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Simple Summary: This review investigates how preprocessing parameters are related to the re-
producibility and reliability of radiomic features derived from multimodality imaging techniques
such as computed tomography (CT), magnetic resonance imaging (MRI), cone-beam CT (CBCT),
and positron emission tomography (PET)/CT. Radiomics, which involves extracting quantitative
features from medical images, shows great potential as a source of non-invasive clinical biomarkers
but is hindered by variability in imaging parameters, especially during acquisition, reconstruction,
and preprocessing. Standardizing and reporting preprocessing procedures is essential for consis-
tent extraction of radiomic features, given their significant role in determining the robustness and
reproducibility of these features.

Abstract: Background: Lately, radiomic studies featuring the development of a signature to use in
prediction models in diagnosis or prognosis outcomes have been increasingly published. While the re-
sults are shown to be promising, these studies still have many pitfalls and limitations. One of the main
issues of these studies is that radiomic features depend on how the images are preprocessed before
their computation. Since, in widely known and used software for radiomic features calculation, it is
possible to set these preprocessing parameters before the calculation of the radiomic feature, there are
ongoing studies assessing the stability and repeatability of radiomic features to find the most suitable
preprocessing parameters for every used imaging modality. Materials and Methods: We performed a
comprehensive literature search using four electronic databases: PubMed, Cochrane Library, Embase,
and Scopus. Mesh terms and free text were modeled in search strategies for databases. The inclusion
criteria were studies where preprocessing parameters’ influence on feature values and model predic-
tions was addressed. Records lacking information on image acquisition parameters were excluded,
and any eligible studies with full-text versions were included in the review process, while conference
proceedings and monographs were disregarded. We used the QUADAS-2 (Quality Assessment of
Diagnostic Accuracy Studies 2) tool to investigate the risk of bias. We synthesized our data in a table
divided by the imaging modalities subgroups. Results: After applying the inclusion and exclusion
criteria, we selected 43 works. This review examines the impact of preprocessing parameters on the
reproducibility and reliability of radiomic features extracted from multimodality imaging (CT, MRI,
CBCT, and PET/CT). Standardized preprocessing is crucial for consistent radiomic feature extraction.
Key preprocessing steps include voxel resampling, normalization, and discretization, which influence
feature robustness and reproducibility. In total, 44% of the included works studied the effects of
an isotropic voxel resampling, and most studies opted to employ a discretization strategy. From
2021, several studies started selecting the best set of preprocessing parameters based on models’
best performance. As for comparison metrics, ICC was the most used in MRI studies in 58% of the
screened works. Conclusions: From our work, we highlighted the need to harmonize the use of
preprocessing parameters and their values, especially in light of future studies of prospective studies,
which are still lacking in the current literature.
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1. Introduction

In recent years, there has been a notable increase in research examining the potential of
quantitative imaging features to reveal additional information from medical images beyond
what is perceptible to the human eye [1–3]. Handcrafted radiomics systematically extracts
quantitative imaging features from medical images to interpret biological information [4,5].
The term “radiomics” yields over 11,100 studies on PubMed. This approach takes manually
delineated regions of interest, such as tumors, on medical images and extracts a high
number of quantitative features with pre-determined mathematical formulas [6]. One of
the biggest advantages of radiomics is that those values can be extracted from medical
images which can be normally acquired from the clinical pathway of the patient. In ra-
diomics studies, the hypothesis is that radiomic features (RFs) can act as clinical biomarkers,
individually or in combination, even with clinical parameters [4].

Numerous investigations have explored and documented RFs’ ability to predict clinical
outcomes, including both a prognostic aim (overall survival and treatment response) as
well as diagnostic aim (e.g., differential diagnosis) [7–18].

As the field of radiomics has advanced, there has been increasing attention on its
limitations [5,19]. The primary identified limitation is the sensitivity of RFs to variations in
image acquisition and reconstruction parameters [20–25]. To be effective clinical biomark-
ers, RFs must demonstrate reproducibility across different imaging parameters for gen-
eralization [25]. However, numerous studies have documented differences in imaging
acquisition and reconstruction parameters [25–37]. Moreover, the impact of variation in a
single acquisition or reconstruction parameter on RF reproducibility depends on the indi-
vidual feature [31,38]. Two works also highlight that reconstruction kernels notably affect
RF reproducibility [21,37]. There are several works exploring various methods to address
RF reproducibility across differently acquired scans, as well as how to standardize them.

Image preprocessing occurs between the image segmentation and feature extraction
stages. There are several studies in the literature indicating that the repeatability of ex-
tracted radiomic features is significantly influenced by the image preprocessing settings
employed [39–44]. Usually, the acquisition and reconstructed voxels are not isotropic,
especially if no voxel re-segmentation is applied (e.g., CT scans are usually not isotropic
at acquisition).

Normalization or range re-segmentation is used to remove voxels in the segmented
volume of interest (VOI) that fall outside a specific gray-level range and is commonly used
to ensure data consistency, especially for imaging modalities with calibrated units. In
fact, normalization is typically necessary for CT and PET. However, this method does not
apply to MRI data, which employ arbitrary intensity units instead. In this case, intensity
outlier filtering is applied by calculating the mean (µ) and the standard deviation (σ) of
gray levels within the VOI and excluding gray levels outside the range of µ ± n σ, where
3 is usually selected as the value of n [44–47]. Other relative normalizations have been
proposed to determine MRI radiomic feature robustness [48,49]. While the results in the
radiomic field are shown to be promising, these studies still have many pitfalls and lim-
itations. One of the main issues in radiomic studies is that features depend on how the
images are preprocessed before their computation. Preprocessing medical images with
different parameters gives different feature values associated with the same image set, thus
meaning that the associated results in terms of predictive model performances are also
influenced. This work focused on gathering information about voxel resampling, normal-
ization, and discretization preprocessing parameters from our included studies. We also
investigated the study aim, anatomic district, and comparison metrics to better understand
the up-to-date overview of radiomic studies. This review aims to provide an up-to-date
and comprehensive overview of the most commonly used preprocessing techniques.

2. Materials and Methods

This systematic review followed the recommendations of the PRISMA-P (Preferred Re-
porting Items for Systematic Review and Meta-Analysis Protocols) 2020 [50]. The inclusion
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criteria for the records in the review process were the presence of specific preprocessing
parameters evaluated in CBCT, CT, MRI, and PET/CT radiomic studies.

We performed a comprehensive literature search using four electronic
databases: PubMed, Cochrane Library, Embase, and Scopus. Since radiomic studies are
relatively recent, we conducted the literature search from January 2008 to December 2023.
Mesh terms and free text were modeled in search strategies for databases using the one
designed for PubMed: ((((“Positron-Emission Tomography” [Mesh]) OR “Tomography,
X-ray Computed” [Mesh]) OR “Magnetic Resonance Imaging” [Mesh] OR PET OR Positron
emission tomography OR computed tomography OR CT OR MRI OR magnetic resonance)
AND (radiomics)) AND (preprocessing OR pre-processing). The inclusion criteria were
studies with CT, PET/CT, or MRI as imaging modalities, where preprocessing parameters’
influence on feature values and model predictions was addressed. The study was exclu-
sively confined to English-language research without publication status restrictions. The
authors did not contact other institutions or researchers to uncover additional studies.

Two reviewers were involved in the study: a senior reviewer with 8 years of experience
in the radiomic field of literature and a junior reviewer with 4 years of experience. These
two reviewers independently screened records by reviewing their titles and abstracts and
extracting general study characteristics (such as study title, first author’s name, publication
year, journal, abstract, corresponding reviewer, and research keywords) for records meeting
the inclusion criteria, using a customized data extraction form. In this first step, the authors
independently used the ASReview tool (version 1.5) [51] to speed up the article selection.
The final screening was manual; we used ASReview as a support tool. ASReview assigned
a priority to the screened literature works, based on a subset of 4 relevant articles and
4 non-relevant articles (which were chosen accordingly by the two reviewers). After the
tool scored the studies, we checked them in descending assigned priority order. Beyond a
threshold priority, we confirmed that the works below that level were not relevant for the
topic anymore and thus were excluded. The authors compared their decisions, resolving
disagreements until a consensus was reached. Records lacking information on image
acquisition parameters were excluded, and any eligible studies with full-text versions
were included in the review process, while conference proceedings and monographs
were disregarded. Additional articles not meeting the inclusion criteria upon full-text
reading were identified and excluded at this stage. Reviewers independently selected
full-text articles, resolving any uncertainties by reaching a consensus. Out of all the
53 full-text articles screened for inclusion, discussion to reach a consensus was required for
17 works (32%).

From each selected full-text article, the following parameters were identified and extracted:

• Acquisition modality (CBCT, CT, MRI, PET/CT);
• Number of patients or phantoms;
• Name of disease/s (if appropriate);
• Equipment vendor and model;
• Presence of acquisition parameters;
• Total number of features;
• Type of features subsampled in FO (first order), SM (shape metric), and TA

textural features;
• Type of software used in the radiomic feature extraction;
• Image filtering used (Y/N; if Y, the type was reported);
• Voxel resampling;
• Normalization process;
• Discretization technique;
• Retrospective study (Y/N or NA);
• Statistical analysis: intraclass correlation coefficient (ICC), concordance correlation

coefficient (CCC), area under the receiver operation curve (AUC), mean, average
percentage difference, relative difference, Spearman correlation, Kolmogorov–Smirnov
test, double-sample test, and two-way ANOVA;
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• Type of study (reproducibility/repeatability/both or best performance);
• Main findings.

No contact with the authors of the records for complementary information was neces-
sary. We synthesized our data in a table divided by the imaging modality subgroups.

Quality scoring for study selection was not utilized. The reviewers reviewed articles
in duplicate, resolving disagreements by achieving an agreement. Data from the studies
were standardized to mitigate potential biases. Data extracted from studies that did not
meet the criteria for standardization were excluded.

This review aimed to describe the most used preprocessing pipeline in the radiomic
workflow of the CBCT, CT, MRI, and PET/CT studies schematically shown in Figure 1.
It also sought to find possible standard radiomic preprocessing setups and describe a
potential evolution over time, aiming to uncover any increased awareness of the technique’s
standardization.
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Figure 1. Schematic radiomic workflow. Regarding voxel resampling, we counted the number of
works that used single isotropic, multiple isotropic, and non-isotropic voxel interpolation. When the
original voxel size was used, we put “N.A.”, and when the information was not indicated, “None”.

Concerning the normalization strategies, we counted the number of papers that chose
absolute, relative, or combination strategies. When this information was not applied,
we set “None”. A normalization strategy enhances the robustness and reliability of the
radiomic analysis. The absolute normalization strategy involves standardizing the intensity
values of imaging by transforming them to a common scale based on absolute reference
points. Conversely, relative normalization concerns adjusting the intensity values of images
relative to a certain reference within each individual image or dataset; this technique often
includes scaling the pixel values based on the mean (µ), median, or a specific percentile of
the intensity values in the image. This approach accounts for differences in overall intensity
levels between images by normalizing the intensities relative to their own distribution.

In terms of discretization strategies, we identified the number of studies that utilized
a bin number (BN), a bin width (BW), or both the bin number and width (BN + BW)
approach. When this information was not applied or not specified, we set “None”. The
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discretization strategy involves adjusting values to standardize the feature extraction
process across different images or imaging modalities. The BN discretization ensures that
the radiomic features are comparable and consistent by transforming the intensity values
into a fixed number of discrete bins. The BW method assures that each bin represents a
fixed range of intensity values. The BN + BW strategy is a dual approach that guarantees
the simultaneous adjustment of the number of bins and the width of each bin used to
discretize image intensity values.

These concepts were summarized in Figure 2.
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Figure 2. Preprocessing scheme used in the evaluation of the items. In addition, we investigated the
study aims, the anatomical districts considered, and the metric used within the works. Concerning
the study aims, we counted how many studies used best performance, repeatability, or both strategies.
The anatomical districts were categorized into “abdomen”, “brain”, “thorax”, and “pelvis” for
simplicity’s sake. When no anatomical part was specified, e.g., for phantom studies, we set “N.A.”.
Moreover, the metric indexes were grouped into ICC, CCC, AUC, or “Other” when different statistical
metrics were used.

We used the QUADAS-2 tool to investigate the risk of bias [52]. The tool evaluates four
key domains: patient selection, index test, reference standard, and flow and timing. Each
domain is evaluated for the risk of bias and applicability. We used this tool only for the
first two domains because reference standards and flow and timing are not defined in this
review’s field. Regarding the patient selection’s risk of bias, we checked the method used
(lower marks were given in the case of inappropriate exclusions or not consecutive/random
selection), while the applicability was evaluated if the included patients matched the typical
clinical scenario.

We considered the index test the metric used in the result comparison. In this context,
the risk of bias consisted of consistently evaluating the calculation/use of the aforemen-
tioned metric, and the applicability referred to the methodology of its use in practice.

3. Results
3.1. Literature Search

The computer-assisted search across PubMed, Cochrane Library, Embase, and Scopus
yielded 546 records (as shown in Table 1). Following the elimination of duplicate entries,
459 unique records remained. Subsequently, a screening process based on the coherence of
the title and abstract reduced the number of articles to 72 (refer to Figure 3).
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Table 1. The distribution of found records across databases.

Database (n◦ of Record) n◦ of Total Records
(with Duplicates)

n◦ of Total Records
(without Duplicates)Medline Embase Cochrane Scopus

208 286 11 41 546 459
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Figure 3. PRISMA-P flow chart: article selection process.

Reviews and conference proceedings were excluded from further consideration. Con-
sequently, 53 full-text articles underwent evaluation by the reviewers to determine their
eligibility. Ten articles were excluded from the database for the following reasons: six
lacked preprocessing results, one focused on a modality outside the scope of this review,
two utilized only a digital phantom, and one was unfound. A comprehensive table with all
the included entries can be found in the Supplementary Materials.

3.2. Data Collection and Elaboration

The selected papers were grouped by considering the acquisition modality: one about
CBCT, twelve about CT, twenty-six about MRI, and five about PET/CT.

CT studies were the most represented from 2013 to 2023. MRI works showed an
increase in publications over the years, starting from one in 2017 to nine in 2023. PET/CT
studies were published in 2019 (two) and 2021 (three).

In 2017, CT phantom studies were published to study the stability and reproducibil-
ity of radiomic features using phantoms made of different materials compared to those
traditionally used in quality control (QC) [39,53,54].
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The number of patients has increased, although not monotonically, from 256 in
2013 to 3000 in 2023. The modality that saw the greatest increase was MRI, demonstrating
the growing interest of the scientific community in this type of imaging.

3.2.1. Acquisition Parameter Presence and Voxel Resampling

• Table 2 shows the studies reporting the acquisition parameters and the voxel resam-
pling information. Only in PET and CBCT did we find that most papers used isotropic
voxel resampling, while in CT and MRI, only 41.7% and 41.3% used it, respectively.

• For CT and CBCT, the most studied voxel resampling interpolation was 1 × 1 × 1 mm3.
Furthermore, a significant number of studies used 1 × 1 × 1 mm3 in MRI, but
more voxel sizes were investigated in the range of 0.9–4.8 mm3. This result is
expected because in MRI the image characteristics are strongly influenced by the
acquisition protocols.

• For PET/CT, voxel resampling dimensions were in the range of 1–4 mm3. This imaging
modality, which employs a small resampling dimension, might introduce biases due
to its intrinsic resolution (around non-isotropic 3–5 mm3).

Table 2. The number of articles included and stratified by voxel resampling type (N.A. indicates this
information is missing).

Modality Acquisition Parameter
Reporting

Voxel Resampling

Isotropic Multiple Isotropic Non-Isotropic N.A. None

CT 10 (83.3%) 2 (16.7%) 3 (25.0%) 2 (16.7%) 5 (41.7%) 0 (0.0%)
Ref. [55,56] [54,57,58] [39,53] [59–63]

CBCT 1 (100%) 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Ref. [64]

MRI 21 (80.8%) 9 (34.6%) 2 (7.7%) 3 (11.5%) 5 (19.2%) 7 (26.9%)
Ref. [56,65–72] [73,74] [75–77] [78–82] [83–89]

PET/CT 5 (100%) 2 (40%) 2 (40%) 0 (0%) 0 (0%) 1 (20%)
Ref. [90,91] [28,92] [93]

3.2.2. Normalization Strategies

Table 3 reports the normalization strategies adopted by the authors, considering the
different modalities. In CT and PET/CT, most works did not use a normalization strategy,
while in MRI, relative normalization was the most used, as expected. In CBCT, a relative
strategy was used because the image gray levels are not in Hounsfield but relative units.

Table 3. Normalization strategies grouped by modality. Combination stands for absolute and relative
strategies used for comparison.

Modality Absolute Relative Combination None

CT 0 (0%) 1 (8.3%) 1 (8.3%) 10 (83.3%)
Ref. [56] [58] [39,53–55,57,59–63]

CBCT 0 (0%) 1 (100%) 0 (0%) 0 (0%)
Ref. [64]

MRI 0 (0%) 14 (53.8%) 4 (15.4%) 8 (30.8%)
Ref. [56,68,71,74,76,77,79–84,87,88] [65–67,85] [69,70,72,73,75,78,86,89]

PET/CT 0 (0%) 1 (20%) 1 (20%) 3 (60%)
Ref. [90] [92] [28,91,93]

3.2.3. Discretization Strategies

Most studies opted for a discretization strategy: 75% in CT, 100% in CBCT, 92.3% in
MRI, and 100% in PET/CT. The combination of BN + BW was the most represented in this
latter modality (Table 4).
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Table 4. Discretization strategies grouped by modality.

BN BW BN + BW None

CT 2 (16.7%) 6 (50%) 1 (8.3%) 3 (25%)
Ref. [39,59] [53,55–58,61] [60] [54,62,63]

CBCT 1 (100%) 0 (0%) 0 (0%) 0 (0%)
Ref. [64]

MRI 10 (38.5%) 9 (36.6%) 5 (19.2%) 2 (7.7%)
Ref. [65,69,71,75,81,82,84–87] [56,66,72,73,76,77,83,88,89] [67,68,74,78,79] [70,80]

PET/CT 1 (20%) 0 (0%) 4 (80%) 0 (0%)
Ref. [92] [28,90,91,93]

In CT, the most investigated BNs were 32, 64, and 128, while BW ranged between
5 and 50 Hounsfield units (HU). In CBCT, the only work selected used BNs equal to 64, 128,
and 256.

In MRI, the BN = 32 was the most used bin number, and eleven works studied it
(42.3%), followed by BN = 64 and 128 (38.5% of the papers).

In PET/CT, the most studied BNs were 32 and 64, while BW typically ranged from
0.01 to 0.5 SUV.

3.2.4. Study Aims

Table 5 shows the count of study aims for each imaging modality.

Table 5. The study aims per modality.

Best Performance Repeatability Reproducibility Repeatability + Reproducibility

CT 3 (25%) 2 (16.7%) 5 (41.6%) 2 (16.7%)
Ref. [55,56,59] [54,62] [39,57,58,60,61] [53,63]

CBCT 0 (0%) 0 (0%) 0 (0%) 1 (100%)
Ref. [64]

MRI 8 (30.8%) 7 (26.9%) 6 (23.1%) 5 (19.2%)
Ref. [56,70,72,75,77,78,80,82] [66,73,76,84,86–88] [65,67,68,74,79,81] [69,71,83,85,89]

PET/CT 2 (40%) 3 (60%) 0 (0%) 0 (0%)
Ref. [90,91] [28,92,93]

Most works employing CT and MRI aimed to study reproducibility and its association
with repeatability. It is worth noting that since 2021, best performance has also been well
investigated. Moreover, the CBCT work studied the aim of repeatability and reproducibility.
PET/CT works consisted of three works about repeatability published in 2019 and 2021 and
two works about best performance issued in 2021. Best performance means that the authors
studied the influence of the preprocessing parameters based on the figure of merit of their
chosen model, i.e., highlighting which preprocessing parameters yielded the best results in
terms of performance of the model (AUC, accuracy, etc.); in fact, the highlighted studies
in Section 3.2.5 use AUC as a comparison metric. The works under “best performance”
aim to identify the set of preprocessing parameters that give the best performance with the
predictive model they used.

3.2.5. Anatomic District

Table 6 reports the anatomic districts categorized in the main four body regions. The
CT studies focused on the trunk’s anatomical regions (chest, abdomen, and pelvis), while
MRI studies were polarized between the brain and pelvis. In addition, CBCT and PET/CT
investigations were centered on the pelvis or chest.
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Table 6. Investigated “macro” anatomic districts divided per modality.

Abdomen Brain Thorax Pelvis N.A.

CT 1 (8.4%) 0 3 (25%) 4 (33.3%) 4 (33.3%)
Ref. [55] [54,61,62] [57–60] [39,53,56,63]

CBCT 0 0 0.0% 1 (100%)
Ref. [64]

MRI 2 (7.7%) 10 (38.5%) 2 (7.7%) 9 (34.6%) 4 (15.3%)
Ref. [76,78] [65,67,69,74,75,80–82,84,86] [72,73] [66,68,70,75,77,79,85,88,89] [56,71,83,87]

PET/CT 0 0 3 (60%) 2 (40%) 0
Ref. [28,91,93] [90,92]

3.2.6. Comparison Metrics

Table 7 illustrates the most common metrics used in the result comparison. In absolute
terms, the most used metric was ICC, which is used predominantly in MRI, with 15 out of
26 works. Some works used more than one metric, so the number of papers reported in
Table 7 is more than the number of works included.

Table 7. Comparison metrics per imaging modality.

ICC CCC AUC Other

CT 3 3 2 4
Ref. [57,58,60] [53,54,62] [56,59] [39,55,61,63]

CBCT 0 1 0 0
Ref. [64]

MRI 15 7 5 9
Ref. [65–68,71,73,74,79,82–86,88,89] [67,76,83,85–87,89] [56,70,77,80,82] [68,69,71,72,75,78,81,84,85]

PET/CT 2 1 1 1
Ref. [28,93] [92] [90] [91]

3.3. Risk-of-Bias Analysis

The risk-of-bias assessment revealed that about 35% of the studies had a low risk of
bias across the patient selection domain, while the remainder did not specify or were not
clearly specified. In addition, 60% had a low risk of bias across the index test. The patient
selection and index test applicability was higher than 72% (Figure 4).
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4. Discussion

The volume of published studies on predictive modeling using radiomic features has
been proliferating. However, no global consensus exists on which features are consistently
repeatable and reproducible. This lack of agreement could potentially hinder future discus-
sions on clinical applicability and the feasibility of prospective multi-institutional external
validation trials.
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Our work is a comprehensive image of the current literature, which highlights that
there are indeed a range of preprocessing values that can be safely employed in radiomic
studies without compromising the reliability of the obtained results.

We are aware that there are several papers published on US radiomics, since it is
becoming a widely used imaging modality in medicine to investigate several diseases.
Lately, the literature on US-based radiomics has been increasing [94–96]. In our study,
we wanted to investigate 3D imaging, which is most used in oncologic and neurologic
treatment, so we left US imaging out of our literature search.

This review’s main objective was to identify preprocessing strategies for radiomic
features in the four primary 3D imaging modalities: CBCT, CT, MRI, and PET. It also aimed
to identify common preprocessing parameter settings to evaluate the current state of the art
in this field and raise awareness, thereby promoting more stable and reproducible results.
In fact, the preprocessing technique has the greatest impact on feature reproducibility [58].

In 2017, CT phantom studies were published to study the stability and reproducibility
of radiomic features using phantoms made of materials different from those traditionally
used in QC [39,53,54]. Moreover, Palani et al. [63] published a phantom study in 2023,
highlighting the scientific interest in this topic.

This review showed how the choice of 1 × 1 × 1 mm3 could be a feasible starting point
for CT and MRI examinations if the original voxel size parameters are not too different
from these values. On the other hand, for CT, the dimension related to slice thickness
(the third dimension) is notably larger compared to the other two, which in turn depend
only on the FOV and reconstruction matrix size (typically 512 × 512). Also, for this reason,
Larue et al. [53] and Shafiq-ul Hassan [39] studied 1 × 1 × 3 and 1 × 1 × 2 mm3, respec-
tively. In MRI, however, the discussion is broader. From a radiomic analysis perspective, a
volumetric acquisition might be the best choice to introduce minimal bias in voxel resam-
pling. However, this choice is not necessarily optimal for all anatomical regions/lesions,
and in any case, it does not apply to retrospective studies. For PET/CT, it seems clear that
an isotropic voxel of approximately 3 × 3 × 3 or 4 × 4 × 4 mm3 is a widely accepted choice
and a good compromise for obtaining comparable results. The challenges in isotropic
reconstruction are similar to those previously described for CT, even though they relate to
different physical processes.

A limitation of this review is that it did not delve into the issue of the resampling
function used (e.g., linear, bicubic, nearest-neighbor interpolation, etc.) because the studies
were too varied to obtain a meaningful result. Larue et al. [53] demonstrated that linear
interpolation resulted in the narrowest range of feature values for nearly half of the fea-
tures, and cubic interpolation did so for a smaller portion. In contrast, nearest-neighbor
interpolation produced the broadest range for most CT study features.

Other limitations of this study lay in the impossibility extracting from the screened
literature works a definite set of recommended values to use for the preprocessing step of
radiomic works. Furthermore, the inclusion of a third reviewer to resolve the disputes and
the lack of consensus would have been beneficial for our work.

Different techniques have been considered for normalization strategies. Starting
from CT, Larue et al. [53] studied the influence of BW from 5 to 50 HU at 5 HU intervals.
Fave et al. [61] preprocessed the CT images with 8-bit depth resampling using a 16 HU bin
width. Kolossváry et al. [60] compared two equally sized bins and equally probable bins
where each bin contains a proportion of the data, finding that all GLRLM features were
significantly affected by binning type; in addition, BNs significantly affected the values
for all GLCMs and GLRLMs. Gray-level resampling affects only second- and higher-order
radiomics features, while voxel size variation can influence first-, second-, and higher-
order features [39]. The optimal discretization methods for feature inter- and intra-sample
reproducibility depend on the imaging modality. The choice of discretization significantly
affects intensity distributions, feature values, and reproducibility [45]. Defining only bin
number or width is insufficient, as these two quantities are related to the maximum number
of gray levels used. The IBSI group mentions preprocessing recommendations in their
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work [45]. In modalities that use calibrated imaging intensity units (e.g., CT and PET/CT),
when a re-segmentation range is defined, either fixed bin size or fixed bin width can be
defined. If no re-segmentation range is used in calibrated imaging modalities, then fixed bin
number is recommended. When a non-calibrated imaging modality (e.g., MRI) is employed,
they recommend using the fixed bin number method without intensity re-segmentation.
The issue when using BN is that it introduces a normalization effect, directly comparing
feature values across patients, whereas BW preserves the relationship between PET units
and their physical meaning. Xu et al. [91] indicate that the BN discretization scheme
achieves relatively high stability compared to BW, in line with IBSI recommendations [45],
contrasting with Pfaehler et al. [28].

Most CT and MRI studies have focused on reproducibility and its relationship with
repeatability. Notably, since 2021, there has been significant investigation into achieving
optimal performance. Additionally, CBCT studies have examined both repeatability and
reproducibility. PET/CT research includes three studies on repeatability published in
2019 and 2021, and two studies on optimal performance published in 2021. The selection
of the best performance as the criterion for evaluating the quality of a model (including the
choice of preprocessing parameters) should be limited, as this choice could introduce biases.

About the anatomical part investigated, CT studies focused on the torso’s anatomical
regions (chest, abdomen, and pelvis), while MRI studies examined the brain and pelvis
regions. Additionally, CBCT and PET/CT investigations were centered on the pelvis or
chest. The distribution of the anatomical regions per imaging modality aligns with what is
expected in a therapeutic pathway (e.g., using MRI for further investigation of the brain or
prostate/cervix due to its capability to distinguish between soft tissues compared to CT).

Concerning comparison metrics, the most commonly used metric was ICC, predom-
inantly applied in MRI studies, with 15 out of 26 works [65–68,71,73,74,79,82–86,88,89].
ICC is extensively studied in radiomics research due to its role in quantitative assessment,
reliability, wide applicability, and standard practice. It serves as a quantitative measure
to gauge agreement or consistency between measurements or observations, crucial for
evaluating the reproducibility of radiomic features. ICC evaluates measurement reliability
by accounting for systematic and random variations, making it effective for assessing
feature stability across different scans or observers. Its versatility extends to various data
types, including continuous and categorical variables, enabling the evaluation of different
radiomic features across diverse imaging modalities and patient groups. Overall, ICC
is favored in radiomics for its comprehensive and standardized approach to assessing
feature reproducibility and stability, thereby supporting the development and validation of
radiomics as a quantitative imaging biomarker. CCC is another essential statistical metric
used in radiomics research to evaluate measurement agreement and reliability. It quan-
tifies the agreement between two sets of continuous measurements, assessing precision
(how closely measurements cluster around the line of perfect agreement) and accuracy
(how close measurements are to the line of identity), offering a comprehensive measure of
agreement that is easy to interpret. Like ICC, CCC accounts for systematic bias (shift) and
random variation (spread) between measurements. This makes it suitable for evaluating
the reproducibility and stability of radiomic features across different scans or observers.
AUC quantifies the overall discriminatory ability of a diagnostic test or biomarker. In
radiomics, this metric assesses the ability of radiomic features or models to distinguish
between different clinical conditions or outcomes based on imaging data. Higher AUC
values indicate better discriminatory performance of the radiomic feature or model.

From our investigated studies, it was not possible to identify a recommended set of
preprocessing parameters or a subset of stable features due to the variability in the experi-
mental setups. However, due to their definitions, higher-order class features (e.g., GLRM
and GLCM-based) are more affected by preprocessing parameters as well as acquisition
and reconstruction parameters, so they should be used with caution when dealing with
retrospective multicentric studies. We can conclude that, when building a predictive model,
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first-order class features should be preferred for inclusion should they show a correlation
with the chosen outcome, especially if a preprocessing strategy is not employed.

Regarding the risk of bias analysis, it was not possible to assess it for the majority
of the studies for patient selection. Since most of the radiomic studies are retrospective,
it is not possible to understand how the patient selection process might affect the results.
Many works showed low concern for risk of bias in the index test, due to the widely
accepted choice of well-known statistical indexes, already broadly used in the literature to
test repeatability even in other scientific fields. Regarding applicability, most studies raised
low concern for both patient selection and the index test.

From our analysis, we also found out that a significant number of our included
studies pursued best model performance in order to find the optimal preprocessing
parameters [55,56,59,70,72,75–77,80,82,90,91]. While this is still a feasible approach given
the early stage of the literature and research in this field, it would be advised to strive toward
a standardization that is based on the feature stability rather than individual model perfor-
mances as these are influenced by other variables (such as training/validation datasets).

The problem of generalizability remains open, but using a preprocessing strategy
improves the robustness of the analysis, especially when multiple vendors and machine
models are included.

We think that an effort toward the standardization of preprocessing parameters should
be conducted by the scientific community. For example, the IBSI group has taken a step
in that direction. From this work, we can see that there are several sets of preprocessing
values that are employable; with such initiatives, a consensus on this topic can be reached.

5. Conclusions

To date, it does not seem possible to establish a standardized recipe for the unequivocal
selection of preprocessing parameter combinations for radiomic analysis. However, it is
noteworthy that certain combinations of voxel resampling, normalization, and digitaliza-
tion are more commonly used than others.

For reproducibility, a study must report the sequence of preprocessing parameters
used so that the methodology employed is evident and transparent.

Our work is a comprehensive image of the current literature which highlights that
there are indeed a range of preprocessing values that can be safely employed in radiomic
studies without compromising the reliability of the obtained results.

From our work, we highlighted the need to harmonize the use of preprocessing
parameters and their values, especially considering future studies of prospective studies,
which are still lacking in the current literature.
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