y.; Massoud, T.F. Editorial: Advanced Neuroimaging of Brain Metastases. Front. Neurol. 2021, 12, 668310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jerzak, K.J.; Sahgal, A.; Pond, G.; Brastianos, P.K.; Freedman, O.; Stanisz, G.; Warner, E. Abstract OT1-07-01: MRI screening versus symptom-directed surveillance for brain metastases among patients with triple negative or HER2+ metastatic breast cancer: A pilot study (nct03881605). Cancer Res. 2022, 82, OT1-07. [Google Scholar] [CrossRef]
- Morgan, A.J.; Giannoudis, A.; Palmieri, C. The genomic landscape of breast cancer brain metastases: A systematic review. Lancet Oncol. 2021, 22, e7–e17. [Google Scholar] [CrossRef] [PubMed]
- Breckwoldt, M.; Bendszus, M. Zerebrale MR-Bildgebung beim malignen Melanom [Cerebral MR imaging of malignant melanoma]. Radiologe 2015, 55, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Redzematovic, A.; Motzer, R.J.; Voss, M.H. Rates of occult brain metastases in patients (pts) with advanced renal cell carcinoma (RCC): A cohort study from patients treated across 22 clinical trials. J. Clin. Oncol. 2019, 37 (Suppl. S7), 673. [Google Scholar] [CrossRef]
- Kotecha, R.R.; Flippot, R.; Nortman, T.; Guida, A.; Patil, S.; Escudier, B.; Motzer, R.J.; Albiges, L.; Voss, M.H. Prognosis of Incidental Brain Metastases in Patients With Advanced Renal Cell Carcinoma. J. Natl. Compr. Canc Netw. 2021, 19, 432–438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mordenti, P.; Seghini, P.; Di Nunzio, C.; Michieletti, E.; Stroppa, E.M.; Zangrandi, A.; Cavanna, L. Central nervous system metastasis in gastric or gastro-esophageal junction cancer, correlation with human epidermal growth factor 2 (HER-2) status. Ann. Oncol. 2015, 26 (Suppl. S6), 5787–5791. [Google Scholar] [CrossRef]
- Lv, J.; Liu, B.; Quan, X.; Li, C.; Dong, L.; Liu, M. Intramedullary spinal cord metastasis in malignancies: An institutional analysis and review. Onco Targets Ther. 2019, 12, 4741–4753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hommadi, M.; Belemlih, M.; Marnouch, E.; Maghous, A.; Zaghba, N.; Hamidi, F.Z.; Bazzine, A.; Saghir, K.A.; Elmarjany, M.; Sifat, H.; et al. Intramedullary spinal cord metastases: Report of three cases and review of the literature. Cancer Radiother. 2021, 25, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Ponzo, G.; Umana, G.E.; Giuffrida, M.; Furnari, M.; Nicoletti, G.F.; Scalia, G. Intramedullary craniovertebral junction metastasis leading to the diagnosis of underlying renal cell carcinoma. Surg. Neurol. Int. 2020, 11, 152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tonneau, M.; Mouttet-Audouard, R.; Le Tinier, F.; Mirabel, X.; Pasquier, D. Stereotactic body radiotherapy for intramedullary metastases: A retrospective series at the Oscar Lambret center and a systematic review. BMC Cancer. 2021, 21, 1168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia, R.; Sallabanda, K.; Santa-Olalla, I.; Lopez Guerra, J.L.; Avilés, L.; Sallabanda, M.; Rivin, E.; Samblás, J. Robotic Radiosurgery for the Treatment of Intramedullary Spinal Cord Metastases: A Case Report and Literature Review. Cureus 2016, 8, e609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minomo, S.; Tokoro, A.; Utsumi, T.; Ishihara, M.; Akira, M.; Atagi, S. A case of long-term survival after multimodal local treatments of intramedullary spinal cord metastasis of squamous cell lung cancer. J. Thorac. Dis. 2016, 8, E681–E683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hrabalek, L. Intramedullary spinal cord metastases: Review of the literature. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2010, 154, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Shah, L.M.; Salzman, K.L. Imaging of spinal metastatic disease. Int. J. Surg. Oncol. 2011, 2011, 769753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buszek, S.M.; Chung, C. Radiotherapy in Leptomeningeal Disease: A Systematic Review of Randomized and Non-randomized Trials. Front. Oncol. 2019, 9, 1224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamholtz, R.; Sze, G. Current imaging in spinal metastatic disease. Semin. Oncol. 1991, 18, 158–169. [Google Scholar]
- Switlyk, M.D.; Hole, K.H.; Skjeldal, S.; Hald, J.K.; Knutstad, K.; Seierstad, T.; Zaikova, O. MRI and neurological findings in patients with spinal metastases. Acta Radiol. 2012, 53, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Amiri-Kordestani, L.; Palmieri, D.; Liewehr, D.J.; Steeg, P.S. CNS metastases in breast cancer: Old challenge, new frontiers. Clin. Cancer Res. 2013, 19, 6404–6418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandu, N.; Pöpperl, G.; Toubert, M.E.; Spiriev, T.; Arasho, B.; Orabi, M.; Schaller, B. Current molecular imaging of spinal tumors in clinical practice. Mol. Med. 2011, 17, 308–316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mossa-Basha, M.; Gerszten, P.C.; Myrehaug, S.; Mayr, N.A.; Yuh, W.T.; Jabehdar Maralani, P.; Sahgal, A.; Lo, S.S. Spinal metastasis: Diagnosis, management and follow-up. Br. J. Radiol. 2019, 92, 20190211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Guo, L.; Guo, B.; Zhang, P.; Wang, J.; Wang, X.; Yao, W. Evaluation of different scoring systems for spinal metastases based on a Chinese cohort. Cancer Med. 2023, 12, 4125–4136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rades, D.; Schiff, D. Epidural and intramedullary spinal metastasis: Clinical features and role of fractionated radiotherapy. Handb. Clin. Neurol. 2018, 149, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Sutter, B.; Arthur, A.; Laurent, J.; Chadduck, J.; Friehs, G.; Clarici, G.; Pendl, G. Treatment options and time course for intramedullary spinal cord metastasis. Report. of three cases and review of the literature. Neurosurg. Focus 1998, 4, e3. [Google Scholar] [CrossRef] [PubMed]
Sequences | TE (ms) | TR (ms) | FOV (mm) | Slice Thickness (mm) | Technique | |||||
---|---|---|---|---|---|---|---|---|---|---|
Tesla | 1.5T | 3T | 1.5T | 3T | 1.5T | 3T | 1.5T | 3T | 1.5T | 3T |
T1WI | Min | 2100 | 550–750 | 256 | ≤1.5 | 1 | IR-GRE | TSE | ||
T2WI | 80–120 | >3500 | >2500 | 240 | ≤4 | 3 | TSE | |||
FLAIR | 100–140 | >6000 | 240 | ≤4 | 3 | TSE | ||||
DWI | Min | >5000 | 240 | ≤4 | 3 | SS-EPI | ||||
3DT1W-TSE-C | Min | 2100 | 550–750 | 256 | ≤1.5 | 1 | IR-GRE | TSE | ||
DSC (optional) | 25–35 | 1000–1500 | 240 | 3 | GE-EPI |
Modality/Sequence | Indication | Speciality | Disadvantage | |
---|---|---|---|---|
Contrast Enhanced Computed Tomography | Excludes neurosurgical emergencies (mass effect/bleed/hydrocephalus) | Bone detail, calcifications, bleed With MRI, assists precise positioning | Radiation, low sensitivity compared to MRI to detect BMs | |
Magnetic Resonance Imaging Contrast Enhanced | Screening, diagnostic, treating and monitoring. | Gold standard to detect, differentiate and interpret lesions | Overlapping features of post treatment changes with disease | |
Magnetic Resonance Imaging—Conventional | ||||
T1 Weighted Imaging | Assess hemorrhage and enhancement post contrast | Fat suppressed sequence provide calvarial details | Ghosting artefacts, especially in the posterior fossa from the dural venous sinuses, thicker image slices. | |
T2 Weighted Imaging | Distinguish solid/cystic/necrotic lesions | Basis of many advanced sequences as listed below | Extent underestimated due to bright CSF signal | |
T2-FLAIR | Perilesional oedema limited to white matter | Detect meningeal involvement in postcontrast FLAIR | Pulsation artefacts | |
Thin slice spoiled gradient-recalled echo (SPGR) postcontrast MRI | Performed in a head frame for gamma knife treatment planning | Sensitive for the detection of small metastases | Small blood vessels are false positive | |
Magnetic Resonance Imaging—Advanced | ||||
Technique | Biomarker | Correlation | Mechanism | Merit/Demerit(M/D) |
Dynamic susceptibility contrast (DSC) MRI | Relative cerebral blood volume (rCBV < 1) | Tumor neoangiogenesis | Changes in T2 or T2* relaxivity acquired rapidly < 2 min | M: acquired in <2 min D: susceptibility artefact from blood products/air/bone or implanted devices in post-op setting |
Dynamic contrast enhancement (DCE)MRI | Time curves and Ktrans | Vessel perfusion, permeability, vascular and extravascular volume fractions | Changes in T1 relaxivity | M: assesses antiangiogenic effects of drugs. |
Diffusion Weighted Imaging (DWI) | Apparent diffusion coefficient (ADC) maps | Cellularity Cytotoxic and vasogenic oedema | Measuring the displacement of water molecules across the tissue per time unit | M: evaluates post-surgical prognosis, BM growth rate, tumor border zone and differentiates disease from radionecrosis. |
Diffusion Tensor Imaging (DTI): | Anisotropic and diffusivity values | White matter tracts | Directed motion of water molecules | M: plans the route of resection in case of eloquent localizations |
Magnetic Resonance Spectroscopy (MRS): | Relative and absolute metabolite concentrations (ppm) | Functional interpretation of abnormalities | chemical composition of tissues within the brain environment | M: single-voxel MRS of the peritumoral T2 hyperintense non enhancing area(choline/creatinine ≤ 1.24) Assess response |
Arterial spin labelling (ASL) | Cerebral blood flow(CBF) | Blood flow assessed using magnetically labelled blood water protons | No need for exogenous contrast | M: not sensitive to susceptibility artefacts and determine BM recurrence post SRS D: lower signal-to-noise ratio and spatial resolution |
PET Tracer | Use | Demerit | ||
2-[18F]-fluoro-2-deoxy-D-glucose (FDG) PET | To distinguish BM relapse from 6 weeks post radiation induced changes | High physiologic glucose metabolism in the normal brain limits diagnostic performance | ||
Amino Acid PET | Diagnostic performance is superior to both FDG- PET and perfusion–diffusion MRI | Uptake seen in neoplasm and not in normal brain. Crosses blood–brain barrier and differentiates tumor progression from treatment-related changes | ||
L-[methyl-11C]-methionine ([11C]MET) PET | Correlates with protein synthesis Uptake is higher in progressive/recurrent BMs than in radionecrosis. | Short half-life of 20 min necessitates an onsite cyclotron for [11C]MET production | ||
O-(2-[18F]-fluoroethyl-L-tyrosine ([18F]FET) PET | Specific in differentiating tumor from inflammation as its not metabolized into proteins Detects true tumor volume | |||
L-3,4-dihydroxy-6-[18F]fluorophenylalanine ([18F] FDOPA) PET | Combined with MRI to distinguish BMs progression or recurrence from radiation necrosis. | Physiological uptake in the corpus striatum prevents clear delineation of BMs in this region. | ||
[52Ga]Ga- dodecane tetra-acetic acid-fibroblast activation protein inhibitor (DOTA-FAPI) | Higher efficacy than 18F-FDG PET/CT in detecting BMs | New tracer and limited literature |
Guidelines For Screening of BMs | Histology | ||
---|---|---|---|
European Society for Medical Oncology (ESMO) | Non-small-cell lung cancer (NSCLC) | ||
National Comprehensive Cancer Network (NCCN), | Stage II-IV NSCLC | ||
British Thoracic Society | Small cell lung cancer of any stage | ||
National Institute for Health and Care Excellence (NIH) | All lung cancer except Stage 1a NSCLC | ||
Surveillance, Epidemiology, and End Results (SEER) program | Stage IIIC to IV melanoma | ||
Joint EANO-ESMO Clinical Practice Guidelines | Metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancers | ||
Scenario Of Treatment | Scenario Of Disease Status | MRI Interval | Remarks |
With SRS | Active intracranial disease | Every 2–3 months for 1 year | Dep on pt/disease factors can increase interval to 4–6 months. |
Upfront systemic therapy | Active intracranial disease | Every 6 wks for 3 months → every 9 weeks till 1 year → every 3 months | Target lesions may coalesce or new lesions may form |
Immunotherapy | controlled disease | Every 3 months for first year | iRANO criteria is followed |
Radionecrosis | Asymptomatic | Repeat MRI in 4–8 weeks with advanced MRI techniques or Amino Acid PET | Focal abnormal signal intensity may never completely resolve. |
Sites of Progression Free Survival | Local Treatment | Loco-Regional Treatment | Systemic Treatment |
---|---|---|---|
CNS-l (local CNS) | + | − | − |
NON CNS (extracranial) | − | − | + |
CNS(local and distant cns) | + | + | +/− |
Bi-compartmental (CNS AND NON CNS) | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, K.; Mahajan, A.; Mynalli, S. Imaging Recommendations for Diagnosis, Staging, and Management of Central Nervous System Neoplasms in Adults: CNS Metastases. Cancers 2024, 16, 2667. https://doi.org/10.3390/cancers16152667
Bhattacharya K, Mahajan A, Mynalli S. Imaging Recommendations for Diagnosis, Staging, and Management of Central Nervous System Neoplasms in Adults: CNS Metastases. Cancers. 2024; 16(15):2667. https://doi.org/10.3390/cancers16152667
Chicago/Turabian StyleBhattacharya, Kajari, Abhishek Mahajan, and Soujanya Mynalli. 2024. "Imaging Recommendations for Diagnosis, Staging, and Management of Central Nervous System Neoplasms in Adults: CNS Metastases" Cancers 16, no. 15: 2667. https://doi.org/10.3390/cancers16152667
APA StyleBhattacharya, K., Mahajan, A., & Mynalli, S. (2024). Imaging Recommendations for Diagnosis, Staging, and Management of Central Nervous System Neoplasms in Adults: CNS Metastases. Cancers, 16(15), 2667. https://doi.org/10.3390/cancers16152667