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Simple Summary: Antibody–drug conjugates (ADCs) have emerged as a potent cancer therapy by
selectively delivering cytotoxic payloads to tumors. However, they face limitations due to acquired
resistance and adverse effects. New ADC formats, such as bispecific ADCs and probody–drug
conjugates, offer potential solutions. Nevertheless, single-domain antibodies (VHHs), also known
as nanobodies, present a promising alternative. VHHs possess unique characteristics over ADCs,
including a smaller size, enhanced tissue penetration, and rapid clearance. Their stability, solubility,
and manufacturability surpass those of conventional antibodies, enabling cost-effective production
and expanding the range of targetable antigens. Therefore, VHHs can mitigate some of the risks
associated with conventional ADCs, representing an exciting prospect for next-generation ADCs.

Abstract: Background: Antibody–drug conjugates (ADCs) represent potent cancer therapies that
deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and sig-
nificantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to
acquired resistance and potential side effects. Objectives: This study focuses on advances in various
ADC components to improve both the efficacy and safety of these agents, and includes the analysis
of several novel ADC formats. This work assesses whether the unique features of VHHs—such as
their small size, enhanced tissue penetration, stability, and cost-effectiveness—make them a viable
alternative to conventional antibodies for ADCs and reviews their current status in ADC develop-
ment. Methods: Following PRISMA guidelines, this study focused on VHHs as components of
ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were
conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to
ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding dupli-
cates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and
synthesized to highlight advancements, methods, payloads, and future directions in ADC research.
Results: VHHs offer significant advantages for drug conjugation over conventional antibodies due to
their smaller size and structure, which enhance tissue penetration and enable access to previously
inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective
production and expand the range of targetable antigens. Additionally, some VHHs can naturally
cross the blood–brain barrier or be easily modified to favor their penetration, making them promising
for targeting brain tumors and metastases. Although no VHH–drug conjugates (nADC or nanoADC)
are currently in the clinical arena, preclinical studies have explored various conjugation methods
and linkers. Conclusions: While ADCs are transforming cancer treatment, their unique mechanisms
and associated toxicities challenge traditional views on bioavailability and vary with different tumor
types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood
cell interactions, highlight the need for better understanding. Conversely, the rapid distribution,
tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by
minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates
for the next generation of ADCs, potentially enhancing both efficacy and safety.
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1. Introduction

For decades, chemotherapy based on cytotoxic agents has been the predominant
treatment for a broad spectrum of cancers and continues to be the most commonly pre-
scribed therapy in oncology [1]. Traditional chemotherapy presents several limitations,
including low selectivity, limited curative efficacy, easy development of drug resistance,
and significant side effects. In the early 20th century, Paul Ehrlich introduced the concept of
“magic bullets”, proposing that specific compounds could directly target diseased cells [2,3].
Monoclonal antibodies (mAbs) were a pivotal development in realizing this concept, as
they can precisely detect antigens on the surface of tumor cells. The therapeutic use of
mAbs began after Georges Kohler and César Milstein introduced the hybridoma technique
for producing mAbs in 1975. The first mAb, clinically approved in 1986, was Muromonab-
CD3 (Orthoclone OKT3, a murine-derived mAb targeting CD3) [4,5]. To date, more than
100 mAbs have been approved by the US Food and Drug Administration (FDA) for the
treatment of various human diseases, including cancer, autoimmune diseases, and chronic
inflammatory diseases [1,3,6–9].

Antibodies have antitumor action by being antagonists or agonists of their receptors
in the cell or by sequestering the ligands of signaling pathways such as VEGF. In addition,
they trigger the action of complement or the recruitment of immune cells. On their own,
they have limited activity, and complete responses in cancer are rarely recorded with the
use of mAbs alone [4,5,10].

Although mAbs have made significant strides in disease therapeutics, their standalone
use is often insufficient, likely due to their lower effectiveness against cancer cells compared
to chemotherapy. By attaching a highly cytotoxic small molecule to a mAb, the antitumor
efficacy can be greatly enhanced, creating a new type of antibody derivative called an
antibody–drug conjugate (ADC). These ADCs can selectively deliver potent small-molecule
drugs directly to targeted cancer cells, inducing apoptosis and effectively serving as “magic
bullets” [7,11,12]. The development of genetic engineering, DNA editing techniques,
and forms of antibody production have facilitated the new generation of ADC against
cancer [2,3,7]. ADCs are a three-component construct comprising the antibody, the binding
linker, and the payload. The target specificity of the mAb allows for theoretical selectivity
for the tumor cell without damaging non-target cells lacking the antigen, thus improving
safety and increasing the therapeutic window [2,7].

In 1989, Raymond Hamers, Cécile Casterman and Serge Muyldermans at the Vrije
Universiteit Brussel (Belgium) discovered a new type of antibody—serendipitously—while
analyzing total and fractionated immunoglobulin G (IgG) molecules in the serum of a
dromedary. This camelid antibody was smaller and simpler than the conventional ones
found in mice and humans, composed of two heavy chains and two light chains. The
described smaller IgG subclasses appeared to lack light chains. Published in 1993, this
research demonstrated that the structure in camels is different, with up to 75% of the
immunoglobulins in the plasma of dromedaries having a much smaller molecular weight
and containing only one constant chain, termed heavy chain-only antibodies (HCAbs) [13].
Similar structures were later described in sharks, known as shark immunoglobulin new
antigen receptors (IgNARs) [14].

The study of these structures and the subsequent recognition that the variable do-
mains of these antibodies (VHHs or Nanobodies® and VNARs, respectively) function
autonomously as single-domain antibodies (VHHs) has opened up an impressive field of
biotechnological development based on them [15,16]. Since the FDA approved the first
VHH antibody in 2019, VHHs have become an alternative to traditional antibodies due to
their potential advantage of unique structure and stability [17,18]. To date, four VHHs have
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received approval for the treatment of multiple diseases, and clinical trials are underway
for various medical applications, mainly for imaging and chimeric antigen receptor (CAR)
therapies [19,20].

This systematic review aims to assess advances and future prospects in using VHHs
as ADC and identifies possible theoretical improvements and new emerging therapies in
the field.

2. Materials and Methods
2.1. Design of the Study and Methods Used for Finding Information

This review was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guideline [21]. The study was designed
to conduct a thorough review of current research on VHHs and their applications as a class
of ADCs. The review encompassed a range of relevant findings related to the topic and
provided a comprehensive understanding of the current state of research in this field. The
main advances and theoretical ways to enhance the results are discussed, along with future
perspectives in the field of conjugated VHHs. This Systematic Review has not registered in
a public registry.

2.2. Strategy for Finding Information

The structured inquiry included pertinent research studies released from 1 January
2014 to 30 June 2024). This specific period was chosen to capture the most recent and rele-
vant developments in the field of ADCs and VHHs. Although the first ADC was approved
by the FDA in 2000 (gemtuzumab ozogamicin), the field has significantly evolved since
then. Additionally, the first single-domain antibody (caplacizumab) was FDA-approved in
2019. By selecting a period starting from five years prior to the approval of caplacizumab,
we aimed to include contemporary studies and advancements that reflect the current state
of research and therapeutic applications.

The databases used for the search were PubMed, Cochrane Library, ScienceDirect and
LILACS. The search criteria included a mix of medical subject headings (MeSH) and key-
words related to ADC and nanoantibodies, such as “nanobody conjugates”, “single-domain
antibody conjugates”, “drug-bound VHHs”, “small format antibody-drug conjugate”,
“scFv”, “single-chain variable fragment”, “single-domain antibody-drug conjugates”, “fully
human single-domain antibody-drug conjugates”, “sdAb”, “NDC”, “small ADC”, “func-
tional heavy (H)-chain antibody”, and “HCAb”. The terms were combined effectively
for the search strategy using the Boolean operators “AND” and “OR”. Articles that were
published in either English or Spanish and can be fully accessed online were considered.
Research covered both clinical and preclinical studies.

2.3. Evaluation and Selection

The first search produced a detailed collection of articles, which were later refined
using automated tools to exclude irrelevant records according to the inclusion criteria
(Figure 1). After eliminating duplicates, three authors (VMMP, MB, AJS) individually
reviewed the titles, abstracts, and full texts of the remaining articles. Additionally, other
relevant studies selected by the team outside the specified time range were also incorpo-
rated. Full-text reviews were carried out for articles that met the inclusion criteria, and any
discrepancies were resolved through consensus-based discussions.
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Figure 1. Strategy for identification, screening and selection of articles for systematic review.

2.4. Determination of Quality

The articles were included in the final analysis after evaluating their quality of evidence.
Only peer-reviewed journal articles with rigorous methodologies were reviewed, such as
randomized controlled trials and cohort studies, to ensure high-quality evidence synthesis.
Case reports, editor letters, and conference studies were excluded, because they typically
do not provide the level of rigor and comprehensive data needed for a systematic review.
The chosen articles examined different facets of advancements in target VHHs, conjugation
methods, payloads, and future prospects in the field of ADCs.

2.5. Extraction and Analysis of Data

Information from the studies was collected and combined to offer a thorough overview
of the present research status. The results were considered in relation to the key develop-
ments, theoretical enhancements, and upcoming research areas in ADC and VHH-ADCs.
The outcomes were summarized in a PRISMA flow diagram to demonstrate the selection
process and results (Figure 1).

The review focuses on various aspects of ADCs, including the evolution of the targets,
the linker or forms of conjugation methods used, the payload, the current research in the
field, VHHs as ADCs, and future perspectives.

3. ADC: A Look at Its Evolution

An ADC consists of a mAb linked to a potent cytotoxic payload via a chemical linker.
This molecular design merges the target specificity and extended circulation half-life of
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an antibody with the high cytotoxic potency of antitumor agents that are too toxic for
standalone use. Consequently, compared with conventional chemotherapies, ADCs can
offer enhanced antitumor efficacy, leading to improved clinical benefits and quality of
life outcomes [1,22,23]. ADCs offer several advantages due to the precise binding of the
antibody and the pro-apoptotic nature of the payload. These include high therapeutic
efficacy, high specificity, relatively lower toxicity to non-cancer cells and reduced side
effects compared to conventional chemical cancer treatments [6,22–30].

To build an ADC, three main components have to be considered: a mAb, a cytotoxic
payload, and a linker (Figure 2). The mAb (typically IgG) facilitates the internalization of the
ADC into target cells via receptor-mediated endocytosis, allows for a prolonged presence
in the bloodstream and reduces the likelihood of triggering an immune response [1,24,25].
The payload is a potent cytotoxic agent intended to kill cancer cells (e.g., microtubule,
DNA synthesis and topoisomerase inhibitors) [1,24,25]. The ratio of drug molecules to
antibody molecules is optimized for effectiveness and safety. The linker connects the mAb
to the toxic payload [1,24,25]. When an ADC binds to a target antigen on tumor cells, it can
deliver a cytotoxic payload directly into the cytoplasm of the targeted cell through receptor-
mediated endocytosis. Alternatively, the cytotoxic drug may be released during lysosomal
degradation, disrupting DNA or inhibiting cell division, ultimately killing tumor cells.
Effective drug targeting, which ensures high tumor specificity and efficient internalization
by cancer cells, is a critical determinant of an ADC’s druggability [1,24,25]. The ideal
characteristics of ADCs include [1,2,6,7,12,22–31]:

• The antibody composing an ADC should present high stability and high affinity for
the target and deep tumor penetration. Low/no immunogenic potential.

• The target should be a surface-exposed (or extracellular) antigen, serving as the
delivery address.

• The linkers should be stable before reaching the targeted tumor site.
• ADC should be efficiently internalized via any of the endocytosis pathways and

successfully trafficked to lysosomes, where they accumulate.
• Payloads from ADCs should be rapidly released upon entry into lysosomes.
• The linked drug should be capable of efficient cell killing. Usually, payloads present

higher toxicity than other chemotherapeutic agents (from 100- to 1000-fold). Impor-
tantly, the potency of the cytotoxic payload should be directed by conjugating it to a
tumor-specific antibody.
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Each component can influence the final efficacy and safety of an ADC. ADC develop-
ment must carefully consider each of these elements, including the selection of the target
antigen, antibody, cytotoxic payload, linker, and conjugation methods [1,22–27]. Current
ADCs have advanced in engineering the antibody, predominantly using conventional
immunoglobulin G (IgG) antibodies, which possess a high affinity that enables effective
internalization while preserving plasma half-life. Improvements have also been made
in the linker, conjugation site, small-molecule payload, and the average number of drug
molecules linked to each antibody or drug-to-antibody ratio (DAR). However, the relation-
ship between the heterogeneous intratumoral distribution and the efficacy of ADCs is still
poorly understood [6,22–31].

3.1. From Antibody to ADC
3.1.1. Linkers and Conjugation Process

The chemical linker that connects the antibody to the cytotoxic payload plays a crucial
role in ADC design. Various factors, such as the chemistry of the linker, the conjugation
strategy, and the site of conjugation, critically influence the pharmacokinetic and phar-
macodynamic properties of the ADC. Several approaches can be used for coupling the
linker to the antibody, including site-directed linkage to specific amino acids—which is the
most commonly used in clinical practice and approved ADCs—and random conjugation to
lysine or cysteine residues. Lysine linkage is based on the coupling of an amine from the
mAb and an activated carboxylic acid of the payload, while the cysteine-based coupling of
mAb reacts cysteine residues with a thiol-reactive functional group in the payload. These
two methods generate random conjugates with different DAR and low homogeneity, since
the payloads can couple on numerous residues along the mAb. However, other approaches
exist to incorporate non-natural amino acids through genetic engineering into the antibody
peptidic sequence with specific residual groups that favor site-directed conjugation [32,33].
The coupling of the payload to the mAb can also be generated by enzymatic strategies
leading to tightly controlled DARs, as they show high site-specificity. The main enzyme-
mediated strategies are transpeptidation using sortase A, microbial transglutaminase or
N-Glycan engineering [34–36]. Protein conjugates, particularly in the production of bispe-
cific antibodies, represent a rapidly advancing field of interest, with evolving technologies
poised to advance conjugation techniques. This advancement enables the creation of site-
specific ADCs without necessitating extensive antibody engineering. Recent applications
have demonstrated the successful generation of potent bispecific antibodies, underscoring
the versatility of chemical methods and their potential in advancing targeted therapeutic
development. Specific site conjugation has significantly enhanced ADC development by
allowing for precise control over drug linkage sites, thus improving product uniformity
and therapeutic profile. While cysteine conjugation currently dominates among clinically
approved ADCs, emerging strategies like AJICAP and AJICAP-M hold promise to further
enhance the quality and versatility of ADCs [37]. The AJICAP and AJICAP-M technologies
are prominent examples of advanced conjugation techniques. AJICAP utilizes maleimide-
based chemistry to conjugate drugs to specific cysteine residues on antibodies. AJICAP-M
expands this technology to accommodate a broader range of drugs and antibodies with
varying specificities and affinities [38]. These conjugation methods offer significant advan-
tages, including the enhanced reproducibility and uniformity of conjugates, reduced drug
quantities required for conjugation with process optimization, improved purification, and
a minimized risk of free drug in the final product [38,39]. AJICAP-M enables the conju-
gation of a wider array of drugs using the same technique, thereby facilitating payload
diversification without significant procedural changes [38–40].

Linkers must maintain the ADC’s stability in the bloodstream to ensure it reaches
the cancer cell intact, but they must also be able to be easily cleaved upon internalization
(cleavable linkers) to release the payload. Alternatively, non-cleavable linkers should form
an innocuous element after releasing the payload, allowing it to still exert its therapeutic
effect [6,22,23,25–31]. Cleavable linkers are designed to be processed at the tumor site,
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taking advantage of the unique properties of the tumor microenvironment over healthy
tissues or systemic circulation. They can be released from the antibody by changes in
pH or by enzymes present in the intercellular and intracellular space. These types of
linkers generate a membrane-permeable neutral payload capable of promoting bystander
killing [31,41–45]. The decision to select one of the two types of linkers hinges on the
anticipated therapeutic outcome and the specifics of the targeted tumor. Approximately
two-thirds of ADCs in clinical trials use cleavable linkers. The most frequently used are
dipeptide, disulfide, and enzyme-cleavable, particularly hydrazone, cathepsin B-responsive
disulfide and pyrophosphate diester linkers [34–36]. Non-cleavable linkers require the
degradation of the antibody component before the drug is released. This mechanism may
reduce the bystander effect. However, the advantages of non-cleavable linkers include
enhanced stability and a reduced risk of unintended side effects [41–43]. The use of
cleavable or non-cleavable linkers hinges on the anticipated therapeutic outcome and the
targeted tumor.

3.1.2. Payload

Conventional chemotherapeutic drugs, when used as ADCs, often fail to eliminate
malignant cells due to the low DAR and the limited number of antibody-targeting receptors
on a tumor cell’s surface [46]. Radioisotope biodistribution and intratumoral concentration
studies have shown that only approximately 1–2% of the administered dose of an ADC
reaches the tumor [3,22,47,48]. These data underscore the necessity for the chemotherapeu-
tic agent carried by the antibody to be potent enough to induce tumor cell killing at very
low concentrations. The payloads used for ADCs are typically far more toxic than conven-
tional chemotherapies, exhibiting sub-nanomolar or even picomolar cytotoxicity in vitro,
compared to the micromolar range of several common chemotherapies [47–52]. The ideal
cytotoxic payload for targeted cancer therapy should present low molecular weight, suit-
able solubility in water-based buffers, stability in the acidic lysosomal environment, and
the ability to retain cytotoxicity even after degradation into linker residue-payload form.
They should also exhibit low immunogenicity, since they play a crucial role in the tumor
immune microenvironment and can influence the immune response [50–55].

Compared to the nanomolar IC50 (half-maximal inhibitory concentration) values
typical of microtubule inhibitors, some DNA-damaging agents exhibit IC50 values in the
picomolar range. As a result, ADCs conjugated with DNA-damaging agents can sometimes
be more effective. They may operate independently of the cell cycle—unlike tubulin
inhibitors, which primarily act during mitosis—and can be effective even in cells with a
low expression of the targeted antigen [51,54–57].

The incorporation of non-traditional payloads into ADCs represents a revolutionary
development in the treatment of cancer. Conventional chemotherapy medicines frequently
have a limited therapeutic window, which results in substantial toxicities that reduce their
effectiveness. On the other hand, ADCs with non-traditional payloads use the accuracy of
mAbs to target cancer cells specifically, sparing healthy organs and minimizing systemic
adverse effects. The novel conjugations appear to be novel ADCs, which may be categorized
as follows:

• Radioimmunoconjugates (RICS): Over the past ten years, there has been a substantial
advancement in the conjugation of radioisotopes for both diagnosis and treatment.
This therapy directs irradiation from radionuclides to tumor targets by using mAbs
that bind to tumor antigens. The acceptance of Actinium and Lutetium conjugates has
cleared the path for numerous therapeutic pairings involving mAbs or VHHs, exhibit-
ing effectiveness in situations unresponsive to prior interventions. Notably, preclinical
research on several VHH antibodies, including those that target PDL1 and HER2, has
produced encouraging results. Additionally, by utilizing the human IgG1 Fc domain
to increase the serum half-life of a CAIX-VHH enzyme-inhibiting antibody, researchers
have created constructs that can be labeled with [89Zr]Zr(IV) for preclinical PET/CT
imaging in mice suffering from colon cancer. Furthermore, [89Zr]Zr has proven to
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be an excellent radiolabeler for anti-CLDN18.2 VHH-ABD and anti-CLDN18.2 VHH-
Fc, enabling noninvasive imaging and the quantification of CLDN18.2 expression in
gastric cancer. These developments demonstrate how radioisotope conjugation can
improve targeted cancer treatments and theragnostics [58–66].

• Immune-stimulating antibody conjugates (ISACs): In the process of developing
new cancer drugs, immunological adjuvant compounds that interact with pattern-
recognition receptors (PRRs) have entered the stage. An innovative approach to
activating localized innate immunity involves the systemic administration of anti-
bodies linked with specific PRR agonists. ISACs have been shown to have potential
benefits over traditional ADCs that contain cytotoxic payloads, according to preclinical
assessments. Particularly promising are ISACs that used Toll-Like Receptor agonist
payloads (TLR7, TLR8, and TLR9) and Stimulators of Interferon Genes (STING) ag-
onist payloads. In order to learn more about the effectiveness of these cutting-edge
treatments, a phase I/II clinical trial (NCT05954143) is presently recruiting patients
with advanced HER2-expressing solid tumors [62,63,67].

• Antibody-based protein degraders (degradation-activating compounds or DACs):
Agonists and targeted protein degraders (TPDs), using proteolytic targeting chimera
(PROTAC) and other molecular glue degraders-based strategies, have attracted con-
siderable attention in current research. In addition to the DACs designed to de-
grade specific cytosolic proteins, several labs have advanced methods to degrade cell
surface proteins using antibody-based approaches. These include antibody-based
PROTACs (AbTACs), which use antibodies as carriers to drive targeted protein degra-
dation, proteolysis-targeted antibodies (PROTABs), and lysosome-targeted chimeras
(LYTACs) [68,69].

• Dual-drug ADC or bispecific drug conjugates and other constructs: Bispecific antibody–
drug conjugates (bsADC) combine the advantages of ADCs and bispecific antibodies.
Dual-specific targeting has the potential to improve the efficacy and safety of ADCs
by improving their specificity, affinity, and internalization potential. Preclinical stud-
ies have shown that the bispecific ADC concept could lead to the development of
more effective anticancer therapies than monospecific ADCs. One study reported
that co-administering a HER2 × prolactin receptor (PRLR) bispecific antibody (bsAb)
with an anti-HER2 ADC significantly enhanced the cytotoxic activity of the ADC,
with the bsADC HER2 × PRLR showing approximately a 100-fold reduction in
IC50 against the T47D/HER2 cell line compared to the anti-HER2 ADC (0.4 nM
vs. 40 nM, respectively) [70]. Other strategies under investigation include a novel
bsADC targeting HER2 and HER3, which has shown high therapeutic efficacy in
treating breast cancer. These advances underscore the potential of bsADC to advance
precision cancer treatments [70–77].

The quantity of drug molecules bound to the antibody, known as the DAR, their hy-
drophobicity, intertumoral sensitivity, and whether or not they are substrates for multidrug
resistance (MDR)-like flow molecules are also important factors when selecting which
payload to use [78–81].

3.1.3. Mechanism of Action of Conjugated Antibodies

Pharmacologically, the action of an ADC can be outlined in four steps: systemic circu-
lation, the Enhanced Permeability and Retention (EPR) effect including passive targeting,
penetration within the tumor tissue, and action on cells, which encompasses active targeting
and controlled release. The canonical model for the mechanism of action of ADCs can be
divided into several stages: the binding of the mAb to the target antigen, the internalization
of the molecule, and finally, the cleavage of the linker with the release of the cytostatic
payload [50,79–81] (Figure 3a–c). After antigen binding on the cell surface, the ADC is
internalized by the tumor cell and endocytosed to form an early endosome. Here, the mAb
binds to the targeted antigens uniquely expressed in cancer cells via one of three main
pathways: clathrin-mediated endocytosis, caveolae-mediated endocytosis, or pinocytosis.
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The latter is antigen-independent, whereas the first two are antigen-dependent [6,80–83].
The antigen–ADC complex is then internalized via receptor-mediated endocytosis and
trafficked into the lysosome (Figure 3b). Here, the ADC is processed according to the
physicochemical properties of the linker, and releases the cytotoxic warhead. Once in the
cytoplasm, the released drug ultimately triggers cell death or apoptosis, generally targeting
DNA or tubulin. Lipophilic drugs can diffuse from ADC target cells to neighboring cells,
killing them independently of their target expression, a mechanism known as the bystander
effect (Figure 3d). The antibody can either activate or inhibit target receptors. Designed to
specifically recognize and bind to antigens on certain cells, such as tumor cells, ADCs can
exert agonistic or antagonistic effects upon binding to their cell surface receptors. This in-
teraction can alter intracellular pathways, potentially inhibiting cell growth or metabolism
depending on the design and cellular context (Figure 3e). This effect not only increases
the cytotoxicity of ADCs, but also makes it possible to target tumors with heterogeneous
antigen expression, increasing the patient population that could benefit [6,22,29,81–86]. In
addition to the payload-induced killing mechanisms, classical antibody functions, such
as the inhibition of the downstream signaling pathways of the target receptor through
the Fab region, or Fc-mediated killing mechanisms, such as antibody-dependent cellular
cytotoxicity (ADCC) (Figure 3f) and complement-dependent cytotoxicity (CDC) (Figure 3g),
as well as antibody-dependent phagocytosis (ADCP) (Figure 3h), directly involve innate or
complementary immune effectors [6,56,85,87,88].
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cells. (b) Targeted drug-delivery. The ADC binds to the antigen in the cell and is internalized by
endocytosis. Once the conjugated antibody binds to target cells, it can be internalized via endocytosis,
carrying along the payload. (c) It is degraded in lysosomes, releasing the drug that carries out its
intracellular action. Once bound to the target cells or inside the cell, the conjugate can release its pay-
load (e.g., a cytotoxic drug). This may lead to cell death. (d) Diffusion through the plasma membrane
with action on surrounding cells. (e) Antagonism or agonism of the target receptors. The antibody is
designed to specifically recognize and bind to the antigens present on the surface of certain types
of cells, such as tumor cells. Antibody–drug conjugates can have agonistic or antagonistic effects
when binding to their specific receptor on the cell surface, allowing them to modify intracellular
pathways and potentially inhibit cell growth or metabolism, depending on their design and specific
cellular context. (f) Some antibody–drug conjugates are engineered not only to directly target specific
cells by binding to their surface receptors but also to harness the immune system for enhanced cell
destruction. This can occur through mechanisms such as (g) antibody-dependent cell-mediated
cytotoxicity (ADCC), where immune cells like Natural Killer (NK) are activated to recognize and
kill the targeted cells. Additionally, antibody-dependent cellular phagocytosis (ADCP) involves
immune cells engulfing and digesting the marked cells, further contributing to their elimination.
(h) Complement-dependent cytotoxicity (CDC) is another mechanism employed, where the conju-
gates activate the complement system to induce cell lysis. These strategies collectively bolster the
therapeutic efficacy of antibody–drug conjugates by leveraging immune responses to eliminate target
cells more effectively.

However, while these Fc-mediated processes potentially enhance the ADCs’ antitumor
effect, they may also adversely affect their safety profile by increasing healthy tissue
exposure through nonspecific drug diffusion, Fc-mediated uptake by immune cells, or
recycling via neonatal Fc receptors (FcRn) [89–100]. Additional factors influencing antibody
clearance include the mononuclear phagocyte system and FcRn-mediated recycling. FcRn
binds to ADCs within the endocytic vacuole and facilitates their export to the extracellular
compartment for recycling [89–100].

3.2. ADCs Evolution
3.2.1. First-Generation ADCs

In the early development of ADCs, murine antibodies linked to standard chemother-
apeutic agents were used, including mitomycin C, N-acetylmarflan, and anthracyclines
via stable, non-cleavable linkers such as succinimide or amide spacers. However, this
approach led to these antibodies being recognized as foreign by the human immune system,
which in turn produced human anti-mouse antibodies, resulting in the rapid elimination
of these ADCs from the human body. Moreover, the linkers were not sufficiently stable
in the bloodstream, contributing to the ADCs having a brief duration of action. Addi-
tionally, the cytotoxic agents sometimes failed to achieve the required levels of efficacy
due to their insufficient toxicity in place at the administered dosages [101–103]. This early
phase was exemplified by the launch of the first human clinical trial for an ADC in 1983,
which involved a conjugate of an anti-carcinoembryonic antigen–antibody conjugated with
vindesine. Administered to patients with various types of advanced metastatic carcino-
mas, this ADC was deemed safe and showed signs of effectiveness. However, the initial
challenges led to advancements in ADC technology, including the transition from murine
to humanized antibodies, enhancing their compatibility with the human immune system
and improving the overall therapeutic potential of ADCs [35,101–104]. Among the most
significant weaknesses that limited the efficacy of these initial ADCs were the low potency
of the chemotherapeutic agent, the instability of the binding of the drug to the antibody,
and low antigen selectivity [35,103–105].

3.2.2. Second-Generation ADCs

Second-generation ADCs feature improved characteristics of chemotherapy drugs,
being significantly more potent (100- to 1000-fold) and consisting of smaller molecules
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compared to first-generation ADCs. The use of stronger cytotoxic payloads, such as
maytansinoids and auristatins, which offer enhanced binding capabilities and improved
water solubility, represent a major advancement in the development of second-generation
ADCs. Additionally, modifications to linkers have enhanced plasma stability and ensured
a uniform DAR, further improving the therapeutic efficacy and safety of these advanced
therapeutic agents [6,35,103,105].

3.2.3. Third-Generation ADCs

Third-generation ADCs represent the most advanced constructs to date, featuring
improvements across all three components. They use more specific antibodies that are
humanized to reduce immunogenicity. The cargo includes more potent payloads. Addi-
tionally, these ADCs incorporate more stable linkers connected through more complex
chemistry. This advancement results in stable and reproducible DAR, enhancing their
stability in circulation and providing better therapeutic windows [6,26,35,103–108].

3.2.4. The Next Generations of ADCs

The next generations of ADCs must strive to overcome persistent limitations, par-
ticularly in improving tissue penetration and reducing off-target effects. One strategy to
achieve these objectives involves reducing the size of the antibody. VHHs are an anti-
body format with exceptional characteristics that make them highly promising for ADC
development (Table 1). The recent advances in this area are reviewed in the following
sections [17,26,63,71,109,110].

Table 1. Main characteristics of 1st, 2nd and 3rd ADC generations.

ADC Generation Antibody Payload
Potency

Plasma
Stability

Homogenous
DAR Toxicity Off-Target

Action

1st Murine + + + ++++ +++++

2nd Humanized +++ +++ +++ ++ ++

3rd Fully human +++++ ++++ ++++ + +

Future generations Improvement in all components

3.3. Disadvantages of Conventional Antibodies for ADCs

mAb are complex macromolecules, frequently employed as targeting moieties, that
face several challenges. Factors such as susceptibility to misfolding in the variable re-
gion and high host immunogenicity significantly hinder the development and application
of antibody-based therapies. Furthermore, the large size of mAbs hinders their ability
to extravasate and effectively penetrate tissues to reach all target cells. Often, poor effi-
cacy arises from the non-uniform distribution of the mAb-based agent within the tumor.
Larger molecules diffuse much more slowly compared to the pressure-driven advective
transport [111–113].

Currently, there is no single class of antibodies that possesses all the desired prop-
erties required for effective targeting agents in ADCs, including low immunogenicity,
rapid distribution, the quick clearance of unbound molecules, and high accumulation in
tumors [114–116].

4. VHHs as Nano-ADCs

HCAbs were found in Camelidae (Bactrian and camels, alpacas, and llamas), as well as
cartilaginous fish (e.g., sharks, rays, and skates). The camelid-derived VHHs are a unique,
functional single-domain of HCAb (Figure 4a). The variable domain of the heavy chain
in an HCAb retains high antigen-binding affinity despite presenting one-tenth of the MW
of a conventional IgG (12–17 kDa vs. ~150 kDa), being the smallest naturally derived
Ag-binding fragment [114–116].
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4.1. VHH’s Physical, Chemical and Structural Properties

The crystal structure of the VHH domain revealed dimensions of 4 nm × 2.5 nm × 3 nm.
VHH domains have been found to be highly soluble and more stable than conventional an-
tibodies. They can be stored at 4 ◦C or −20 ◦C for months without significantly losing their
antigen-binding capacity. Furthermore, the homology between the VHH and VH domains of the
human Ig family VH III was found to be greater than 80%, suggesting that the VHH sequence
may induce a mild immunogenic response when used in cancer immunotherapy [111,116].

VHH domains can endure harsh conditions, such as a wide pH range (3–9) and
extreme chemical (e.g., 6–8 M urea concentration) and thermal denaturing conditions
(e.g., maintaining antigen-binding activity after prolonged incubation at 90 ◦C). This
robustness allows for various administration routes, such as intravenous, oral or
intraperitoneal [117,118]. Notably, VHH domains possess a fully hydrophilic surface,
enhancing their stability and solubility compared to IgG VH domains, and exhibit
significantly less aggregation during production or multimerization (e.g., tandem
VHH-based multispecific antibodies). The CDR3 loop in camelid VHH domains is
typically longer (3–28 amino acids) than in the conventional VH domains of human
IgG (8–15 amino acids). This extended CDR3, which determines recognition specificity,
increases the potential interaction surface with a target antigen in the absence of a
VL domain (Figure 4b). Interestingly, the longer CDR3 in VHH domains can form a
finger-like appendage that fits into a protein cleft, enabling the recognition of epitopes
that are inaccessible to larger antibodies such as mAbs. However, the small size of
the VHH domain results in rapid renal clearance (half-life ~2 h), which is a significant
disadvantage for their application in cancer treatment [111–116,119,120]. On the other
hand, the VHH fragment of the HCAb in serum shows a unique thermo-reversible
stability profile. VHHs can withstand high temperatures due to their ability to refold
after heat denaturation [121–126]. Furthermore, VHHs remain stable under extreme
pH conditions, preserving their bioactivity in the stomach or intestine. This stability
allows for the design of treatments using various administration methods, including
intravenous injection, inhalation, and oral and intranasal delivery. Overall, the stable
biochemical and biophysical properties of VHH support their expanding applications
in various therapeutic areas [20,121,127–130].

4.2. VHH’s Biological Functions

VHHs have exceptional properties, including their small size and ability to penetrate
tumors in vivo, which enhance their tumor-targeting capabilities. Unlike conventional anti-
bodies, VHHs retain the same antigen-binding characteristics as a single immunoglobulin
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variable domain for antigen recognition [120]. Furthermore, VHHs can access epitopes that
conventional antibodies cannot, such as clefts on a protein’s surface [131]. Uniquely, the
strict monomeric state of VHHs facilitates independent antigen recognition and binding.
Another critical difference between the VHH domain of camelid antibodies and the VH
domain of conventional antibodies is found in the FR2 fragment. X-ray crystallography
analysis of the VHH protein–antigen complex has shown that hydrophobic amino acids in
the VHH FR2 are replaced by hydrophilic amino acids in the FR2 of conventional antibodies.
Specifically, the amino acids Phe-42, Glu-49, Arg-50, and Gly-52 in the conventional VH-VL
cross-linking FR2 are substituted with Val, Gly, Leu, and Trp, respectively [113,132–137].
Additionally, the single-variable domains of VHHs can readily form concave surfaces that
function as active sites or receptor-binding pockets. While the extension of the HV loop
increases flexibility, it can compromise the stability of the VHH domain’s internal structure.
To counteract the flexibility introduced by the longer H3 loop, an extra interloop disulfide
bond between the H1 and H3 loops reinforces the extended HV loop structure, thereby
enhancing antigen binding [138,139]. Additionally, the CDR3 region in VHHs can form an
exposed ring structure, acting like a ‘finger’ that inserts into an antigen’s ‘pocket’, unlike
conventional antibodies that usually interact with flat surfaces. An extra cysteine residue
in CDR3 can also form a disulfide bond with an additional cysteine residue in either CDR1
or the framework region 2 (FR2), which enhances the stability of the VHH structure and
lowers the energy required for antigen binding [140,141].

The rate of passive diffusion of a molecule in tissue is inversely proportional to its
molecular size. Consequently, monovalent VHHs (12–17 kDa) exhibit faster vascular
permeability and better tissue penetration compared to conventional antibodies (~150 kDa)
enabling VHHs to achieve a more homogeneous distribution, such as in solid tumors. As
detailed in “Section VHHs penetration and transport through barriers”, some VHHs have
demonstrated the ability to cross the blood–brain barrier (BBB), offering enhanced potential
for the diagnosis and treatment of brain cancer, particularly in cases where the BBB is
disrupted [142–148]. A research study indicates that 177Lu-labeled anti-CD20 VHHs remain
stable in human serum, with over 91% of the complexes intact 144 h post injection [149].
While they are stable, the low molecular weight of VHHs leads to rapid renal clearance.
However, VHHs remain bound to the antigen for an extended period [150]. Supporting
this, several studies have demonstrated that 111In-labeled anti-HER2 VHHs exhibit high
specific uptake in HER2-positive brain tumors from 1 h to 3 d after injection. In contrast,
111In-labeled mAb Trastuzumab shows high nonspecific uptake in highly vascularized
organs, such as the heart, spleen, and liver [147].

CDR3 regions play a crucial role in antigen binding by forming prominent grooves on
their surface, while other sections of CDR3 can penetrate deeply into the active site of a
lysozyme complex. These distinctive characteristics of the VHH fragment contribute to its
higher affinity, solubility, and anti-aggregation properties [141,151–154].

4.3. Characteristics of VHHs to Develop Novel ADCs

Since their discovery, over 100 VHHs have been isolated, targeting areas relevant to
oncology, in vivo imaging, hematology, and infectious diseases, as well as neurological
and inflammatory disorders. VHHs are particularly well-suited for these applications
because of their small size, target specificity, and long CDR3 loops, which help overcome
many of the limitations associated with small-molecule synthetic drugs, such as limited
specificity and off-target toxicity. These unique features of VHHs, compared to mAbs,
present opportunities for developing VHH drug conjugates (nADCs or “nanoADCs”) with
distinct pharmacological benefits (Tables 2 and S1). nADCs can potentially rival traditional
ADCs due to their superior solid tumor penetration, enhanced stability, and their ability
to significantly inhibit cancer cell growth [120,131,132,155,156]. A distinctive capability of
VHHs is their ability to target epitopes in hard-to-reach locations that larger molecules,
such as conventional mAbs, often cannot access. VHHs can bind in a ring-like fashion,
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allowing them to recognize epitopes typically inaccessible to standard antibodies, such as
ion channel domains and intracellular proteins [113,120,133–137].

Table 2. Major differences between mAbs and VHH.

mAb VHH

Size ~14.5 nm 2.5 to 4 nm

MW 150 kDa 12–17 kDa

Antibody production Mammalian cell post-translational
modification needed

Mammalian or microbial, naked and no
post-translational modification needed

Immunogenicity and complexity High glycosylation and interactions with
immune cells via Fc/FcR Low, no Fc/FcR interaction

Stability More dependent on pH and temperature.
Aggregation with other proteins

Wide pH range, extreme chemical and
thermal stability.
Low aggregation

Clearance Hepatic, long half-life Renal, relatively short half-live

Tissue penetration Low High tissue permeability,
can cross the BBB

Epitope recognition Difficult recognition of hidden sites Strong, with a site that cannot be reached
by normal antibodies

Production cost and standardization High Relative low

Humanization and
structural modification Can lose function or stability Easy modification

Affinity nM-µM pM-nM

In summary, VHHs possess several ideal characteristics for drug conjugation, includ-
ing high thermal and chemical stability, excellent solubility and strict monomeric behavior.
Their small size (approximately 2.5 nm in diameter and 4 nm in length, MW: ~12–17 kDa)
facilitates a better tissue penetration, while their relatively low production cost, ease of
modification by genetic engineering means, format flexibility, low immunogenicity, and
modularity further enhance their suitability for therapeutic applications [132,138,139].

VHHs’ Penetration and Transport through Barriers

In homeostasis, the BBB prevents conventional antibodies from crossing into the brain
due to Fc-receptor-mediated efflux back into the bloodstream. The BBB’s permeability is
restricted to receptor-specific ligands or molecules that are lipophilic and have a molecular
weight under 400 Da, making it difficult to achieve therapeutic concentrations in the brain.
Consequently, only 0.01–0.4% of blood proteins, including therapeutic antibodies such as
IgG (150 kDa), can passively diffuse into the central nervous system (CNS) [145,157–159].
Some VHHs are described to naturally cross the BBB without external intervention by
adsorptive-mediated transcytosis. This mechanism involves VHHs with a high isoelec-
tric point (pI ~9.5) binding to anionic sites on endothelial cells, facilitating penetration.
Additionally, cell-penetrating peptides can be fused to VHHs to enhance their ability to
cross cell membranes and the BBB. Device-based and physicochemical methods, such as
convection-enhanced delivery (CED), use microcatheters for direct brain infusion. Receptor-
mediated transcytosis exploits specific BBB receptors, such as the transferrin receptor, for
VHH transport via endocytosis and transcytosis [145]. Carrier systems like liposomes,
extracellular vesicles, and nanoparticles can also be used to deliver VHHs across the BBB,
increasing their bioavailability and effectiveness. Importantly, some pathological conditions
like cancer and inflammation can compromise the BBB’s integrity, allowing mAbs and
VHHs to enter the CNS [145,157–159].
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The use of VHHs enables a more targeted payload delivery to less accessible areas for
conventional antibodies [140–145,148,160,161], offering a solution to circumvent complica-
tions posed by barriers such as the BBB, blood–tumor barrier (BTB), and blood–synovial
barrier. VHHs can be used in various ways, both alone and in combination. For exam-
ple, administering antibodies against the receptor covering the first perivascular line of
the tumor can saturate the blood–synovial barrier, and the VHHs would then be able to
enter deeper areas where the stability of the ADCs is compromised, but not that of the
nADCs [120,131,132,147,148,161].

4.4. The Plasticity of the VHH and the Opportunities for Conjugation

VHHs share many characteristics of mAbs that permit their conjugation to payloads,
but their simpler structure facilitates genetic modification without losing their affinity.
Conjugation can be performed using traditional protocols for lysine, cysteine or site-
directed conjugation. Notably, the surface of VHHs is rich in amino acids such as lysine,
aspartic acid, and glutamic acid, allowing for higher DARs (drug-to-VHH ratios) through
conjugation at these residues [149,151].

The structure of VHHs and their lack of complex post-translational modifications
allows for the introduction of non-natural amino acids or cysteines for site-specific con-
jugation when compared to IgG antibodies. Site-directed conjugation is preferred, as the
presence of lysines in the CDR binding sites may compromise their affinity if a drug is
conjugated via these sites. Introducing an additional cysteine at a location distant from the
paratope, preferably at the C-terminal, can partly solve these issues. Other effective conju-
gation alternatives include sortase A, transglutaminase, and GTPase enzymes, although
they require scaffold modification to be site-specific [141,151–154].

In clinical settings, unconjugated antibodies are often well tolerated, allowing for high
doses that saturate receptors on the cell layers closer to the blood vessel and enable deeper
tumor penetration. However, the payload toxicity of ADCs limits the dosage and frequency
of administration, which can restrict tumor penetration, allowing for regrowth between
doses (typically administered every three weeks in current therapies). Thus, designing
treatment strategies that enhance tumor penetration could lead to greater efficacy and
improve clinical success rates for ADCs and other protein–drug conjugates [7,11,162,163].
In addition to binding affinity, antibody size influences tumor penetration. Decreasing
the size of a conjugate while maintaining affinity and specificity facilitates its entry into
solid tumors through blood vessels, significantly enhancing its therapeutic effect. As an
example, comparative studies in patient-derived organoid (PDO) models between an anti-
5T4 VHH-SN38 and a conventional anti-5T4-SN38 have demonstrated superior penetration
and greater tumor regression by the VHH [164].

Moreover, unlike conventional antibodies which may have prolonged circulation due
to interaction with FcRn-mediated receptors, VHHs do not interact with FcRn, ensuring
that their transport to lysosomes is not compromised [165–167]. This characteristic can
lead to more effective payload release following lysosomal degradation. Finally, chemical
modifications to ADCs can impair stability, making them more sensitive to changes in the
intratumoral environment, leading to instability and the potential loss of interaction with
the paratope. VHHs, however, are stable under adverse conditions that help maintain their
functional integrity and effectiveness in tumor cell elimination [168–185].

4.5. VHHs as Carriers in Antibody–Drug Conjugates (nADCs)

To date, no single class of antibodies perfectly combines several ideal properties for
targeting the moieties of ADCs, including low immunogenicity, rapid distribution, the
fast clearance of unbound molecules, and high tumor accumulation. Despite substantial
interest in ADC therapies, high failure rates have been observed in the clinical setting [186].
Effective tumor accumulation is critical for the antitumor activity of ADCs, especially
against solid tumors, and depends on both tumor penetration/retention and antibody
pharmacokinetics (Figure 5). Consequently, smaller recombinant antibody fragments such
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as VHHs and fragment of antigen binding (Fab) of mAbs have been explored as alternatives
to intact mAbs for generating ADCs, but their clinical applications have been limited by
poor structural stability. Recently, a class of small, soluble antibodies derived from HCAbs
such as VHHs have gained significant attention, due to their minimal molecular size
and high thermal stability [186–191] (Table S1). Along with their high specificity, their
solubility, low immunogenicity, and ease of production make VHHs ideal for constructing
“nano-ADC” (nADC).
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The small size of VHHs facilitates excellent and rapid tumor penetration in vivo.
Additionally, this small size is crucial for our design, as it enables VHHs to bring the
nADCs construct very close to the membrane after binding to the surface target [113]. This
capability makes nADCs a promising approach for next−generation targeted drug conju-
gates [172,192–199]. Furthermore, their smaller size and aqueous solubility enable quicker
tumor infiltration compared to mAbs. VHHs’ superior specificity arises from their ability to
bind to epitopes that conventional mAbs cannot reach. Studies indicate that VHHs achieve
higher tumor-to-background ratios in molecular imaging in vivo, due to their precise bind-
ing and accumulation in tumors, along with the rapid clearance of unbound constructs,
resulting in lower background signals and reduced toxicity. Importantly, VHHs exhibit
exceptional versatility, making them ideal for integrating various functional modules and
enhancing the clinical potential of nADCs. Overall, VHH−drug conjugates or nADCs are
emerging as a promising alternative to conventional ADCs [143,164,192,200–212].

Building on these advantages, VHHs also demonstrate good performance in imaging
applications. Their ability to achieve favorable target-to-noise ratios is evident in research
settings where VHHs conjugated with radionuclides are used for cancer imaging. For
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instance, single-positron emission tomography (SPECT) or positron emission tomography
(PET) combined with micro-computed tomography (micro-CT) has effectively utilized
VHHs for imaging primary tumors and metastatic sites across various cancer models,
including melanoma, breast cancer, ovarian cancer, early pancreatic lesions, and advanced
pancreatic ductal adenocarcinoma. PET/CT imaging with VHHs provides excellent clarity
and signal-to-noise ratios [150,156,173,213–216].

The advent of new technologies that increase the bioavailability of VHHs will facilitate
their transition into clinical use. The main methods include:

• Reduced glomerular filtration rate due to increased glomerular mass or hydrodynamic
radius. Strategies such as combining VHHs with nanoparticles and liposomes, or
modifying them with polyethylene glycol (PEG), are proving effective in enhancing
drug delivery to cancer cells. These approaches improve penetration into solid tumors
and reduce systemic toxicity [217–221].

• Binding to plasma proteins with extended half-life. To extend the half-life of VHHs
and improve their efficacy, methods are being developed to optimize their affinity and
release dynamics. Advances include fusing VHHs with human serum albumin (HSA)
or the Fc domain. Other strategies include the “fenobody” platform developed by
Kelong Fan and colleagues, where VHHs targeting the H5N1 virus were displayed
on a 24-subunit ferritin oligomer. By replacing ferritin’s fifth helix with the VHH,
affinity and half-life were significantly improved, offering substantial advantages for
large-scale biotechnological applications and promoting the broader adoption of VHH
technology [220,222–226].

• Structural and design modifications. Enhancing VHH efficacy against tumor antigens
involves techniques such as forming CDR rings, stabilizing secondary structures, or
creating bispecific and multispecific VHHs to improve affinity, specificity, stability,
and solubility in challenging physiological environments [227–232].

4.6. Advances in the Development of nADCs

To date, no VHH–drug conjugates have entered clinical research, and all published
studies remain at the preclinical stage. These studies have explored the direct conjugation
of the nanoantibody to drugs using multiple forms and linkers, and in some cases, VHHs
have been used in conjunction with other formulations to deliver the drug. The main
conjugated payloads include doxorubicin, MMAE, cisplatin, and SN38 (Table 3). While
nADCs show promise in terms of therapeutic response, a thorough analysis suggests that
traditional cytotoxic agents may not be the most suitable choice for advancing their clinical
development. Matching the right payload with the appropriate linker and antibody formats
is crucial for optimizing nADC efficacy. More potent payloads, such as topoisomerase I
inhibitors, could enhance tumor penetrability. Although antimicrotubule inhibitors have
shown promising activity in preclinical studies with lymphomas and leukemias, their
effectiveness is generally lower in solid tumors compared to antitopoisomerase inhibitors.
New payloads, such as pyrrolobenzodiazepines, may be the most suitable for nADCs due
to their high potency. Regarding the limitations caused by toxicity [233], combining PBDs
with VHHs might reduce toxicity, given VHHs’ shorter plasma retention time. Furthermore,
the enhanced penetrability of VHHs in solid tumors compared to conventional antibodies
could help maintain a strong antitumor response.
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Table 3. Preclinical studies of VHH–drug conjugates, where CEACAM5: Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5, PSMA: Prostate-Specific
Membrane Antigen, HER2: Human Epidermal Growth Factor Receptor 2, EGFR: Human Epidermal Growth Factor Receptor 1, VEGFR2: Vascular Endothelial Growth
Factor Receptor 2, NHS: N-hydroxysuccinimide ester, EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride), aMHC-II—Major Histocompatibility
Complex Class II.

VHH Target Payload Cancer/Cell Line Models Linker Method of Conjugation Ref.

Anti-CD22-VHHs CD22 DM1 Lymphoma

Succinimidyl
trans-4-maleimidylmethyl
cyclohexane-1- carboxylate

(SMCC)

Maleimide [234]

n501-SN38 Oncofetal antigen 5T4 SN38 Solid tumor (Pancreas,
Breast, Ovarian, Colon) ClA2 Maleimide [164]

B9-S84C CEACAM5 Maytansinoid DM4 Solid tumor (Pancreas) MC-VC-PAB Maleimide [235]

Nb 11-1 CD147 Doxorrubicine CD147-positive tumors - Maleimide [236]

VH1-HLE, VH2-VH1,
VH2-VH1-HLE, and J591 PSMA

DNA-alkylating agent
(DGN549)

indolinobenzodiazepine
DNA-alkylating monoimine

Prostate cancer CWR22Rv1
DU145 and DU145-PSMA

cell lines
- Maleimide [194]

NB7 PSMA Doxorrubicine Prostate cancer
PC3-PIP and PC3-flu

pH-sensitive linker
N-(β-maleimidopropionic
acid) hydrazide (BMPH),

Maleimide [237]

VHH7 aMHC-II DM1 Lymphoma -
Sortase-mediated

site-specific protein
engineering

[173]

HuNbTROP2-HSA TROP2 MMAE Pancreatic cancer MC-VC-PAB, Maleimide [238]

VH-Fc 3C9 Mesothelin MMAE Solid tumor VC-PAB Maleimide [239]

Tetravalent biparatopic
anti-EGFR VHH–drug EGFR MMAE Solid tumor MC-VC-PAB Maleimide [240]

2Rs15d HER2 Duocarmycin HER2 positive tumor
Compound S22 Synthetic

duocarmycin linked
to Psyche

VHH fused to Cupid protein
Psyche-duocarmycin [241]
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Table 3. Cont.

VHH Target Payload Cancer/Cell Line Models Linker Method of Conjugation Ref.

PEGylated-antiEGFR
VHH EGFR Pt(IV) (prodrug of

oxaliplatin) EGFR positive cell lines Mal-Pt(IV) Transglutaminase (mTGase)
mediated ligation [242]

11A4 HER2 Auristatin F (AF) platinum-based Lx linker Maleimide [217]

VHH-conjugated
H40-PEG VEGFR2 Methotrexate

HEK293 (human embryonic
kidney cells)
Breast cancer

KDR293 (overexpressed for
VEGFR2 receptors)

NHS/EDC Random lysines [243]

scPDL1-DM1 PDL1 DM1 PDL1 positive cells

Succinimidyl
trans-4-maleimidylmethyl
cyclohexane-1- carboxylate

(SMCC)

Maleimide [244]

N, 7D12-9G8 EGFR Cisplatin A375, A431, Solid tumors Mal-pt Maleimide [245]

Single-chain anti-HER2 HER2 Doxorubicine BT474-M3, NCI-N87

N-[α-(2-[N-
maleimido]propyonylamido)-
PEG-omega-oxycarbonyl]-

DSPE

Maleimide [246]
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4.7. Disadvantages of VHH for nADCs and Possible Improvements
4.7.1. Fast Clearance and Renal Retention

One of the main disadvantages of using single-domain antibodies or other small pro-
tein scaffolds, compared with traditional mAbs, resides in their rapid renal clearance [219].
The short half-life of VHHs in blood circulation is advantageous for imaging applications,
where rapid clearance allows for a faster visualization and optimization of images while
minimizing toxicity. However, this rapid clearance can compromise therapeutic actions
that require a more prolonged presence in the bloodstream.

Of note, it has been shown that the number of polar residues in the C-terminal amino
acid tag (e.g., poly-Histidine tags) significantly contributes to the kidney retention of VHHs.
This is particularly relevant in preclinical trials, where different tags are used for antibody
purification. Furthermore, these tags can be immunogenic. Although many clinically
promising manufactured proteins are His-tagged, there is public concern about using
this type of tag. Both the FDA and the European Medicines Agency (EMA) discourage
its use due to potential undesired immune responses, despite the lack of official public
specifications [247].

Kidney accumulation is not desirable for therapies that may inadvertently concentrate
the carried toxicant in the glomerulus, leading to consistent local action. Therefore, multiple
strategies have been investigated to reduce renal retention. Despite their quick diffusion
through the vasculature, ability to deeply penetrate tumors, and excellent affinity, these
factors can potentially offset the need for an extended half-life. In preclinical studies, VHHs
have demonstrated superior tumor responses compared to conventional ADCs targeting
the same antigens, even without the need for repeated dosing [217,219,248].

The short half-life can be addressed with additional formulations, as described above,
including PEGylation, fusion to serum proteins, multimerization, or fusion to an IgG Fc-
domain, etc. Different administration strategies, such as continuous infusion devices or
repeated doses, can also be employed [248–253].

A novel VHH that binds to serum albumin of different species has been discovered in
native VHH libraries, facilitating its assembly into bispecific and multispecific antibodies
to prolong the pharmacokinetic profile of the molecules [254]. For example, a bivalent
anti-VEGF VHH demonstrated a 1.8-fold longer half-life compared to the monovalent form.
PEGylation resulted in a 12-fold increase in the half-life of an anti-CEA/CD3 bispecific
VHH [238,253,255–261]. Clinical proof-of-concept of the extended half-life achieved in this
manner has been demonstrated for an anti-IL-6R and anti-TNF VHH, fused to a serum
albumin-binding VHH used in treating rheumatoid arthritis [262].

The kidney retention of radiolabeled VHHs can be significantly reduced by using an
untagged C-terminus in conjunction with the plasma expander gelofusine [263]. VHHs
produced without the C-terminal His-tag (a common production method) exhibit a 60%
reduction in kidney uptake compared to tagged VHHs [264,265]. Specifically, untagged
VHHs show a 70% decrease in kidney accumulation compared to Myc-His-tagged VHHs,
and co-infusion with gelofusine results in a 90% reduction in kidney accumulation [263].
The administration of isotypes or “cold” VHHs, as they are also known, can be an attractive
dual strategy as they can be used to cause initial unspecific renal retention, leading to
improved clearance of nADCs. Recently, conjugation strategies using enzymes such as
sortase or transglutaminase have been shown to concurrently remove or obliterate the need
for purification tags, such as the His-tag. This results in VHHs that are less likely to be
retained in the kidneys [149,266–268].

Rapid clearance requires repeated drug applications, which may affect the develop-
ment of therapeutic responses and patients’ quality of life. The ADCs approved to date
are administered at intervals of several weeks, but this schedule is also influenced by
the pharmacokinetics of the antibodies used and the toxicity associated with their use.
This schedule is also influenced by the pharmacokinetics of the antibodies used and the
associated toxicity.
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4.7.2. Is the Rapid Clearance of VHHs Necessarily a Disadvantage?

ADCs are revolutionizing cancer treatment. Their mechanisms of action and associated
toxicities, which are unprecedented compared to other therapies, challenge traditional
dogmas about bioavailability. The variability in responses to the same ADC depends on the
tumor type. The occurrence of severe toxicities such as neutropenia, keratitis, interstitial
lung disease, and even fatalities, highlights the need for a better understanding of these
drugs [269–272]. Many toxicities have been linked to the instability of the compound in
the bloodstream, its off-target effects, and nonspecific interactions with blood cells, as
previously mentioned. We propose that rather than it being a problem, the rapid vascular
permeability and distribution to tissues, swift and deep tumor penetration, and clearance
of VHH-based ADCs or nADCs could offer an opportunity and could be leveraged as a
strategy to reduce toxicity.

4.8. Final Consideration: Improving the Efficacy in Solid Tumors ADCs versus nADCs: Strategies
to Overcome Major Barriers

The uptake and penetration of mAbs in tumors are constrained by several tumor-
specific pathophysiological factors, including elevated interstitial fluid pressure, a dense
extracellular matrix, and an aberrant vascular network. These limitations stem from the in-
herent design of an ADC, which targets an overexpressed and rapidly internalizing antigen
on tumor cells. The impact of these barriers may be more pronounced for ADCs compared
to conventional mAbs, due to the lower doses typically used in clinical settings [273–275].

The delivery of biologicals to the CNS presents a significant challenge, primarily due
to the presence of various barriers separating the CNS from the periphery. These barriers
include the BBB, acting as a highly selective and regulated filter that tightly controls the
passage of substances between the bloodstream and the brain parenchyma (Figure 6).
Only ~0.1% of circulating macromolecules can cross the BBB, severely limiting the use
of biologics in treating CNS-related diseases. In a state of homeostasis, the integrity of
the BBB makes it difficult for conventional antibodies to cross spontaneously, largely due
to Fc-receptor-mediated efflux back into the bloodstream. Consequently, the transfer of
biopharmaceuticals across the BBB remains a significant obstacle in developing therapeutics
targeting the CNS. This challenge is exacerbated in the case of ADCs, where the antibodies
not only carry a payload but also undergo modifications that affect their structure, size,
and interaction with the endothelium. Instability within the CNS, resulting in premature
drug release before reaching the target tumor, can lead to increased neurological toxicity
and severe complications [145,157,276].

The blood–tumor barrier (BTB) refers to the physical and biological barriers between
the circulatory system and solid tumors. Analogous to the BBB, the BTB is observed in
tumors located outside the central nervous system. Endothelial cells lining the blood
vessels within the tumor often display abnormal organization and altered intercellular
junctions. Additionally, the tumor microenvironment features a dense and disorganized
extracellular matrix, which poses challenges to the penetration of therapeutic agents [277].
While blood vessels in tumors may exhibit increased permeability compared to normal
vasculature, this permeability is heterogeneous and does not necessarily ensure uniform
drug distribution. Furthermore, tumors typically exhibit high interstitial pressure, which
may hinder the vascular permeability of therapeutic agents from blood vessels into the
tumor mass [278,279].

A very high affinity of an antibody can result in restricted tumor penetration and
heterogeneous tumor distribution, with preferential binding of the antibody to tumor cells
localized around tumor vasculature. The binding site barrier (BSB) hypothesis, originally
proposed by John N. Weinstein [280], explains the non-uniform distribution of mAbs in
tumor nodules [281–283]. He suggested that cell populations near the blood vessels with
high antigen density and binding affinity likely elicit a strong BSB. Multiple solid tumor
systems, such as pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer
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(NSCLC), aggressive urothelial carcinoma, and some breast cancers exhibit this pattern,
revealing tumor-associated fibroblasts as a major component of the BSB [284–286].
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These barriers cause ADCs to remain in the surrounding tumor vasculature, prevent-
ing their distribution to central tumoral areas. Despite the potential of mAbs to better
permeate cancer than normal tissues due to the typical leaky tumor vasculature, their large
size poses a challenge to efficient solid tumor treatment, explaining the prevalent early
application and clinical success of ADCs in hematological malignancies. VHHs, with their
ability to penetrate deeply into tumors much faster than conventional antibodies and their
stability at low pH, make them ideal for crossing the described barriers and reaching tumor
areas that are normally niches for cancer stem cells and largely resistant to conventional
therapies [6,41,84,186,283,284,287–289].

Although no such small-format conjugates have yet reached market approval, encour-
aging preclinical and preliminary clinical results hold promise for nADCs for the future
implementation of these smaller formats in the clinical arsenal.

5. Conclusions

Single-domain antibodies offer unique advantages, including small size, high sta-
bility, specificity, ease of production, and low immunogenicity, positioning them as a
promising tool for future ADC constructs. Dose-limiting hematologic toxicities, partic-
ularly thrombocytopenia and neutropenia, represent some of the most serious adverse
events commonly associated with approved ADCs. These toxicities are primarily attributed
to antigen-independent off-tumor targeting, which can arise from several mechanisms.
The uptake of intact ADCs into normal cells can occur through nonspecific endocytosis
or via internalization after binding to the target antigen or Fc/C-type lectin receptors.
In the extracellular fluid, payloads released from ADC deconjugation or from apoptotic
cells—both targeted and non-targeted—can also enter normal cells. This entry can happen
through passive diffusion for membrane-permeable payloads or nonspecific endocytosis
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for membrane-impermeable linker–payload complexes [23,290]. VHHs offer a promising
solution to mitigate these issues due to their small size, high stability, specificity, ease of
production, and low immunogenicity. Their unique properties make VHHs a valuable tool
for improving the safety and efficacy of future ADC constructs.

While VHHs remain bound to the antigen for an extended period, a significant chal-
lenge with VHH-based ADCs (nADCs) could reside in their rapid renal clearance, which
could require high and frequent dosing. While various techniques have been explored to
increase the VHH half-life extension in the bloodstream, their effectiveness in enhancing
the efficacy or safety of nADCs through prolonged exposure remains inconclusive and
warrants further research. Addressing these challenges could potentially improve the
pharmacological and safety profiles of nADCs, enabling the more precise and effective
targeting of cancer cells.

6. Limitations of the Study

The study’s limitations include the restricted timeframe from 1 January 2014 to 30 June
2024, which may exclude other relevant studies published before or after this period. There
is a language bias, as only articles in English and Spanish that are available online were
included, thus missing studies published in other languages. The study relies on specific
databases (PubMed, Cochrane Library, ScienceDirect and LILACS), potentially overlooking
relevant studies from other sources. The broad inclusion criteria may lead to varying levels
of evidence and quality among the selected studies. There is also a potential for publication
bias due to the inclusion of only online articles. The findings may not be generalizable to all
ADCs. These limitations should be considered when interpreting the study’s conclusions.
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