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Simple Summary: The incidence of metastatic melanoma is rising, making it imperative to iden-
tify patients who do not benefit from immunotherapy. This study aimed to develop a radiomic
biomarker, using segmentations from 146 baseline and 146 first follow-up CT scans, to predict best
overall response, progression-free survival, and overall survival across various immunotherapies. We
volumetrically segmented the total tumour load, excluding cerebral metastases. This study also
examined whether reducing the number of segmented metastases per patient affects predictive
accuracy. The findings suggest that delta radiomics could enhance the prediction of best overall
response, progression-free survival, and overall survival in metastatic melanoma patients undergoing
first-line immunotherapy. Although volumetric whole tumour load segmentation is complex, it may
provide predictive benefits.

Abstract: Background: The prevalence of metastatic melanoma is increasing, necessitating the
identification of patients who do not benefit from immunotherapy. This study aimed to develop
a radiomic biomarker based on the segmentation of all metastases at baseline and the first follow-
up CT for the endpoints best overall response (BOR), progression-free survival (PFS), and overall
survival (OS), encompassing various immunotherapies. Additionally, this study investigated whether
reducing the number of segmented metastases per patient affects predictive capacity. Methods: The
total tumour load, excluding cerebral metastases, from 146 baseline and 146 first follow-up CTs of
melanoma patients treated with first-line immunotherapy was volumetrically segmented. Twenty-one
random forest models were trained and compared for the endpoints BOR; PFS at 6, 9, and 12 months;
and OS at 6, 9, and 12 months, using as input either only clinical parameters, whole-tumour-load
delta radiomics plus clinical parameters, or delta radiomics from the largest ten metastases plus
clinical parameters. Results: The whole-tumour-load delta radiomics model performed best for BOR
(AUC 0.81); PFS at 6, 9, and 12 months (AUC 0.82, 0.80, and 0.77); and OS at 6 months (AUC 0.74). The
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model using delta radiomics from the largest ten metastases performed best for OS at 9 and 12 months
(AUC 0.71 and 0.75). Although the radiomic models were numerically superior to the clinical model,
statistical significance was not reached. Conclusions: The findings indicate that delta radiomics may
offer additional value for predicting BOR, PFS, and OS in metastatic melanoma patients undergoing
first-line immunotherapy. Despite its complexity, volumetric whole-tumour-load segmentation could
be advantageous.

Keywords: immunotherapy; melanoma; total tumour burden; volumetric segmentation; delta
radiomics; prediction; response; survival

1. Introduction

Melanoma, particularly in its metastatic stage IV form, is increasingly diagnosed [1,2].
Since the advent of immune checkpoint inhibitors like PD-1 (programmed death-1) in-
hibitors (nivolumab and pembrolizumab), and CTLA-4 (cytotoxic T-lymphocyte-associated
protein 4) inhibitors (ipilimumab), prognoses have improved significantly [3–7]. However,
treatment resistance and severe side effects such as autoimmune pancreatitis and pneumoni-
tis pose significant challenges [8–10]. Therefore, there is a critical need to identify patients
who do not benefit from these therapies to guide them towards more effective alternatives.
Radiomics, which extracts large datasets from imaging studies and translates them into
biomarkers, has shown promise in this regard [11–13]. Initial radiomic applications include
pre-treatment imaging with CT (computed tomography) or 18F-FDG-PET/CT (flourine-18
fluorodeoxyglucose positron emission tomography/computed tomography). Some studies
have demonstrated the predictive power of baseline CT radiomics for survival in melanoma
patients [14–17] although their results have been inconsistent [18].

Delta radiomics, which evaluates changes in imaging features over time, offers an
advanced approach. This method combines baseline and follow-up imaging data to gen-
erate predictive biomarkers [19–21]. Previous studies have shown the potential of delta
radiomics in predicting outcomes such as overall survival and progression-free survival in
small cohorts of melanoma patients. Guerrisi et al. and Wang et al. performed pilot studies
in small groups of patients with malignant melanoma and reported that CT delta texture
analysis predicted overall survival and progression-free survival as well as early response
to immunotherapy and pseudo progression [21,22]. Dercle et al. studied a larger cohort
undergoing immunotherapy with pembrolizumab. They followed a whole-tumour-load
segmentation approach on baseline and first follow-up CTs and published a radiomic
signature for predicting overall survival. However, the reported time required for manual
lesion segmentation of approximately one minute per lesion per scan, and the restriction to
pembrolizumab monotherapy limits the clinical application of the signature [23].

This study aimed to evaluate whether a more generalizable radiomic biomarker could
be developed for the endpoints BOR, PFS, and OS, using a larger and more diverse patient
sample. Additionally, it explored whether reducing the number of segmented metastases
affects predictive performance.

2. Materials and Methods
2.1. Patients

This study included patients with stage IV malignant melanoma (AJCC 8th edition [24])
treated between 2015 and 2018, as recorded in the local dermatology melanoma registry.
Patients treated with first-line immunotherapy (PD-1 checkpoint inhibitor monotherapy
or combination of a PD-1 checkpoint inhibitor and a CTLA-4 checkpoint inhibitor), who
had available contrast-enhanced baseline and first follow-up CT imaging and measurable
disease at baseline were included. The study protocol received institutional review board
approval (protocol code 092/2019BO2, 21 February 2019), and informed consent was
waived due to the retrospective design. A workflow diagram is shown in Figure 1.
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Figure 1. Workflow diagram.

2.2. Imaging

Baseline and first follow-up CTs were retrieved from the local picture archiving and
communication system (PACS), anonymised, and uploaded into custom software (SATORI,
Fraunhofer MEVIS, Bremen, Germany) for volumetric segmentation of all measurable
metastases. A radiologist (F.P.) with six years of oncologic imaging experience conducted
manual segmentation for baseline CTs in consensus reading with A.E.O. and S.G. (both
specialists in oncologic imaging), while follow-up CT segmentations were precomputed
by an algorithm trained on baseline segmentations [25] and reviewed by the same radiol-
ogists. A detailed distribution of the CT scanners and imaging parameters can be found
in Table S1 in Supplementary Materials. Examples of different timepoint responses can
be depicted from Figure S1. Radiomic feature extraction was performed using the Pyra-
diomics Python package (v3.1.0) [11], and delta features were computed at a patient level.
A detailed description of the radiomic feature extraction and aggregation is provided in
Supplementary Materials.
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2.3. Model Development

Random forest models were trained for seven different clinical endpoints (best overall
response to therapy according to Response Evaluation Criteria In Solid Tumors (RECIST)
1.1 criteria [26] (binarised: complete or partial response = response; stable or progressive
disease = no response); progression-free survival after six, nine, and twelve months; and
overall survival after six, nine, and twelve months. Model development and validation
were conducted using Python, version 3.6.13 (Python Software Foundation, Beaverton,
OR, USA).

2.4. Validation

Considering the conclusions of Kocak et al. [27], model performance was validated
against a clinical parameter-only model that used the following features as input: age,
gender, type of immunotherapy, localization of primary tumour, histological subtype of
primary tumour, BRAF (v-Raf murine sarcoma viral oncogene homolog B1) V600E mutation
status, baseline lactate dehydrogenase level, follow-up lactate dehydrogenase level, baseline
S100 level, follow-up S100 level, number of metastatic organs in baseline CT, and presence
of cerebral metastases or hepatic metastases. Tests were also conducted against a model
using only the ten largest metastases per patient for the extraction of radiomic features,
simulating a more realistic segmentation approach from a clinical perspective. Performance
was estimated using ten-time-repeated five-fold cross-validation. For a detailed description
of the radiomics feature extraction and aggregation, the machine learning model, and the
model evaluation, see Supplementary Materials S2.1–S2.3.

2.5. Statistical Analysis

Analyses were conducted using Excel, version 2019 (Microsoft Corporation, Redmond,
DC, USA), SPSS Statistics 29 (IBM, Armonk, NY, USA), and R, version 3.6.2 (R Program for
Statistical Computing, Vienna, Austria). The area under the curve (AUC) of the receiver-
operating-characteristic (ROC) curve was used as a classification performance metric.
Statistically significant superior performance of the extended model was achieved if the
95% confidence intervals (CI) of the mean AUC of the baseline and extended models did
not overlap. Significant predictive capacity of a model following the outcome distribution
was achieved if the lower bound of the CI was higher than 0.5.

3. Results
3.1. Patients’ Characteristics

The final cohort consisted of 146 patients, predominantly male (63%), with a median
age of 66 years. The most common histological subtype was nodular melanoma (28%).
Most patients received either nivolumab and ipilimumab combination therapy (45%) or
pembrolizumab monotherapy (42%). A detailed description of the patients’ characteristics
is shown in Table 1.

Table 1. Patient’s characteristics.

Clinical Data

Age (years) [median, (IQR)] 66 (22%)

Gender (male) [n, %] 92 (63%)

Localization of primary tumour [n, %] head/neck 34 (23%)

torso 35 (24%)

upper extremity 21 (14%)

lower extremity 38 (26%)

other 7 (5%)

n/a 11 (8%)
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Table 1. Cont.

Clinical Data

Histological subtype [n, %] SSM 35 (24%)

NM 41 (28%)

LMM 8 (5%)

ALM 22 (14%)

mucosal 7 (5%)

occult 9 (6%)

n/a 27 (18%)

BRAF V600E mutation status [n, %] BRAF wildtype 101 (69%)

BRAF mutation 41 (28%)

n/a 4 (3%)

Baseline LDH [n, %] normal (<250 U/L) 31 (21%)

elevated (≥250 U/L) 100 (69%)

n/a 15 (10%)

FU1 LDH [n, %] normal (<250 U/L) 86 (59%)

elevated (≥250 U/L) 57 (39%)

n/a 3 (2%)

Baseline S100B [n, %] normal (<0.1 µg/L) 77 (53%)

elevated (≥0.1 µg/L) 59 (40%)

n/a 10 (7%)

FU1 S100B [n, %] normal (<0.1 µg/L) 80 (55%)

elevated (≥0.1 µg/L) 61 (42%)

n/a 5 (3%)

Number of metastatic organs [n, %] 1–3 132 (90%)

> 3 14 (1%)

Presence of cerebral metastases [n, %] 23 (16%)

Presence of hepatic metastases [n, %] 39 (27%)

Therapy [n, %] pembrolizumab 61 (42%)

nivolumab 19 (13%)

nivolumab + ipilimumab 66 (45%)

Baseline CT lesion counts [n] all 3188

lung 1411

liver 584

soft tissue/skin 416

lymph nodes 478

skeletal 77

spleen 74

other 148
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Table 1. Cont.

Clinical Data

FU1 CT lesion counts [n] all 4836

lung 2104

liver 1083

soft tissue/skin 707

lymph nodes 588

skeletal 71

spleen 92

other 191

Patient outcome

Best overall response (RECIST 1.1) [n, %] CR 26 (18%)

PR 46 (31%)

SD 22 (15%)

PD 48 (33%)

n/a 4 (3%)

Progression-free survival for 6 months [n, %] yes 68 (44%)

no 66 (48%)

n/a 12 (8%)

Progression-free survival for 9 months [n, %] yes 54 (37%)

no 73 (50%)

n/a 19 (13%)

Progression-free survival for 12 months [n, %] yes 41 (28%)

no 77 (53%)

n/a 28 (19%)

Overall survival after 6 months [n, %] yes 110 (75%)

no 19 (13%)

n/a 17 (12%)

Overall survival after 9 months [n, %] yes 90 (62%)

no 27 (18%)

n/a 29 (20%)

Overall survival after 12 months [n, %] yes 70 (48%)

no 30 (21%)

n/a 46 (31%)
Abbreviations: ALM, acral lentiginous melanoma; CR, complete response;; FU1, first follow-up, IQR, interquartile
range; LDH, lactate dehydrogenase; LMM, lentigo maligna melanoma; n/a, not available; NM, nodular melanoma;;
PD, progressive disease;, PR, partial response; RECIST, Response Evaluation Criteria In Solid Tumors; SD, stable
disease; SSM, superficial spreading melanoma.

3.2. Random Forest Models for Binarised Best Overall Therapy Response

Three random forest models were cross-validated for binarised BOR (see Figure 2).
The model using clinical data and whole-tumour burden radiomics achieved the highest
AUC (0.81), followed by the model using clinical data and radiomics from the ten largest
metastases (AUC 0.79). The clinical data-only model achieved an AUC of 0.75. Detailed
values are shown in Table 2. As the confidence intervals of the clinical and radiomics
models overlapped, statistical significance was not reached according to our definition.
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Figure 2. AUCs for the prediction of binarised best overall response. Left graph represents the model
using only clinical parameters; middle graph represents the model using clinical parameters plus
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Table 2. Number of cases for the different endpoints with class distributions and mean AUC from a
10 × 5-fold CV and 95% confidence interval computed by bootstrapping the 10 × 5-fold CV. Class 0
for BOR = PD/SD; class 1 for BOR = PR/CR; class 0 for PFS/OS = no; class 1 for PFS/OS = yes.

Binary Endpoint Cases
n (Class 0 + 1)

Model with Clinical
Features Only.
AUC (95%CI)

Model with Clinical
Features + Whole-
Tumour-Load Radiomic
Features. AUC (95%CI)

Model with Clinical Features
+ Radiomic Features from
Largest Ten Lesions.
AUC (95%CI)

Best overall response 142 (70 + 72) 0.750 (0.672, 0.822) 0.811 (0.745, 0.876) 0.794 (0.726, 0.862)

PFS 6 months 134 (66 + 68) 0.797 (0.726, 0.859) 0.824 (0.756, 0.882) 0.814 (0.747, 0.874)

PFS 9 months 127 (73 + 54) 0.764 (0.684, 0.832) 0.797 (0.730, 0.855) 0.774 (0.702, 0.841)

PFS 12 months 118 (77 + 41) 0.742 (0.658, 0.816) 0.769 (0.698, 0.839) 0.741 (0.667, 0.815)

OS 6 months 129 (19 + 110) 0.721 (0.588, 0.848) 0.742 (0.598, 0.870) 0.718 (0.583, 0.852)

OS 9 months 117 (27 + 90) 0.684 (0.568, 0.788) 0.704 (0.594, 0.808) 0.708 (0.590, 0.811)

OS 12 months 101 (31 + 70) 0.724 (0.617, 0.822) 0.744 (0.642, 0.836) 0.746 (0.641, 0.838)

Abbreviations: AUC, area under the curve; BOR, best overall response; CI, confidence interval; CR, complete
response; CV, cross-validation; n, number; OS, overall survival; PD, progressive disease; PFS, progression-free
survival; PR, partial response; SD, stable disease.

3.3. Random Forest Models for Progression-Free Survival

Nine models were cross-validated for PFS at 6, 9, and 12 months (Figure 3 shows the
endpoint PFS at 12 months). The best performance was achieved with models combining
clinical data and radiomics from the whole-tumour burden (AUCs 0.82, 0.80, and 0.77 for 6,
9, and 12 months, respectively). Detailed values are shown in Table 2. As the confidence
intervals of the clinical and radiomics models overlapped, statistical significance was not
reached according to our definition.

3.4. Random Forest Models for Overall Survival

Nine models were cross-validated for OS at 6, 9, and 12 months (Figure 4 shows the
endpoint OS at 12 months). The model for OS at 6 months performed best with whole-
tumour-burden radiomics (AUC 0.74). Models for OS at 9 and 12 months performed best
with radiomics from the ten largest metastases (AUC 0.71 and 0.75, respectively). Detailed
values are shown in Table 2. As the confidence intervals of the clinical and radiomics
models overlapped, statistical significance was not reached according to our definition.
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4. Discussion

Radiomics offers promising potential for identifying melanoma patients who may not
benefit from immunotherapy. Several studies have reported that relevant features can be
identified from baseline CT imaging. The delta approach may further enhance predictive
capabilities of radiomics, as demonstrated by data published by Dercle et al. [23]. However,
the proposed algorithm lacks clinical transferability as it is limited to pembrolizumab
therapy and requires segmentation of the entire tumour burden on baseline and follow-up
imaging. Therefore, our aim was to develop a model applicable to a wider range of im-
munotherapies and to investigate whether the quantity of lesions required for segmentation
could be reduced to a more manageable number.

This study demonstrated that delta radiomics of the whole-tumour volume improved
model performance for most endpoints (BOR; PFS 6, 9, 12 months; and OS 6 months).
The AUCs were all numerically superior compared to a model using only clinical features.
Compared to the results published by Dercle et al. [23], our AUC values for the prediction of
OS were lower (0.74–0.70 compared to 0.92). The reason for this discrepancy is most likely
the composition of the investigated samples studied. Dercle et al. restricted their cohort
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to melanoma patients treated with a single agent programmed cell death 1 blocker (pem-
brolizumab). In contrast, we aimed for a more generalizable approach and included patients
with pembrolizumab or nivolumab monotherapy or combined nivolumab/ipilimumab
therapy to allow for improved clinical applicability. The positive effect of delta radiomics
was still present in our approach, but it should be noted that the confidence intervals for
all endpoints overlapped. Therefore, according to our definition, there was a numerical
improvement, but not a statistically significant difference.

Manual volumetric segmentation of the whole-tumour burden is very time-consuming.
At approximately one minute per lesion per scan, a patient with multifocal metastatic
melanoma and only thirty metastases will require an hour to segment a baseline and
follow-up scan. This approach is highly problematic in terms of clinical application. Re-
ducing the number of segmented lesions to the ten largest metastases still provided valu-
able information but with slightly lower predictive performance, except for OS 9 and
12 months. This shows that segmentation of the entire tumour burden, although time-
consuming, may provide more information. Advances in AI-enhanced segmentation may
mitigate these challenges, making volumetric segmentation more feasible in clinical set-
tings. Several techniques for automated or semi-automated lesion segmentation have been
reported [25,28–30]. Hering et al. published two studies that proved the feasibility of auto-
mated tracking and volumetric segmentation using the example of soft tissue and lymph
node metastases. They could show that their proposed pipeline with a so called initial
“one-click” segmentation at baseline imaging and subsequent automated segmentation in
follow-up imaging is non-inferior to manual segmentation, significantly saves time, and
reduces inter-reader variability [25,30]. The pipeline is based on the nnU-Net by Isensee
et al., a deep learning framework, that showed impressive results at segmentation tasks,
using a self configurating architecture [29]. Moawad et al. nicely discussed the limitations
of the U-Net architecture for 3D medical imaging segmentation and potential solutions,
such as variants that accept 3D imaging as input (V-Net, 3D U-Net, hybrid Dense U-Net) or
different architectures such as fully convolutional networks (FCN) [28]. Although not all
these methods have become established in daily routine image reading, segmentation of
the entire tumour burden in a manageable amount of time is theoretically no longer unreal-
istic and might enable radiologists to access additional information, such as radiomics or
volumetric RECIST [31,32].

Our study has strengths and limitations. We used a registry with prospective data
documentation to identify the sample studied. The cohort contained a large number of
patients treated according to current guidelines at a tertiary referral centre. Volumetric
segmentation was carried out by an experienced radiologist in consensus reading with
two experts in oncological imaging. Prospective validation on an external dataset and a
second segmentation by a second reader are lacking. A larger sample size would have been
beneficial, and we are hoping to expand our dataset in the future.

5. Conclusions

Overall, delta radiomics shows potential for improving the prediction of BOR, PFS,
and OS in metastatic melanoma patients receiving first-line immunotherapy. Despite its
complexity, a volumetric segmentation of the whole-tumour burden could be favourable.
Further research with larger cohorts and prospective validation is needed to confirm these
findings and enhance clinical applicability.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/cancers16152669/s1. Scan parameters and CT vendor
details; Detailed description of the radiomic feature extraction and aggregation, the machine learning
model, and model evaluation; Table S1: CT scanners and vendors. Figure S1: Examples of different
timepoint responses: A, C, E show baseline CT imaging of three different patients. B, D, F show
CT imaging of the first follow-up with timepoint responses “partial response”, “stable disease” and
“progressive disease”, respectively.
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