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Simple Summary: Large datasets concerning childhood cancers are rare. Therefore, it is important to
fully exploit all available data, which are distributed over several resources, including biomaterials,
images, clinical trials, and registries. With privacy-preserving record linkage (PPRL), datasets can
be merged, without disclosing the patients’ identities. Although PPRL is already implemented or
described in various settings, use case descriptions are fragmented and incomplete. The present
paper gives an overview of current and future use cases of PPRL in childhood cancer. We screened
the literature, projects, and trial protocols, analysed a hypothetical patient journey, and discussed
use cases with experts. All the identified use cases were structured along six key dimensions. We
conclude that PPRL is a key concept in childhood cancer. Therefore, PPRL strategies should already be
considered when starting research projects, to avoid distributed data silos, to maximise the knowledge
derived from collected data, and, ultimately, to improve outcomes for children with cancer.

Abstract: Large datasets in paediatric oncology are inherently rare. Therefore, it is paramount to
fully exploit all available data, which are distributed over several resources, including biomaterials,
images, clinical trials, and registries. With privacy-preserving record linkage (PPRL), personalised or
pseudonymised datasets can be merged, without disclosing the patients’ identities. Although PPRL
is implemented in various settings, use case descriptions are currently fragmented and incomplete.
The present paper provides a comprehensive overview of current and future use cases for PPRL in
paediatric oncology. We analysed the literature, projects, and trial protocols, identified use cases along
a hypothetical patient journey, and discussed use cases with paediatric oncology experts. To structure
PPRL use cases, we defined six key dimensions: distributed personalised records, pseudonymisation,
distributed pseudonymised records, record linkage, linked data, and data analysis. Selected use cases
were described (a) per dimension and (b) on a multi-dimensional level. While focusing on paediatric
oncology, most aspects are also applicable to other (particularly rare) diseases. We conclude that PPRL
is a key concept in paediatric oncology. Therefore, PPRL strategies should already be considered
when starting research projects, to avoid distributed data silos, to maximise the knowledge derived
from collected data, and, ultimately, to improve outcomes for children with cancer.

Keywords: privacy; record linkage; paediatric oncology; data management; secondary use; European
Health Data Space (EHDS); General Data Protection Regulation (GDPR)
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1. Introduction

Over half a century, consecutive clinical trials have improved survival rates across
the spectrum of paediatric oncology (PO). Nevertheless, more than 6000 children die
from cancer in Europe each year [1]. Since large datasets in PO are inherently rare, it is
paramount to fully exploit all available data. Current PO research data are distributed
over several resources holding biomaterials and their respective analysis, various image
modalities, and clinical trial and registry data. In addition to clearly defined research goals
in prospective settings, secondary use of data opens up important research and knowledge
generation opportunities. However, secondary use is associated with various hurdles,
including technical issues, legal barriers due to increasingly complex regulations, and
ethical discussions about explicit informed consent for each analysis as compared to broad
or even opt-out consent. Due to these and other reasons, most data are currently locked up
in data silos.

The following levels of privacy can be distinguished:

• Personalised data, containing personal unique identifiers (IDs) or quasi-identifiers
(QIDs), such as name, data of birth, and others, as defined by [2].

• Pseudonymised data, containing patient codes (“pseudonyms”) that can be associated
with related QIDs, if necessary.

• Anonymised data, which cannot be associated with related QIDs anymore.
• Aggregated data, e.g., statistical results as published in journals.

According to the General Data Protection Regulation (GDPR) [3], whenever possible,
research data need to be collected in a pseudonymised way. As such, in general, different
resources must generate different pseudonyms for one and the same patient. To overcome
barriers due to distributed (pseudonymised) data, the European Joint Programme on
Rare Diseases (EJP RD) is currently creating an effective rare diseases research ecosystem
(https://www.ejprarediseases.org/ (accessed on 23 July 2024)). The EJP RD is based on the
FAIR (Findable, Accessible, Interoperable, and Re-usable) principles [4], which are key to
exploit existing data and support big data and artificial intelligence applications, as recently
demanded by the European Society for Paediatric Oncology (SIOPE) [5,6].

Privacy-preserving record linkage (PPRL) concerns the linking of personalised or
pseudonymised datasets, without disclosing the patients’ identities. PPRL is a key con-
cept for PO research [7]. During pseudonymisation, PPRL can avoid unintended double
registration, which would lead to empty or fragmented pseudonymised records and—if
followed by double randomisation—unbalanced cohorts.

PPRL is required for (a) merging patients from contexts with identical variables and/or
(b) merging different data types from multiple sources holding the same patients (Figure 1).
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tion of duplicate patient records in different contexts. (b) Merging different data types from multiple
sources holding the same patients focuses on the identification of related patient records in different
contexts.
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Most PPRL publications focus on the technical implementation of PPRL algorithms.
In general, PPRL algorithms can follow phonetic coding-based (e.g., [8,9]), hashing-based
(e.g., [10,11]), reference-value-based (e.g., [12,13]), embedding-based (e.g., [14–16]), dif-
ferential privacy-based (e.g., [17]), or secure multiparty computation-based techniques,
which can either be applied on QIDs or on the clinical data themselves (e.g., [18–22]). Some
solutions only support linkage in case of perfectly matching records. More comprehensive
solutions can also link slightly differing records, e.g., in case of typing errors or missing data.
Since both false positive as well as false negative linkage may have severe consequences,
the optimal threshold of accordance must be chosen depending on the use case.

To compare PPRL solutions, Vatsalan et al. [23] and Gkoulalas-Divanis et al. [24]
published PPRL overview papers, each with one out of many dimensions relating to
application areas. A comprehensive overview of various aspects of PPRL was published
by Christen et al. [25]. Their introduction summarises several aspects of why data should
be linked at all and which sources of data might be linked, and they describe selected
use cases. In particular, use cases focusing on health service research, national health
insurance data in Germany, official statistics, and longitudinal studies are considered
herein. In the conclusions of three recently published whitepapers [26–28], the European
Union Agency for Cybersecurity (ENISA) highlights the importance of pseudonymisation
and PPRL in distributed research environments as well as the need for cooperation in
terms of implementation, development of application scenarios, regulatory support, and
dissemination of best practice models. The use cases described especially in [26] represent
a valuable resource for the present paper. PPRL is also expected to play a major role in the
upcoming European Health Data Space (EHDS), which is supposed to provide a framework
for structured and systematic secondary use of health data in the EU on a large scale [29].

For PO in Europe, there are mainly two PPRL services currently available: (1) SPIDER
(https://eu-rd-platform.jrc.ec.europa.eu/spider/ (accessed on 23 July 2024)) focusses on
PPRL between primary sources holding QIDs with perfect matches only (no typing errors,
etc.). (2) The European Patient Identity (EUPID) Services [30] were designed to also link
pseudonymised resources. EUPID further supports PPRL in case of typing errors based on
phonetic hashing algorithms. The EJP RD virtual platform currently supports EUPID.

PPRL has been implemented in various PO settings. However, the related use cases
have been described implicitly, based on the requirements of the respective projects. Use
cases specified in the literature are fragmentary and spread over various publications.
Therefore, the present paper provides a comprehensive overview of current and future use
cases for PPRL in PO.

2. Materials and Methods

We followed three strategies to compile a comprehensive overview of PPRL use cases
in PO.

First, we analysed the literature, existing PO projects, and trial protocols concerning
how and why they implemented PPRL. For the literature search, we applied the following
search terms in PubMed:

((((“record” OR “dataset” OR “registr*”) AND (“link*” OR “merg*” OR “combin*”))
AND (“privacy” OR “GDPR” OR “data protection” OR “pseudonym*” OR “anonym*”
OR “de-identif*” OR “deidentif*” OR “leak*”)) OR “PPRL”) AND ((“paediatr*” OR
“pediatr*” OR “child*” OR “infant”) AND (“cancer” OR “oncolog*” OR “tumor” OR
“tumour”)).

Titles and abstracts and, in a second step, full-text publications were manually filtered
to include only papers containing information concerning use cases of PPRL in PO, and the
relevant use cases were extracted. The search terms revealed 85 articles, of which 23 articles
containing use cases of PPRL in PO were considered.

Secondly, inspired by a recent paper by Ly et al. [31], we identified use cases along a
hypothetical patient journey, as shown in Figure 2.

https://eu-rd-platform.jrc.ec.europa.eu/spider/


Cancers 2024, 16, 2696 4 of 13

Cancers 2024, 16, x FOR PEER REVIEW 4 of 14 
 

 

((“paediatr*” OR “pediatr*” OR “child*” OR “infant”) AND (“cancer” OR “oncolog*” 
OR “tumor” OR “tumour”)).  
Titles and abstracts and, in a second step, full-text publications were manually fil-

tered to include only papers containing information concerning use cases of PPRL in PO, 
and the relevant use cases were extracted. The search terms revealed 85 articles, of which 
23 articles containing use cases of PPRL in PO were considered.  

Secondly, inspired by a recent paper by Ly et al. [31], we identified use cases along a 
hypothetical patient journey, as shown in Figure 2. 

 
Figure 2. Hypothetical patient journey and related data sources. In this example, a patient is diag-
nosed with a primary tumour that worsens during treatment in trial 1. Treatment in a second trial 
2 is successful. The cancer survivor suffers from a relapse a certain time after healing, which can 
again be treated successfully. In this patient journey, we end up with nine different pseudonyms 
(PSNs) for one patient. Green: personalised data; yellow: pseudonymised data; blue: linked data. 

Finally, we discussed the identified use cases with stakeholders from (a) SIOPE and 
(b) the EJP RD to complement the list and to firm up the single use cases. 

The identified use cases were then analysed and categorised along key dimensions. 

3. Results 
3.1. Overview of Dimensions in Privacy-Preserving Record Linkage 
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(Terms between “<” and “>” were replaced by use-case-specific contents). 

Figure 2. Hypothetical patient journey and related data sources. In this example, a patient is
diagnosed with a primary tumour that worsens during treatment in trial 1. Treatment in a second
trial 2 is successful. The cancer survivor suffers from a relapse a certain time after healing, which
can again be treated successfully. In this patient journey, we end up with nine different pseudonyms
(PSNs) for one patient. Green: personalised data; yellow: pseudonymised data; blue: linked data.

Finally, we discussed the identified use cases with stakeholders from (a) SIOPE and
(b) the EJP RD to complement the list and to firm up the single use cases.

The identified use cases were then analysed and categorised along key dimensions.

3. Results
3.1. Overview of Dimensions in Privacy-Preserving Record Linkage

During our research, we found that a one-dimensional list of use cases is not feasible
due to the variety of different PPRL applications in PO. Therefore, we categorised use cases
along key dimensions, as illustrated in Figure 3.
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is shown. Grey boxes reference chapters describing single-dimensional use cases.
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Section 3.2 describes single dimensions of Figure 3 (“horizontal” slices), i.e., distributed
personalised/pseudonymised data sources, record linkage/linked data, and data analysis,
including PO examples.

Section 3.3 summarises multi-dimensional use cases (“vertical” paths through Figure 3),
based on the EJP RD use case specification format: “As a <stakeholder>, I would like to
<research focus> so that I can <objective> and visualise the result as a <output format>”
(Terms between “<” and “>” were replaced by use-case-specific contents).

3.2. Single-Dimensional Use Cases
3.2.1. Distributed Personalised/Pseudonymised Data Sources

This chapter summarises the rationale for why PO data are distributed not only in
routine care but also in research-related data environments.

Multiple Hospitals

Patients might be treated in more than one hospital over time, leading to distributed
personalised records, thus increasing the risk of double registration.

PO example—Specialised and local hospitals: Patients with complex or rare diagnoses
move from local to specialised hospitals. Vice versa, less complex cases are transferred
from specialised to local hospitals.

PO example—Second opinion: Due to the severity of paediatric cancer, parents often
seek a second opinion from another hospital.

Different Types of Data

Pseudonymised research data of different types are often distributed over different
sources.

PO example—Data sources in neuroblastoma research: Neuroblastoma trial data are
collected in several electronic data capture systems. Additionally, there are national and
international registries (e.g., the French National Registry of Childhood Cancers [29]). Bio-
sample data are stored in biobanks, some of which can be queried via BBMRI-ERIC [32].
Sequencing results can be stored in the RD-Connect Genome-Phenome Analysis Platform
(GPAP) [33]. DICOM images are collected on a pseudonymised image management server.

Suspected Diagnosis

Eligibility criteria for clinical trials often require a confirmed diagnosis, although
confirming a suspected diagnosis may already provide valuable research data (e.g., tumour
samples in a biobank).

PO example—SIOPEN BIOPORTAL: SIOPE Neuroblastoma (SIOPEN) is currently
establishing a “SIOPEN BIOPORTAL” (NCT05192980) (https://clinicaltrials.gov/study/
NCT05192980 (accessed on 23 July 2024)), which supports registration and data collection
based on suspected diagnoses with a specific BIOPORTAL pseudonym. This pseudonym
can be used to send biological samples to reference laboratories. After confirmation of the
diagnosis, the patient is registered to the corresponding trial (e.g., low/high risk) and a
second trial-specific pseudonym is generated.

Multiple Subsequent Trials

Throughout their lifetime, patients can be included in one or more trials.
PO example—Poor response: If a high-risk neuroblastoma patient enrolled in an

upfront treatment trial such as HR NBL2 (NCT04221035) (https://clinicaltrials.gov/study/
NCT04221035 (accessed on 23 July 2024)) did not respond to the induction chemotherapy,
the patient was transferred to an even more intensified treatment scheme, e.g., VERITAS
(NCT03165292) (https://clinicaltrials.gov/study/NCT03165292 (accessed on 23 July 2024)).

PO example—Relapse: In case of a relapse, patients previously treated in a primary
tumour study were frequently enrolled to relapse studies, such as BEACON (NCT02308527)
(https://clinicaltrials.gov/study/NCT02308527 (accessed on 23 July 2024)). Subsequently,

https://clinicaltrials.gov/study/NCT05192980
https://clinicaltrials.gov/study/NCT05192980
https://clinicaltrials.gov/study/NCT04221035
https://clinicaltrials.gov/study/NCT04221035
https://clinicaltrials.gov/study/NCT03165292
https://clinicaltrials.gov/study/NCT02308527
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patients could further be enrolled to national or international precision medicine programs
or phase 1 or 2 Innovative Therapies for Children with Cancer (ITCC) trials like ESMART
(NCT02813135) (https://clinicaltrials.gov/study/NCT02813135 (accessed on 23 July 2024)).

Multiple Concurrent Trials

There are trials that allow for or even foresee the participation in other trials at the
same time.

PO example—OMS trial: The Opsoclonus Myoclonus Syndrome (OMS) trial (https://
clinicaltrials.gov/study/NCT01868269 (accessed on 23 July 2024)) collects data concerning
OMS, a rare syndrome in children that appears frequently in patients with neuroblastoma.
Neuroblastoma patients may additionally be treated according to neuroblastoma trial
protocols, where oncological data are collected. Therefore, the OMS infrastructure links
OMS-specific trial data with oncological data from different neuroblastoma trials [34].

Transition from a Trial to Long-Term Follow-Up

Long-term follow-up data are essential but often not collected in trial databases or
only for short periods.

PO example—Long-term follow-up: Since PO patients are frequently treated in more
than one trial, long term follow-up data should be preserved for all trials, even for decades,
without re-entering data in each context. The SIOPEN BIOPORTAL envisages reporting
the long-term follow-up data within a neuroblastoma registry, which includes core, patient,
tumour, and epidemiological data, with the aim to operate for longer periods.

Transition from Routine Care to Research (and Back)

For any trial patient, specific data are collected in routine care and others in research
infrastructures, requiring transition from one to the other.

PO example—Continuity of care: With improving treatment options, continuity of
care for PO survivors beyond cancer treatment is becoming increasingly important. SIOPE
is working on guidelines dealing with the transition from paediatric patients to adolescent
or adult survivors [35].

PO example—Late effects: The majority of the nearly 500,000 PO survivors in Europe
experience late effects, with increasing incidence over the lifetime and impacts on their daily
life [36]. Identification of late effects, even decades after the treatment, and development of
long-term follow-up guidelines require transitions from research to routine care and back.

PO example—End-of-life treatment: Henson et al. used linked data to analyse pre-
scriptions dispended in the community during end-of-life care of cancer patients [37].

3.2.2. Record Linkage/Linked Data
Temporarily Linked Data

Based on related pseudonyms of distributed contexts, data are temporarily linked
in a central service, specific calculations are applied to the linked data, and the result is
returned to the user.

PO example—Counting shared patients: Via the EJP RD virtual platform, users will
be able to count patients that are registered in two different contexts, such as the HR-NBL1
trial and the International Neuroblastoma Risk Group (INRG) databases.

Linked Data Stores and Registries

Linked data can be stored in specific data stores, either to support subsequent tasks
or to serve as a long-term data source (e.g., a linked registry). Therefore, regular updates
must be supported, including the addition of new data, completion of previously missing
data, or correction of data.

PO example—INRG database: Based on agreements between SIOPEN and other re-
search organisations (e.g., US Children’s Oncology Group, COG), core PO trial data are
submitted to the INRG-DB [38] after publication. The HR-NBL1 trial [39] was amended

https://clinicaltrials.gov/study/NCT02813135
https://clinicaltrials.gov/study/NCT01868269
https://clinicaltrials.gov/study/NCT01868269
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several times. Over the years, different randomisations were amended, and the correspond-
ing results were successively published. Some patients were randomised more than once
(e.g., pre-induction and pre-maintenance). Data of such patients were sent to the INRG-DB
once per randomisation, and PPRL ensured that such patients were not registered twice.

PO example—The international diffuse intrinsic pontine glioma registry [40] provides
an infrastructure for acquisition of biological specimens, imaging, and correlative clinical
and genomics data to facilitate basic and translational research studies in diffuse intrinsic
pontine glioma from 55 collaborating institutions in the United States, Canada, Australia,
and New Zealand, including clinical, demographic, radiologic, and pathologic data.

3.2.3. Data Analysis
Counts, Statistical Measures, and Statistical Plots

Counting linked data without counting any patient twice and/or including filters (e.g.,
age < 3 years) requires PPRL. Statistical analyses can be applied on linked data, providing
specific measures (e.g., mean value) or statistical plots (e.g., Kaplan–Meier curve).

PO example—Long-term toxicity: Calculate the rate of toxicity in patients who have
been treated with a specific drug (e.g., cisplatin) and had a specific symptom thereafter
(e.g., ototoxicity) in late-effect research scenarios. Or evaluate the effect of cancer treatment
on paternity through use of assisted reproduction technology [41].

PO example—Large-scale statistics: Various studies applied PPRL to perform large-
scale statistical analyses on cancer data, e.g., to analyse long-term survival after paediatric
cancer [42] or after cancer in general (including PO) [43], to apply benchmarking on paedi-
atric cancer survival [44], to develop a national resource of patient-level genomics laboratory
records including PO patients [45], or to accelerate research on pontine glioma [40]. Walker
et al. applied PPRL to analyse the prevalence of PO and other conditions increasing the
risk of severe COVID-19 disease [46]. Finally, PPRL was applied to determine the incidence
of melanoma [47] and of childhood cancer in general [48].

PO example—Effect of specific parameters on PO incidence: Analyse the effect of
specific parameters from one dataset on the PO incidence as documented in another source
(see, e.g., [49–54]).

PO example—Healthcare management: Use linked datasets for cost effectiveness
analyses [55], data quality assessment [43], benchmarking [56], or capacity building [57].

Tables with Subsets of Linked Data

Subsets of linked data are provided to the user.
PO example—List of follow-ups of a patient: Provision of a table listing all follow-ups

of a specific patient, documented in different data sources, including date of follow-up,
originating data source, and the documented status of the patient.

Single Case Visualisation

Distributed data of a single patient are comprehensively visualised, either in a person-
alised (healthcare) or pseudonymised (research) context.

PO example—Tumour boards: Tumour boards enhance cancer treatment strategies.
In the realm of PO, these boards are frequently conducted in a virtual setting, facilitating
the collaboration of external experts with local physicians (see, e.g., [58]). Consequently, it
is advisable to share only pseudonymised data that have emerged from both routine care
(e.g., images) and research (e.g., randomisation arms).

Patient Apps and Digital Companions

Patient apps and digital companions represent a powerful way to provide outcomes
of PPRL not only to researchers but also to patients.

PO example—Survivorship passport: The survivorship passport links core treatment
data with follow-up recommendations based on guidelines [59]. It will closely be linked to
electronic medical records and to national cancer and survivorship registries, supporting
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regular updates and generation of care plans. The implementation of the survivorship
passport is currently being piloted in six European countries [60].

Artificial Intelligence (AI)

To tap the full potential of AI, PPRL of distributed data sources is essential.
PO example—Image-defined risk factors: Image-defined risk factors (tumour size,

anatomical regions, etc.) are key for risk-adjusted treatment of cancer. However, raw images
either remain in the local centre’s Picture Archiving and Communication System (PACS)
or they are separately stored on specific image management servers. In the PRIMAGE
project [61], DICOM-formatted raw image data from a PO image management server were
integrated with clinical trial data and stored on the PRIMAGE platform. AI was applied to
predict outcomes from the images.

3.3. Multi-Dimensional Use Cases

Table 1 presents a selection of identified high-priority use cases following specific
“vertical” paths along the dimensions illustrated in Figure 2, represented in the format
developed in the EJP RD project.

Table 1. Subset of possible use cases per stakeholder requiring privacy-preserving record linkage
identified as potentially useful in paediatric oncology (PO). The use cases are displayed in the EJP
RD use a case specification format, i.e., “As a <stakeholder>, I would like to <research focus> so that
I can <objective> and visualise the result as a <output format>”.

Stakeholder
“As a...”

Research Focus
“...I Would Like to...”

Objective
“...so That I Can...”

Output Format
“...and Visualise the Results as...”

clinician
(corresponds to
PO patient
OR
parent of a PO patient)

know if there have been patients in the past
in any source who were similar to my
patient, and their outcome

choose the optimal therapy for
my patient

a table with key patient characteristics,
data sources, and outcomes

discuss my patient’s case in a tumour board
based on all the distributed data of my
patient

comprehensive overview of my
patient’s case including tables,
images, etc.

compare the predicted survival rate of my
patient, depending on the selection of
treatment A or treatment B

two survival probabilities as derived
from an AI algorithm (preferably
including explanations)

paediatric cancer survivor

know which sources hold any data or
samples of mine

have an overview of my data and
samples

a table of data sources and types of
data/samples they hold of mine

receive life-long suggestions concerning
screenings, etc., based on all my own data
and recent study results

improve my life expectancy, health
status, and quality of life

suggestions and summaries provided
by a survivorship app

make sure that my data are used for further
research in the most valuable way

contribute to the improvement of
paediatric cancer treatment –

researcher in the field of PO

compare the outcome of treatment A with
that of treatment B (taken from source A) in
patients fulfilling a certain eligibility
criterion (taken from source B)

see if the type of treatment is correlated
with the outcome

a Kaplan–Meier-curve with two
groups, for treatments A and B

compare the outcome of study A with that
of study B in patients fulfilling certain
criteria

see if one of the studies’ outcomes is
superior

a Kaplan–Meier curve with two
groups, for studies A and B

know all follow-up results of one of the
patients in my study, no matter within
which context the follow-up was performed

use the most recent follow-up data for
the analysis of my study

a table of all follow-ups including
dates, sources, and results

researcher in the field of biology

know which biobanks have further samples
on which I need to perform an additional
experiment

contact these biobanks and ask for
additional material

a table with the sample type and
biobank including contact information

know specific results, as stored in
genome–phenome analysis platforms,
which were achieved with the probes from
my biobank

gain further insights into the properties
of my samples

a table with platforms and results per
probe in my biobank

know which sources contain patients with a
specific biomarker

contact these sources to perform
further research on that biomarker

a table with the number of patients per
source
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Table 1. Cont.

Stakeholder
“As a...”

Research Focus
“...I Would Like to...”

Objective
“...so That I Can...”

Output Format
“...and Visualise the Results as...”

future principal investigator of a
specific research activity

know how many cases fulfilling specific
eligibility criteria are present in at least two
data sources

estimate the number of cases for my
study a number of overall cases

know which data sources contain cases
fulfilling specific eligibility criteria (age,
diagnosis, biomarker, treatment, etc.)

get in contact with these sources to
consider them in my study a table with cases per source

correlate variables in patients from various
sources, fulfilling my eligibility criteria,
with one another

optimise stratification in my study correlation between the variables

member of the SIOPE board

compare the survival rate of all
neuroblastoma patients in all sources in
2001–2010 to the rate in 2011–2020

evaluate the improvements in
neuroblastoma research in Europe a boxplot

compare the rate of severe adverse events
per member state during immunotherapy
with a certain biological in all sources

identify differences across Europe and
improve potential shortfalls

a landscape, color-coded with the rate
of severe adverse events

healthcare politician know whether a specific type of PO
treatment is cost-effective

optimise PO treatment based on
outcomes and costs

table listing costs and outcomes of two
different PO treatment options

4. Discussion

PO stands to benefit significantly from PPRL due to the scarcity and distribution
of data, multimodal treatments, and complex patient journeys. This paper provides a
comprehensive overview of potential use cases, emphasising that the list is not exhaustive
and new dimensions may emerge in the future. While focusing on PO, most aspects
discussed are also applicable to other conditions, rare diseases in particular.

Most identified use cases concern the analysis of clinical outcomes (long-term tox-
icities, event-free survival, overall survival) and the effect of certain parameters on the
incidence/prevalence of PO. However, we identified a wide range of use cases, which
require PPRL in PO care and/or PO research.

Many identified use cases concerned neuroblastoma research, where a European IT
infrastructure supporting record linkage on clinical trial data, biological data from different
samples, and imaging data has already been introduced in the FP5 project SIOPEN-R-NET.
During the FP7 project ENCCA (2011–2015), the EUPID Services have been developed,
which provide a more privacy-preserving approach for linking records. Since then, PPRL
services have continuously supported collaborative European neuroblastoma research by
providing large, linked datasets, which contribute to significantly improved survival rates
as achieved in the past decade.

PPRL is a complex task, which is associated with various risks in terms of usability,
costs, privacy preservation, potential misuse, the risk of breaking confidentiality, the risk of
mismatched identities, etc. Different technical approaches for realising PPRL have different
advantages and disadvantages in all these dimensions. Special care should be taken if
PPRL is applied based on QIDs that can change over time (e.g., names in case of marriages,
gender, etc.), especially if PPRL is to be supported in long-term settings, such as, e.g., the
survivorship passport [59]. The present paper, however, concentrates on use cases, omitting
technical details, privacy and security aspects, and consent considerations.

The use cases in this paper were identified in a three-step approach (screening of the
literature, projects, and trials, hypothetical patient journey, and discussion with experts).
On the one hand, the literature search was conducted by one researcher only. Therefore,
use cases might have been overlooked that would have been identified if screening had
been performed by more researchers. However, due to the multistep approach, such use
cases were most likely identified in another step. On the other hand, even articles that did
not cover PPRL and PO were considered, if use cases that are also applicable for PPRL in
PO were described.

Selecting the right PPRL solution before starting data collection is crucial, especially
for pseudonymised record linkage. The lack of standards for and interoperability between
PPRL services is acknowledged, and efforts within EJP RD are underway to address this.
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References to implementation projects are provided for some use cases, with varying stages
of development. The evolution from project design to pseudonymisation and linked data
analyses is noted. As applications progress, PPRL is recognised as a key concept of a
broader privacy-preserving research landscape. Integration with other approaches like
privacy-preserving artificial intelligence and federated/distributed learning is anticipated.
For PO in Europe, currently, mainly SPIDER and the EUPID Services are implemented,
which should be considered when setting up new projects. Choosing the appropriate
privacy-preserving strategy will be a key consideration in future research across diverse
fields, not limited to PO.

5. Conclusions

Research in PO has been at the forefront of PPRL implementations, making significant
strides in realising tangible outcomes from linked records. As PPRL gains prominence
across various application domains, both existing and new use cases are anticipated to
evolve. The long-term nature of underlying diseases underlines the importance of adopting
a robust PPRL strategy early on. By doing so, the benefits of linked data can be harnessed
sooner, ensuring that datasets collected without a PPRL concept do not miss out on future
applications and fall short of maximising patient benefits.
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7. Vassal, G.; Lazarov, D.; Rizzari, C.; Szczepański, T.; Ladenstein, R.; Kearns, P.R. The impact of the EU General Data Protection
Regulation on childhood cancer research in Europe. Lancet Oncol. 2022, 23, 974–975. [CrossRef] [PubMed]

8. Karakasidis, A.; Verykios, V. Secure Blocking + Secure Matching = Secure Record Linkage. J. Comput. Sci. Eng. 2011, 5, 223–235.
[CrossRef]

9. Etienne, B.; Cheatham, M.; Grzebala, P. An Analysis of Blocking Methods for Private Record Linkage. In Proceedings of the AAAI
Fall Symposia Symposium Series, Arlington, VA, USA, 17–19 November 2016; pp. 244–248.

10. Dusserre, L.; Quantin, C.; Bouzelat, H. A one way public key cryptosystem for the linkage of nominal files in epidemiological
studies. Medinfo 1995, 8 Pt 1, 644–647. [PubMed]

11. Quantin, C.; Bouzelat, H.; Allaert, F.A.; Benhamiche, A.M.; Faivre, J.; Dusserre, L. How to ensure data security of an epidemi-
ological follow-up: Quality assessment of an anonymous record linkage procedure. Int. J. Med. Inform. 1998, 49, 117–122.
[CrossRef]

12. Pang, C.; Gu, L.; Hansen, D.; Maeder, A. Privacy-Preserving Fuzzy Matching Using a Public Reference Table. In Intelligent Patient
Management; McClean, S., Millard, P., El-Darzi, E., Nugent, C., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany,
2009; pp. 71–89.

13. Vatsalan, D. Scalable and Approximate Privacy-Preserving Record Linkage; Australian National University: Canberra, Australia, 2014.
14. Scannapieco, M.; Figotin, I.; Bertino, E.; Elmagarmid, A.K. Privacy preserving schema and data matching. In Proceedings of the

ACM SIGMOD Conference, Beijing, China, 11–14 June 2007.
15. Yakout, M.; Atallah, M.J.; Elmagarmid, A. Efficient Private Record Linkage. In Proceedings of the 2009 IEEE 25th International

Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009; pp. 1283–1286.
16. Bonomi, L.; Xiong, L.; Chen, R.; Fung, B.C.M. Frequent grams based embedding for privacy preserving record linkage. In

Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Maui, HI, USA, 29 October–2
November 2012; pp. 1597–1601.

17. He, X.; Machanavajjhala, A.; Flynn, C.; Srivastava, D. Composing Differential Privacy and Secure Computation: A Case Study
on Scaling Private Record Linkage. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1389–1406.

18. Inan, A.; Kantarcioglu, M.; Bertino, E.; Scannapieco, M. A Hybrid Approach to Private Record Linkage. In Proceedings of the
2008 IEEE 24th International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; pp. 496–505.

19. Kuzu, M.; Kantarcioglu, M.; Inan, A.; Bertino, E.; Durham, E.; Malin, B. Efficient Privacy-Aware Record Integration. In Proceedings
of the 16th International Conference on Extending Database Technology, Genoa, Italy, 18–22 March 2013; pp. 167–178.

20. Stammler, S.; Kussel, T.; Schoppmann, P.; Stampe, F.; Tremper, G.; Katzenbeisser, S.; Hamacher, K.; Lablans, M. Mainzelliste
SecureEpiLinker (MainSEL): Privacy-preserving record linkage using secure multi-party computation. Bioinformatics 2022, 38,
1657–1668. [CrossRef]

21. Kussel, T.; Brenner, T.; Tremper, G.; Schepers, J.; Lablans, M.; Hamacher, K. Record linkage based patient intersection cardinality
for rare disease studies using Mainzelliste and secure multi-party computation. J. Transl. Med. 2022, 20, 458. [CrossRef]

22. Dalal, H.M.; Doherty, P.; McDonagh, S.T.; Paul, K.; Taylor, R.S. Virtual and in-person cardiac rehabilitation. BMJ 2021, 373, n1270.
[CrossRef]

https://doi.org/10.1038/sdata.2016.18
https://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1016/S1470-2045(22)00287-X
https://www.ncbi.nlm.nih.gov/pubmed/35901818
https://doi.org/10.5626/JCSE.2011.5.3.223
https://www.ncbi.nlm.nih.gov/pubmed/8591288
https://doi.org/10.1016/S1386-5056(98)00019-7
https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1186/s12967-022-03671-6
https://doi.org/10.1136/bmj.n1270


Cancers 2024, 16, 2696 12 of 13

23. Vatsalan, D.; Christen, P.; Verykios, V. A taxonomy of privacy-preserving record linkage techniques. Inf. Syst. 2013, 38, 946–969.
[CrossRef]

24. Gkoulalas-Divanis, A.; Vatsalan, D.; Karapiperis, D.; Kantarcioglu, M. Modern Privacy-Preserving Record Linkage Techniques:
An Overview. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4966–4987. [CrossRef]

25. Christen, P.; Ranbaduge, T.; Schnell, R. Linking Sensitive Data; Springer: New York, NY, USA, 2020.
26. European Union Agency for Cybersecurity. Data Pseudonymisation: Advanced Techniques & Use Cases—Technical Analysis of

Cybersecurity Measures in Data Protection and Privacy; European Union Agency for Cybersecurity: Attiki, Greece, 2021.
27. European Union Agency for Cybersecurity. Deploying Pseudonymisation Techniques—The case of the Health Sector; European Union

Agency for Cybersecurity: Attiki, Greece, 2022.
28. European Union Agency for Cybersecurity. Pseudonymisation Techniques and Best Practices—Recommendations on Shaping Technology

According to Data Protection and Privacy Provisions; European Union Agency for Cybersecurity: Attiki, Greece, 2019.
29. Gatta, G.; Botta, L.; Rossi, S.; Aareleid, T.; Bielska-Lasota, M.; Clavel, J.; Dimitrova, N.; Jakab, Z.; Kaatsch, P.; Lacour, B.; et al.

Childhood cancer survival in Europe 1999–2007: Results of EUROCARE-5—A population-based study. Lancet Oncol. 2014, 15,
35–47. [CrossRef] [PubMed]

30. Nitzlnader, M.; Schreier, G. Patient identity management for secondary use of biomedical research data in a distributed computing
environment. Stud. Health Technol. Inform. 2014, 198, 211–218. [PubMed]

31. Ly, S.; Runacres, F.; Poon, P. Journey mapping as a novel approach to healthcare: A qualitative mixed methods study in palliative
care. BMC Health Serv. Res. 2021, 21, 915. [CrossRef] [PubMed]

32. Reihs, R.; Proynova, R.; Maqsood, S.; Ataian, M.; Lablans, M.; Quinlan, P.R.; Lawrence, E.; Bowman, E.; van Enckevort, E.; Bučík,
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