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Simple Summary: Prostate cancer (PCa) has significant disparities based on geography, affecting
healthcare access and outcomes. This study reviews how Geographic Information Systems (GIS)
are used to research these disparities. GIS helps visualize PCa incidence, survival, and mortality
trends, but its application varies, leading to inconsistent results. The review followed Cochrane and
PRISMA guidelines, analyzing 25 relevant studies. Most studies used GIS for mapping PCa data,
geocoding, and spatial analysis to identify areas with poor PCa outcomes. However, inconsistencies
in GIS methods and geographical scales used reduced the robustness of findings. The review suggests
that better GIS techniques and interdisciplinary collaboration could improve the accuracy of PCa
disparity research and support public health interventions.

Abstract: Introduction: PCa is one of the cancers that exhibits the widest disparity gaps. Geographi-
cal place of residence has been shown to be associated with healthcare access/utilization and PCa
outcomes. Geographical Information Systems (GIS) are widely being utilized for PCa disparities
research, however, inconsistencies in their application exist. This systematic review will summa-
rize GIS application within PCa disparities research, highlight gaps in the literature, and propose
alternative approaches. Methods: This paper followed the methods of the Cochrane Collaboration
and the criteria set of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA). Articles published in peer-reviewed journals were searched through the PubMed, Embase,
and Web of Science databases until December 2022. The main inclusion criteria were employing a
GIS approach and examining a relationship between geographical components and PCa disparities.
The main exclusion criteria were studies conducted outside the US and those that were not published
in English. Results: A total of 25 articles were included; 23 focused on PCa measures as outcomes:
incidence, survival, and mortality, while only 2 examined PCa management. GIS application in PCa
disparities research was grouped into three main categories: mapping, processing, and analysis. GIS
mapping allowed for the visualization of quantitative, qualitative, and temporal trends of PCa factors.
GIS processing was mainly used for geocoding and smoothing of PCa rates. GIS analysis mainly
served to evaluate global spatial autocorrelation and distribution of PCa cases, while local cluster
identification techniques were mainly employed to identify locations with poorer PCa outcomes,
soliciting public health interventions. Discussion: Varied GIS applications and methodologies have
been used in researching PCa disparities. Multiple geographical scales were adopted, leading to
variations in associations and outcomes. Geocoding quality varied considerably, leading to less robust
findings. Limitations in cluster-detection approaches were identified, especially when variations were
captured using the Spatial Scan Statistic. GIS approaches utilized in other diseases might be applied
within PCa disparities research for more accurate inferences. A novel approach for GIS research in
PCa disparities could be focusing more on geospatial disparities in procedure utilization especially
when it comes to PCa screening techniques. Conclusions: This systematic review summarized and
described the current state and trend of GIS application in PCa disparities research. Although GIS is
of crucial importance when it comes to PCa disparities research, future studies should rely on more
robust GIS techniques, carefully select the geographical scale studied, and partner with GIS scientists

Cancers 2024, 16, 2715. https://doi.org/10.3390/cancers16152715 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16152715
https://doi.org/10.3390/cancers16152715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-6677-2447
https://doi.org/10.3390/cancers16152715
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16152715?type=check_update&version=3


Cancers 2024, 16, 2715 2 of 35

for more accurate inferences. Such interdisciplinary approaches have the potential to bridge the gaps
between GIS and cancer prevention and control to further advance cancer equity.

Keywords: GIS; geographic; prostate cancer; disparities; systematic review

1. Introduction

Prostate cancer (PCa) is the second leading cause of cancer death in American men
and one of the cancers that exhibits the largest disparities [1,2]. There is a large liter-
ature documenting disparities in PCa outcomes that is robust across multiple regions
and sociodemographic profiles [3]. African American (AA) men, on average, have a 78%
higher incidence of developing PCa in their lifetime compared to Non-Hispanic White
men (NHW) [1,2,4–7]. Further, AAs are also more likely to be diagnosed at a younger
age, present with more aggressive disease, and possess a 2.3 times higher mortality rate
than their NHW counterparts [4–6]. Hispanics and some Asian groups have lower PCa
incidence; however, they tend to suffer from more advanced disease at diagnosis [5,6,8].
PCa disparities are not only present across racial/ethnic attributes, but they are also signifi-
cantly associated with the geographical place of residence. Hispanics living in Mexico have
a lower incidence of PCa than Hispanics living in the Caribbean [9], while Puerto Ricans
living in Puerto Rico have a lower incidence than Puerto Ricans living in the mainland
United States [10].

In 2019, a systematic review compiling results from 169 international studies presented
substantial evidence that PCa outcomes and management varied according to the place of
residence across different populations and geographies [11]. Although this review sum-
marized the two most important drivers of PCa disparities, which were rurality and area
deprivation, various geographical approaches were utilized across the studies, including
multiple geographical scales and geospatial analyses, which created a wide heterogeneity
for study comparison [11]. Other reviews have been published around nongeographical
approaches for prostate cancer research, however, none have reviewed the utilization of
geographic information systems (GIS) as tools to advance PCa disparities research [12–15].
In fact, Obertova and Afshar focused their reviews on inconsistencies of rural/urban desig-
nation and its utilization within PCa disparity research [13,14], while Gilbert discussed GIS
approaches, however only focusing on the state of Florida [15].

According to the National Cancer Institute, health disparities research is a growing
area in research, and tools to identify and eliminate disparities are growing and encour-
aged to identify pockets of disadvantage and map priority areas [16]. Geospatial analyses
provide visual insights and substantial proof of the location of disparities and demon-
strate their variability by adding a dynamic layer to traditional findings of disparities [17].
A new frontier of PCa research is the utilization of spatial approaches to identify focal
points for interventions and resource mitigation and help outline underlying drivers of
disparities [18].

Indeed, multiple approaches have been used to examine the association between ge-
ographical places of residence and PCa outcomes. Precisely, area-level characteristics and
socioeconomic (SES) profiles have been linked to multiple disparities in PCa outcomes across
various geographical scales such as county, census, census tracts, and others [19,20]. SES and
demographics have also been linked to healthcare access and utilization of advanced PCa
procedures [21–23]. Further, spatial approaches combine techniques from geography, epi-
demiology, and public health to better understand health needs and allocate resources [24].
This is especially relevant within the context of PCa disparities research, which calls for
multidimensional approaches to advance cancer health equity and reduce the persisting
gap in outcomes [1]. As such, GIS applications may help expose the determinants of
local and sociodemographic disparities and provide information to improve health service
delivery models, training for healthcare professionals, and overall health outcomes [25].
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GIS is defined as any technology, software, or hardware that enables the processing,
mapping, and analysis of geographical variables [26,27]. Geographic Information Systems
(GIS) research in PCa has been developing throughout time and branched into multiple
applications such as processing, mapping, and analysis [18]. The ultimate success of GIS is
when data are transformed into a useful representation that provides disease insights [28].
Such a collaborative approach delivers prospects to examine associations and connections
within health outcomes, the contextual environment, and social determinants of health to
advance cancer-related equity research [29]. This allowed the advancement of such tools over
time and the development of a field named Geographic Information Science (GIScience) [26],
which examines the interdisciplinary collaborations aided by GIS to provide meaningful
observations that have the potential to guide public health decision-making.

Furthermore, different geographical variables and various spatial scales have been
adopted to conduct such analyses and provide valuable data for public health interven-
tions [30]. As such, geographical analyses in PCa outcomes have moved from the simple
stratification of rural/urban continuum to the computation of composite area deprivation
indices within neighborhoods and utilization of GIS for cluster identification and prediction
of poorer outcomes [31,32]. Those differences in approaches invite the need for method-
ological standardization when performing geospatial analyses to identify appropriate
applications for Geographic Information Systems (GIS) in analyzing PCa disparities.

The main goal of this comprehensive review is to compile a resource for researchers
interested in conducting geographical analyses for PCa disparities. This systematic review
aims to summarize the literature about geospatial disparities in PCa, describe the different
GIS applications utilized in relating place of residence with disparities in PCa outcomes,
and identify gaps in the literature. This review also identifies current limitations for GIS
application in PCa research and proposes alternative approaches. As such, this review
provides a comprehensive assessment of methods and a valuable resource for researchers
joining the increasing trend of analyzing disparities from a geographical perspective.

2. Methods

This paper follows the methods of the Cochrane Collaboration [33] and the criteria set
of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [34]
to report systematic reviews and meta-analyses. Articles published in scholarly (peer-
reviewed) journals in English were searched through the PubMed, EMBASE, and Web of
Science databases until December 2022. The study has not been registered PROSPERO.

2.1. Search Method

The main search terms (i.e., MeSH terms and keywords) focus on (1) GIS (2) disparities
and inequities (3) prostate neoplasm. Three main databases were researched PubMed,
EMBASE, and Web of Science [35–37], and a detailed research strategy is included in
Appendix A.

2.2. Article Selection

The population-intervention-comparison-setting (PICOS) method [33] was used to
determine the eligibility of studies. In our reviewed articles, the participants were “adult
men in the US diagnosed with PCa”, the intervention was the GIS approach, comparative
groups were men from varying demographic/socio-economic backgrounds, outcomes
were PCa incidence, mortality, and survival, and/or PCa management, and, finally, the
studies included were observational. Eligible studies were all publications resulting from
the database queries, referred publications known to the authors, and others gathered from
the reference lists of the identified publications. Out of these eligible publications, an article
selection process according to specified inclusion and exclusion criteria was conducted.
Included articles were those employing a GIS approach for examining the relationship
between geographical components and PCa disparities and/or inequities in the United
States. Studies that examined disparities in PCa outcomes using geographical elements as
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independent variables were included, while studies conducted outside the US, those not
published in the English language, and those that did not assess for a direct relationship
between a geographical component and PCa disparities were excluded. No date restrictions
were applied, and thus, the resulting articles were published through December 2022. The
last date of search for relevant articles was 31 December 2022.

2.3. Study Management

All included articles were rightfully downloaded, managed, and screened using
EndNote®. A total of 653 publications were deemed eligible, all published between 1998
to 2022, including 247 duplicates. Articles were screened for eligibility based on title
and abstract, and 309 studies were disqualified due to the study setting not being in the
US, not having an outcome of interest, and having no geographical component. After
article selection according to the inclusion and exclusion criteria, 25 studies [38–62] met the
requirements and were included in this review. Detailed reasons for full-text exclusions
and the article selection process are represented in Figure 1. No potential biases were
identified in the individual studies that met the inclusion criteria, as all resulting studies
were evaluated based on reproducibility, methodological quality, and credibility.
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Figure 1. Article Selection Process.

Due to the nature of the research question that aims at reviewing discovered geo-
graphical disparities in PCa, publication bias may have arisen. Likely, studies with no
significant findings for disparities were not published and, thus, included publications
overrepresented disparities. However, the large population-based studies in this review
tend to limit this potential overrepresentation. This review followed the PRISMA checklist
for evidence-based reporting, and thus, principal summary measures were odds ratios,
hazard ratios, relative risks, and differences in percentage, along with their respective
p-values.
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3. Results

In this systematic review, a total of 25 studies were included, published from 2002 to
2022; those studies are detailed in Table 1. A total of six studies examined disparities in late-
stage PC, six in incidence, four in mortality and survival, three in incidence, grade, and stage
simultaneously, two in mortality-to-incidence (MIR) ratio, and two in PCa management
(Table 1). GIS applications were grouped into three main application purposes: “mapping”,
“processing”, and “analysis” (Table 1). A summary of the key findings from these studies is
found in Boxes 1 and 2.

Box 1. Summary of Key Findings Related to PCa Disparities in GIS Studies.

GIS Findings for Disparities in Prostate Cancer Incidence

• Higher PCa incidence was frequently associated with better socioeconomic status (SES) at
the census-tract level, particularly in non-Hispanic Whites (NHWs) compared to African
Americans (AAs).

• Urban residence and higher household income were linked to an increased likelihood of PCa
diagnosis, suggesting enhanced healthcare access in these areas.

• The spatial variations in PCa incidence were influenced by factors such as income and educa-
tion and comorbidities like diabetes and obesity.

GIS Findings for Disparities in Prostate Cancer Stage and Grade at Diagnosis

• Disparities in late-stage diagnosis were associated with lower SES, particularly in counties
with lower income and education levels.

• Missing stage and grade information served as proxies for worse outcomes and were more
common in areas with higher SES, suggesting discrepancies in data collection and reporting.

• Temporal analysis revealed that disparities in late-stage PCa diagnosis have declined over
time, influenced by changes in PSA screening recommendations.

GIS Findings for Disparities in Prostate Cancer Mortality and Survival

• Geographical clusters of higher mortality rates were identified, with some areas showing
significant disparities between racial groups.

• Survival rates varied significantly based on place of residence, with SES factors partially
explaining these differences.

• Mapping studies highlighted that rural areas and those with higher poverty rates exhibited
poorer PCa survival outcomes.

GIS Findings for Disparities in Prostate Cancer Management

• Disparities in PCa management were examined in two studies, with GIS mapping showing
that treatment modalities were concentrated in urban areas.

• Travel distance impacted the likelihood of receiving certain treatments, with longer distances
associated with a decreased probability of intervention.

GIS: Geographic Information Systems.
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Box 2. Summary of Key Findings from the Application of GIS in PCa Disparities Research.

Application of GIS in PCa Disparities Research: Mapping

• GIS techniques were predominantly employed for mapping and visualization, translating PCa
data into geographical polygons to provide a cartographic representation of PCa rates and
zones of disparity.

• Mapping studies commonly used various geographical scales such as counties, census tracts,
zip codes, neighborhoods, and census block groups.

• Visual mapping helped identify areas with higher PCa incidence and poorer outcomes, aiding
in targeting further analysis and public health interventions.

Application of GIS in PCa Disparities Research: Processing

• Geocoding and smoothing were key GIS processing techniques used to prepare PCa data for
analysis.

• Geocoding converted addresses into geographical coordinates, facilitating the visualization of
individual-level data at various scales.

• Smoothing techniques like binomial kriging and spatial empirical Bayesian smoothing were
used to reduce noise and provide clearer spatial patterns in the data.

Application of GIS in PCa Disparities Research: Analysis

• Spatial analysis methods identified geographic associations with PCa outcomes, utilizing
techniques like global spatial autocorrelation and cluster identification.

• Global spatial autocorrelation assessed the overall geographical variability and clustering in
PCa data.

• Cluster identification techniques such as the Spatial Scan Statistic, Getis-Ord-Gi, and local
Moran’s I highlighted areas with significant PCa disparities, aiding in prioritizing public health
interventions.

• A geographically weighted regression model was employed to examine spatially varying
associations between predictors and PCa outcomes, highlighting areas where risk factors had
a stronger influence.

GIS: Geographic Information Systems.
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Table 1. Summary of Studies Included in This Systematic Review.

Author (yr) PCa Database (Period) Geographic Scale(s) GIS Application (Method) Main Outcome(s) Main GIS Finding(s)

Jemal A et al. (2002) [38] National Center for Health
Statistics (1970–1989) * County

Mapping: Quantitative and
qualitative
Analysis: Cluster
identification (Spatial Scan
Statistic)

Disparities in PCa
mortality

Five clusters of higher mortality in
NHWs and three in AAs. Patterns
observed could not be attributed to
selected demographic/socioeconomic
variables.

Klassen AC et al. (2005) [39] Maryland Cancer Registry
(1992–1997)

Exact patient address,
Census block group,
County

Mapping: Quantitative and
qualitative
Processing: Geocoding (91%)
Analysis: Cluster
identification (Spatial Scan
Statistic)

Disparities in PCa
incidence, missing stage,
and grade

Six clusters of high/low missing stage
and three of missing grade. After
adjustment for individual, census block
group, and county-level variables,
clusters decreased, and patterns
changed.

DeChello LM et al. (2006)
[40]

Connecticut and
Massachusetts Tumor
Registries (1994–1998) *

Census tract

Mapping: Quantitative and
qualitative
Processing: Geocoding (NA)
Analysis: Cluster
identification (Spatial Scan
Statistic)

Disparities in PCa
incidence

Significant high and low clusters for
both NHW and AA men identified. In
NHWs, higher incidence clusters had
higher census-tract SES. Differences in
race-specific geographic distribution of
incidence do not suggest a shared
environmental etiology.

Oliver M N et al. (2006) [41] Virginia Cancer Registry
(1990–1999) *

Census tract
County

Mapping: Quantitative and
qualitative
Processing: Geocoding
(74%–100%) and smoothing
(headbanging)
Analysis: Spatial
autocorrelation (MEET),
cluster identification (Spatial
Scan Statistic)

Disparities in PCa
incidence

Significant overall clustering with
elevated incidence in eastern and central
locations.

Gregorio DI et al. (2007) [42] Connecticut Tumor Registry
(1984–1998) Exact patient address

Mapping: Qualitative
Analysis: Cluster
identification (Spatial Scan
Statistic)

Disparities in PCa
survival

Identification of three geographical
clusters. Adjusting for age, tumor grade,
stage, and race reduced clusters to one.
PCa survival varies, only in part,
according to place of residence.

Xiao H et al. (2007) [43] Florida Cancer Data System
(1990–2001) *

Census tract
County

Mapping: Quantitative
Processing: Geocoding (NA)

Disparities in PCa
incidence, stage, and
grade

Maps showing greatest racial disparities
in incidence and late-stage PCa in the
northern and central counties.
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Table 1. Cont.

Author (yr) PCa Database (Period) Geographic Scale(s) GIS Application (Method) Main Outcome(s) Main GIS Finding(s)

Hsu C E et al. (2007) [44] Texas prostate cancer-specific
death cases file (1980–2001) County

Mapping: Qualitative
Analysis: Cluster
identification (Spatial Scan
Statistic)

Disparities PCa mortality

Identification of statistically significant
geographic counties with excess
mortality rates for each of the racial
groups studied and examination of those
trends in function of time.

Hinrichsen VL (2009) [45] Maryland Cancer Registry
(1992–1997) Census block groups

Processing: Geocoding (NA)
Analysis: Spatial
autocorrelation
(Cuzick–Edwards’ k-NN,
Global Moran’s I, MEET)

Disparities PCa stage and
grade

For both grade and stage at diagnosis,
Cuzick–Edwards’ k-NN and Moran’s I
were very sensitive to the % of pop.
parameter. For stage, all three tests
showed that adjusting for individual
and area level variables reduced
clustering, but not entirely.

Meliker JR et al. (2009) [46] Michigan Cancer Surveillance
Program (1985–2002)

FHLD, SHLD
Neighborhoods

Mapping: Quantitative
Processing: Geocoding (91%)

Disparities in PCa
survival

NHWs had significantly higher survival
rates compared with AAs at the FHLD;
however, in smaller geographic units
(SHLD, neighborhoods), disparities
diminished and disappeared.

Hébert JR (2010) [47] South Carolina Cancer
Registry (2001–2005) DHEC Region

Mapping: Quantitative
Processing: Geocoding
(82%–100%)

Disparities in PCa MIR
Striking differences in MIR mapping
between AAs and NHWs in the 8 DHEC
regions examined.

Altekruse et al. (2010) [48]
State cancer registries of
Tennessee, Alabama, Georgia,
and Florida (1999–2001) *

Census tract

Mapping: Qualitative
Analysis: Cluster
identification (Spatial Scan
Statistic)

Disparities in PCa
incidence (localized)

Identification of statistically significant
clusters. Higher incidence of localized
disease in urban areas.

Goovaerts P et al. (2011) [49] Florida Cancer Data System
(1981–2007) County

Mapping: Quantitative and
qualitative
Processing: Smoothing
(Binomial Kriging)

Disparities in late stage
PCa

Recent increase in the frequency of
late-stage diagnosis in urban areas. The
annual rate of decrease in late-stage
diagnosis and the onset years for
significant declines varied greatly
among counties and racial groups.

Xiao H et al. (2011) [50] Florida Cancer Data System
(1996–2002) *

Census tract
County

Mapping: Quantitative and
qualitative
Processing: Geocoding (NA),
smoothing (Binomial
Kriging)

Disparities in late-stage
PCa

More counties had higher rates of
late-stage diagnosis for AA men than for
NHW men, and the location of these
racial disparities changed with time.
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Table 1. Cont.

Author (yr) PCa Database (Period) Geographic Scale(s) GIS Application (Method) Main Outcome(s) Main GIS Finding(s)

Goovaerts P et al. (2012) [51] Florida Cancer Data System
(1981–2007) County

Mapping: Quantitative and
qualitative
Processing: Smoothing
(Binomial Kriging)
Analysis: Cluster
identification (spatially
weighted cluster analysis)

Disparities in late-stage
PCa

Geographical disparities were most
widespread upon introduction of PSA
screening. Spatially weighted cluster
analysis resulted in spatially compact
groups of counties with similar temporal
trends.

Goovaerts P (2013) [52] Florida Cancer Data System
(1981–2007) County

Mapping: Quantitative and
qualitative
Processing: Smoothing
(Binomial Kriging)
Analysis: Cluster
identification (spatially
weighted cluster analysis)

Disparities in late-stage
PCa

A temporal trend in late-stage diagnosis
suggests the existence of geographical
disparities in the implementation and/or
impact of the newly introduced PSA
screening.

Wagner S et al. (2013) [53] Georgia Comprehensive
Cancer Registry (1998–2008)

Census tract
County

Mapping: Quantitative and
qualitative
Analysis: Cluster
identification (Getis-Ord-Gi
and Spatial Scan Statistic)

Disparities in incidence
and high grade or stage
PCa

Pattern of higher incidence and more
advanced disease found in northern and
northwest central Georgia. Hotspot
revealed six significant clusters of higher
incidence for both races. When stratified
by race, clusters among NHW and AA
men were similar, although centroids
were slightly shifted.

Gregorio DI (2013) [54] Connecticut Tumor Registry
(1994–1998) Exact patient address

Mapping: Qualitative
Analysis: Cluster
identification (Spatial Scan
Statistic)

PCa incidence

Two locations where incidence rates
significantly exceeded the statewide
level and two locations with significantly
lower disease rates. Analysis adjusted
for age and covariation of colorectal
cancer incidence rates across the state
accounted for all significant variations
previously observed.

Goovaerts P (2015) [55] Florida Cancer Data System
(2001–2007) *

Census tract
County

Mapping: Quantitative and
qualitative
Analysis: Geographically
Weighted Regression

Disparities in late-stage
PCa

Identification of locations where ORs for
late-stage are higher/lower than the
state level.
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Table 1. Cont.

Author (yr) PCa Database (Period) Geographic Scale(s) GIS Application (Method) Main Outcome(s) Main GIS Finding(s)

Wang M et al. (2017) [56] Pennsylvania Cancer Registry
(2000–2011) * County

Mapping: Quantitative and
qualitative
Processing: Smoothing
(Empirical Bayes)
Analysis: Spatial
autocorrelation (Global
Moran’s I), cluster
identification (Local Moran’s
I)

Disparities in PCa
incidence

Incidence of PCa among NHW males
declined from 2000–2002 to 2009–2011,
with significant variation across
geographic regions.

Wang, M et al. (2020) [57] Pennsylvania Cancer Registry
(2004–2014) Exact patient address

Mapping: Quantitative
mapping
Processing: Smoothing
(Inverse Distance Weighting)

Disparities in aggressive
PCa

Counties where AA population is lower
than 5.3% have the highest odds of
having the most aggressive forms of PCa
in those AA men

Aghdam et al. (2020) [58] Single institutional database
(2008–2017) * Zip code Mapping: Qualitative Disparities in PCa

management

Travel distance did not prevent the
uptake of SBRT for African American,
elderly, or rural patients.

Georgantopoulos, P. et al.
(2021) [59]

US Veterans Health
Administration EMR
(1999–2015)

ZCTA

Mapping: Quantitative and
qualitative
Analysis: Spatial
autocorrelation (Global
Moran’s I), cluster
identification (Local Moran’s
I)

Disparities in PCa MIR

Identification of spatial clusters of
higher- or lower-than-expected MIRs by
ZCTA. Two clusters of
higher-than-expected MIRs were found
in the upstate region.

Moore J. X. et al. (2022) [60] CDC (1999–2019) County

Mapping: Qualitative
Processing: Smoothing
(Empirical Bayes)
Analysis: Cluster
identification (Getis-Ord-Gi
and Local Moran’s I)

Disparities in PCa
mortality

Cancer mortality hotspots were heavily
concentrated in three major areas in
Georgia. Hotspot counties generally had
a higher proportion of AA adults, older
adult population, greater poverty, and
more rurality

Aladuwaka et al. (2022) [61] Alabama State Cancer Profile
data (NA) * County Mapping: Quantitative and

qualitative
Disparities in PCa
incidence and mortality

Apparent socioeconomic disparity
between the AA Belt and non-AA Belt
counties of Alabama, which suggests
that disparities in PCa incidence and
mortality are strongly related to SES.
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Table 1. Cont.

Author (yr) PCa Database (Period) Geographic Scale(s) GIS Application (Method) Main Outcome(s) Main GIS Finding(s)

Tang C. et al. (2021) [62] National Medicare Database
(2011–2014)

Zip code
County

Mapping: Quantitative and
qualitative

Disparities in PCa
management

Patient access was most limited for
brachytherapy. Lower provider
availability in rural areas, especially in
western states. Heterogeneity in the
access of definitive PCa treatment.
Greater distance was associated with a
decreased probability of treatment.

* PCa database linked to census data.
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4. Summary of PCa Disparities Findings in GIS Studies
4.1. GIS Studies That Examined Disparities in PCa Incidence

GIS studies examining disparities in PCa mainly shared a common purpose of identi-
fying locations of higher-than-expected incidence and examining their associations with
contextual factors. For example, in Connecticut and Massachusetts, clusters of high PCa
incidence were characterized by a better census-tract-level SES (less than 12 years schooling
rate, below the poverty rate, renter-occupied dwellings rate, unemployment rates) mainly
in NHWs as compared to AAs [40]. Similarly, in Virginia, higher household income and
urban residence increased the likelihood of diagnosis, suggesting that better census-tract
SES enhances healthcare access, especially for PCa screening [41]. Furthermore, residing
in urban census tracts was associated with early-stage diagnosis in a multi-state study
conducted in Alabama, Tennessee, Georgia, and Florida [48]. Also in Georgia, Wagner et al.
identified clusters of high PCa incidence that slightly differed in locations upon racial strat-
ification, suggesting the involvement of environmental predictors [53]. A novel approach
was adopted by Gregorio et al., as they demonstrated that the “detection effect” through
adjusting for colorectal cancer screening accounted for all significant spatial variations in
PCa incidence [54]. In Pennsylvania, the temporal decline in PCa incidence from 2000 to
2011 was suggested to illustrate the effect of the variation in PSA screening recommenda-
tions. Most notably, age at diagnosis was significantly younger in AAs as compared to
NHWs, calling for increased attention in metropolitan Philadelphia areas where AAs are
concentrated [56]. Mapping of PCa incidence in Alabama counties against rates of diabetes,
obesity, education, and poverty, suggested an apparent association with those factors [61].
Accordingly, GIS studies examining disparities in PCa incidence suggested that higher PCa
incidence may be associated with area-level racial composition, rurality, income, poverty,
education, unemployment, percent renter-occupied dwellings, access to screening, and
other chronic comorbidities.

4.2. GIS Studies That Examined Disparities in PCa Grade and Stage at Diagnosis

Having a “missing” stage and/or grade information from the tumor registry was
utilized as a proxy for possible worse PCa outcomes. For example, Klassen et al. examined
the relationship between missing stage and/or grade and area-level SES. As such, clusters
of having a missing PCa stage or grade from the Maryland Tumor Registry were identified.
Having a missing stage was associated with higher county-level household income, while
having a missing grade was associated with higher census block-group household in-
come [39]. In Florida, northern and central counties exhibited the greatest racial disparities
in late-stage PCa, which was associated with lower census-tract income and lower college
education [43]. Additionally, the late-stage proportions decreased significantly from 1981
to 2007, however, the rate of decline varied greatly based on county location and racial
groups [49]. This variation was suggested to be related to geographical disparities in the
implementation of Prostate Specific Antigen (PSA) screening [52]. Upon racial stratification,
more counties exhibited higher proportions of late-stage diagnosis in AAs versus NHWs.
Associations were also detected on the census tract level as higher census tract income
was protective, while the presence of farmhouses increased the likelihood of a later-stage
diagnosis [49,55]. Moreover, a side-by-side mapping comparison of late-stage odds ratios
(ORs) with comorbidities, income, and smoking rates at the county level suggested that
those could be associated with a later-stage diagnosis [55]. Thus, in addition to establishing
relationships between later-stage diagnosis and poorer area-level SES, the temporal factor
was also important to account for within this context, especially when it comes to varying
PCa screening recommendations and clinical practices [63].

4.3. GIS Studies That Examined Disparities in PCa Mortality and Survival

Using national data of PCa patients from 1970 to 1989, five national clusters of higher
mortality in NHWs and three in AAs were detected; however, those could not be at-
tributable to the selected county-level SES variables, which included education and agri-
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cultural employment [38]. Identified geographical clusters of poorer PCa survival in
Connecticut significantly diminished when individual-level variables representing age,
race, and tumor severity (stage and grade) were accounted for, suggesting that survival
only varies in part according to the place of residence and other area-level factors might
be predictors [42]. In Texas, counties with statistically significant excess mortality rates
were found to be concentrated in the center of the state for multiple racial subgroups in
a spatial and temporal analysis over a 22-year study period [44]. Meliker et al. identified
survival disparities across the state of Michigan. Existing disparities identified at larger
geographical scales, such as Federal House Legislative Districts (FHLD), diminished and
sometimes disappeared upon examination on smaller geographical scales, such as State
House Legislative Districts (SHLD) and neighborhoods. This was attributed to the fact that,
in smaller areas, the population at risk is more uniform in terms of modifiable SES, risk
factors, and proximity to cancer screening [46]. In South Carolina, Hebert et al. mapped
racially stratified MIRs across eight Department of Health and Environmental Control
(DHEC) regions. Visualization on mapping presented striking differences between AAs
and NHWs allowing for the localization of areas with the widest disparity gaps. MIR
was also mapped per Zip Code Tabulation Area (ZCTA) in South Carolina for US Veter-
ans, where metropolitan MIR was found to be higher than non-metropolitan MIR, and
two clusters of higher-than-expected MIRs were detected in the upstate region. In contrast
to Hebert’s finding above, Georgantopoulos et al. found that AAs had a lower MIR than
NHWs, suggesting that Veterans exhibit a more uniform population for comparison and
that factors causing such disparities are likely modifiable and related to healthcare access
and SES [59]. Finally, PCa mortality hotspots were heavily concentrated in three major
areas in Georgia. “Hotspot counties” generally had a higher proportion of AAs, older adult
population, greater poverty, and more rurality [60]. Although area-level SES was shown to
be associated with poorer PCa survival, including facility-level characteristics within GIS
studies, as in Georgantopoulos’s study (2021), provided an additional layer for examining
racial disparities in PCa.

4.4. GIS Studies That Examined Disparities in PCa Management

Only two studies examined disparities in PCa management. Those mainly employed
GIS mapping to identify visual associations between zip-code level factors and PCa treat-
ment. Single-institution data were used to relate Stereotactic Body Radiation Therapy
(SBRT) with zip-code level characteristics. The geospatial distance between the patient’s
zip code and the facility was calculated and the geographical reach of the institution was
assessed by examining the SES status for each zip code. Travel distance did not prevent the
uptake of prostate SBRT in AAs, elderly, or rural localized PCa cases [58]. A national GIS
study examined disparities in PCa management using the National Medicare Database,
where PCa modalities were mapped across PCa cases by county. Multivariate regres-
sion identified that practitioners of more novel modalities (i.e., SBRT and proton therapy)
were mainly concentrated in more urban zip codes, while greater distance was associ-
ated with a significantly decreased probability of treatment (IMRT—3.8% per 10 miles;
prostatectomy—2.1%; brachytherapy—2%; proton therapy—1.6%; and SBRT—1.1%) [62].

5. Application of GIS in PCa Disparities Research

All included studies shared a mutual rationale for GIS employment, which was to
identify geographic regions with the highest burden of PCa so that public health interven-
tions could be prioritized. In this systematic review, three main purposes were identified
for utilizing a GIS approach in studying PCa disparities: mapping, processing, and analysis.
Mapping was employed in 24 studies, analysis in 16, and processing in 14 (Table 1). They
are described below and are represented in Figure 2.



Cancers 2024, 16, 2715 14 of 35

Cancers 2024, 16, x FOR PEER REVIEW 15 of 37 
 

 

analysis. Mapping was employed in 24 studies, analysis in 16, and processing in 14 (Table 
1). They are described below and are represented in Figure 2. 

 
Figure 2. GIS application in Prostate Cancer (PCa) Disparities Research. 

6. Application of GIS in PCa Disparities Research: Mapping 
All but one study [45] employed GIS techniques for mapping/visualization where 

PCa data were mostly translated into polygons of PCa measured in a certain geographical 
unit. The main purpose of creating maps was to provide a cartogenic representation of 
PCa rates and zones where poorer outcomes or higher disparities exist. Multiple software 
was utilized for mapping; however, ArcGIS remained the most utilized as it was employed 
by 9 out of the 23 studies included, and it is considered by many as the industry standard 
[64,65]. 

6.1. Mapping a Snapshot in Time: Qualitative and Quantitative Data 
All studies presented maps with a single snapshot in time, mostly translating points 

to polygons, as point data were aggregated to a certain designated geographical scale. The 
most common scale for mapping was by county, present in 12 studies. Remaining map-
ping was performed on the level of the census tract (in 3 studies [40,41,48]), zip codes (2 
studies [58,59]), FHLD/SHLD/Neighborhoods (1 study [46]), DHEC (1 study [47]), and 
census block group (1 study [39]). For example, after acquiring individual-level data from 
the Virginia Cancer Registry, Oliver et al. geocoded data to the street level and assigned a 
census tract and a county for each case. As such, maps were reproduced, displaying 
county-level and census tract-level PCa incidence. Such mapping helped to visually iden-
tify how disease rates changed from one zone to another. Consequently, PCa incidence 
was found to be the highest in the eastern and central portions of Virginia [41]. Such visual 
indicators can be the source of identifying locations where further analysis of contextual 
factors might be warranted. 

Furthermore, both qualitative and quantitative PCa-related variables were repre-
sented (Figure 3). Eleven studies had both quantitative and qualitative maps, while eight 
had only quantitative and six only qualitative. Qualitative mapping showed the spatial 
distribution of categorical or nominal data, such as rural/urban counties, or the presence 
or absence of certain outcomes, such as zones presenting significant disparities or clusters 
of a concentrated outcome (Figure 3). Conversely, quantitative mapping presented the 
spatial distribution of numeral data, as most of those represented PCa rates, either for 
incidence, late stage, or mortality (Table 1). This kind of mapping was mainly used to 
identify locations with worse PCa outcomes or higher concentrations of disease. For ex-
ample, Jemal et al. mapped PCa mortality rates per county relying on the national cancer 
registry data. This approach was useful for identifying and visualizing counties with 
higher PCa mortality by comparing mortality rates across US counties (Figure 3A). 

Mapping

Quantitative

Visualize rates of 
PCa outcomes

Qualitative

Visualize context 
for PCa 

outcomes

Temporal trends 

Visualize how 
PCa outcomes 

change with time

Processing

Geocoding

Provide spatial 
locations for PCa 

data

Smoothing

Filter random 
spatial errors in 

PCa rates

Analysis

Spatial 
autocorrelation

Test for overall 
variability for 

PCa rates

Cluster 
identification

Identify zones of 
poorer PCa 
outcomes

Geographicaly 
Weighted 
Regression

Understand how 
associations with 

PCa outcomes 
spatially vary

Figure 2. GIS application in Prostate Cancer (PCa) Disparities Research.

6. Application of GIS in PCa Disparities Research: Mapping

All but one study [45] employed GIS techniques for mapping/visualization where PCa
data were mostly translated into polygons of PCa measured in a certain geographical unit.
The main purpose of creating maps was to provide a cartogenic representation of PCa rates
and zones where poorer outcomes or higher disparities exist. Multiple software was utilized
for mapping; however, ArcGIS remained the most utilized as it was employed by 9 out of
the 23 studies included, and it is considered by many as the industry standard [64,65].

6.1. Mapping a Snapshot in Time: Qualitative and Quantitative Data

All studies presented maps with a single snapshot in time, mostly translating points
to polygons, as point data were aggregated to a certain designated geographical scale.
The most common scale for mapping was by county, present in 12 studies. Remaining
mapping was performed on the level of the census tract (in 3 studies [40,41,48]), zip codes
(2 studies [58,59]), FHLD/SHLD/Neighborhoods (1 study [46]), DHEC (1 study [47]), and
census block group (1 study [39]). For example, after acquiring individual-level data from
the Virginia Cancer Registry, Oliver et al. geocoded data to the street level and assigned a
census tract and a county for each case. As such, maps were reproduced, displaying county-
level and census tract-level PCa incidence. Such mapping helped to visually identify how
disease rates changed from one zone to another. Consequently, PCa incidence was found
to be the highest in the eastern and central portions of Virginia [41]. Such visual indicators
can be the source of identifying locations where further analysis of contextual factors might
be warranted.

Furthermore, both qualitative and quantitative PCa-related variables were represented
(Figure 3). Eleven studies had both quantitative and qualitative maps, while eight had
only quantitative and six only qualitative. Qualitative mapping showed the spatial dis-
tribution of categorical or nominal data, such as rural/urban counties, or the presence or
absence of certain outcomes, such as zones presenting significant disparities or clusters
of a concentrated outcome (Figure 3). Conversely, quantitative mapping presented the
spatial distribution of numeral data, as most of those represented PCa rates, either for
incidence, late stage, or mortality (Table 1). This kind of mapping was mainly used to iden-
tify locations with worse PCa outcomes or higher concentrations of disease. For example,
Jemal et al. mapped PCa mortality rates per county relying on the national cancer registry
data. This approach was useful for identifying and visualizing counties with higher PCa
mortality by comparing mortality rates across US counties (Figure 3A).

One of the uses for qualitative mapping was to illustrate the presence (or absence) of
objective differences and/or inequities between specific subpopulations of interest. For
example, Meliker et al. mapped locations with significant racial disparities in PCa survival
to highlight areas of unequal PCa outcomes (Figure 3B) [46]. Qualitative mapping was
also utilized to map contextual variables that help in understanding spatial circumstances
under which PCa outcomes may be affected. This was especially valuable when quali-
tative information was visualized in parallel to PCa outcomes. For instance, Goovaerts
et al. produced a qualitative map of rural/urban counties to obtain a visual representa-
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tion of the associations between rural/urban places of residence and late-stage diagnosis
(Figure 3C) [52].

Cancers 2024, 16, x FOR PEER REVIEW 16 of 37 
 

 

One of the uses for qualitative mapping was to illustrate the presence (or absence) of ob-
jective differences and/or inequities between specific subpopulations of interest. For example, 
Meliker et al. mapped locations with significant racial disparities in PCa survival to highlight 
areas of unequal PCa outcomes (Figure 3B) [46]. Qualitative mapping was also utilized to map 
contextual variables that help in understanding spatial circumstances under which PCa out-
comes may be affected. This was especially valuable when qualitative information was visu-
alized in parallel to PCa outcomes. For instance, Goovaerts et al. produced a qualitative map 
of rural/urban counties to obtain a visual representation of the associations between rural/ur-
ban places of residence and late-stage diagnosis (Figure 3C) [52]. 

  
(A) (B) 

  
(C) (D) 

Figure 3. Examples of different types of mapping utilized in PCa disparities research. (A). Quanti-
tative Mapping: PCa mortality rates. Prostate cancer mortality rates among White males (upper 
panel) and Black males (lower panel) by state economic area, 1970–1994 [38]. (B). Qualitative Map-
ping: Presence/absence of disparities. Significant racial disparities in prostate cancer survival in 
neighborhoods in Detroit, Michigan, 1990–1998 [46]. (C). Qualitative Mapping: rural/urban coun-
ties. Maps of rural/urban continuum codes for Florida counties over the period of 1993–2003 [51]. 
(D). Trends in time: Three-Dimensional mapping. A 3D representation of 25 maps of county-level 
proportions of late-stage PCa in Florida from 1982 to 2006 [49]. 

6.2. Mapping Trends Overtime 
Although mapping either qualitative or quantitative data in a time snapshot offers 

insightful visualization, including a temporal dimension ensures a more complete geo-
graphical analysis across the period studied. Hsu et al. included a temporal element in 
their mapping by reproducing maps showing excess PCa mortality across different time 
frames [44]. The inclusion of the temporal dimension allowed them to not only identify 
geographical clusters of worse PCa mortality but also to examine whether those clusters 

Figure 3. Examples of different types of mapping utilized in PCa disparities research. (A). Quantita-
tive Mapping: PCa mortality rates. Prostate cancer mortality rates among White males (upper panel)
and Black males (lower panel) by state economic area, 1970–1994 [38]. (B). Qualitative Mapping:
Presence/absence of disparities. Significant racial disparities in prostate cancer survival in neighbor-
hoods in Detroit, Michigan, 1990–1998 [46]. (C). Qualitative Mapping: rural/urban counties. Maps of
rural/urban continuum codes for Florida counties over the period of 1993–2003 [51]. (D). Trends in
time: Three-Dimensional mapping. A 3D representation of 25 maps of county-level proportions of
late-stage PCa in Florida from 1982 to 2006 [49].

6.2. Mapping Trends Overtime

Although mapping either qualitative or quantitative data in a time snapshot offers
insightful visualization, including a temporal dimension ensures a more complete geo-
graphical analysis across the period studied. Hsu et al. included a temporal element in
their mapping by reproducing maps showing excess PCa mortality across different time
frames [44]. The inclusion of the temporal dimension allowed them to not only identify
geographical clusters of worse PCa mortality but also to examine whether those clusters
persisted over time. As such, their mapping identified three specific counties where excess
mortality among Hispanics has been consistently present for over 19 years, calling on
public health policymakers to prioritize those areas based on spatiotemporal evidence [44].
Gooavert et al. [49,51] furthered the inclusion of the temporal dimensions through 3D
mapping of PCa incidence and late-stage diagnosis [51]. Their three-dimensional model
was created using SGeMS, Stanford Geostatistical Modeling Software, where propor-
tions of late-stage PCa were calculated over a 3-year moving window from 1982 to 2006
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(Figure 3D). This mapping approach allowed the examination of how rates of late-stage
disease responded to the 1990s introduction of Prostate Specific Antigen (PSA) testing, a
blood test that facilitated PCa detection and early diagnosis. As such, including a temporal
dimension while mapping PCa outcomes makes it easier to comprehend spatiotemporal
relationships, especially as significant approaches that affect clinical guidelines and health
outcomes are continuously developing in PCa.

7. Application of GIS in PCa Disparities Research: Processing

Processing spatial data was mainly performed in 14 studies to prepare data for sub-
sequent analyses and was grouped into geocoding and smoothing. (Table 1). Eight stud-
ies mentioned geocoding their data, six studies employed smoothing techniques, and
two studies employed both (Table 1).

7.1. GIS Processing: Geocoding

Geocoding allowed the provision of geographical coordinates for participants’ ad-
dresses that were later used for mapping and allowed for individual-level variables to
be represented on a location basis. Accordingly, addresses of PCa cases were geocoded
into a specific location to facilitate spatial recognition patterns and allow for observational
inferences. For example, Oliver et al. geocoded their PCa cases to the census tract us-
ing exact patient addresses, which allowed examining associations between high PCa
incidence and census-tract-level SES [41]. Another application of GIS processing is the
transformation of certain point variables to aggregates, which provides variable informa-
tion for multiple geographical scales. For instance, Xiao et al. employed GIS processing to
transform available latitude and longitudinal data into values per county to examine how
county-level environmental factors affect PCa outcomes. In this case, geocoding assisted
in preparing environmental data for county-level mapping and analysis by testing the
relationship between county-level environmental factors and PCa stage/grade [43]. As
such, GIS processing allows for scale transformation and the obtention of variables to the
desired level of aggregation to be able to draw inferences between area-level characteristics
and PCa outcomes.

Although geocoding enabled scaled visualization and data transformation, geocoding
percentage, describing the successful conversion of addresses into a specific location, varied
between studies. Half of the studies that mentioned geocoding did not report the percentage
of successful geocoding (Table 1). The geocoding success rate in the remaining half ranged
between a low of 74% [41] to a high of 100% [47]. Notably, geocoding success increased
with the increasing size of the geographical scale as it moved from 74% upon geocoding to
the census tract to 100% upon geocoding to the county [41].

7.2. GIS Processing: Smoothing

Data smoothing created an approximation function intended to capture patterns in
the dataset and was mainly employed to reduce noise in the data by providing smoothed
estimates (Figure 4). Goovaerts et al. performed binomial kriging to smooth rates of late-
stage PCa to obtain smoother maps for late-stage diagnosis rates, while Moore et al. (2022)
employed the spatial empirical Bayesian smoothing (SEBS) method to smooth mortality
rates [60]. In both cases, smoothing was mainly utilized to approximate rate data and filter
random noise so that clearer spatial patterns could be observed.

An additional reason binomial kriging is performed is to replace missing values from
the years where no PCa cases were diagnosed within specific locations in Florida [49].
Binomial kriging provided a measure of reliability called the kriging variance that allowed
capitalizing on spatial autocorrelation and neighboring geographical units. This was fol-
lowed by a sensitivity analysis, which showed that kriging-based noise-filtering improved
the fit of the joinpoint regression models (i.e., lower residual variability) compared to the
modeling of raw rates. In this case, noise-filtered data also helped in providing a clearer
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detection of the variation in county-level late-stage diagnosis rates across racial groups and
study periods (Figure 4A) [49].
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Figure 4. Application of smoothing techniques in GIS studies examining PCa disparities.
(A). Time-average proportions of prostate cancer late-stage diagnosis: Black Male/White Male repre-
sents disparities in late-stage diagnosis between AAs and NHWs [49]. (B). Prostate Cancer Mortality
Hotspots in Georgia: Hotspots were based within the fifth quintile of smoothed spatial Empirical
Bayes (EB) of PCa mortality rates [60]. (C). Annualized age-adjusted prostate cancer incidence rates
per 100,000 population (left) by Census Tract, 1990–1999. Smoothed rates (right). African Americans
(top) and Whites (bottom). A total of 74% of all cases were geocoded to the census tract [41]. (D).
Spatial variation on the local risk of highly aggressive prostate cancer in Black compared to White
men diagnosed with prostate cancer, Pennsylvania 2004–2014 [57].

Moore et al. applied the SBES method to smooth PCa mortality rates and group
them into quintiles. This distribution allowed for quintile-based quantitative mapping
to identify and represent counties belonging to the poorest quintiles of PCa mortality
(Figure 4B). Such an initial approach only provided information on how counties compare
in terms of PCa outcomes without identifying clusters or hotspots of concern [60]. On
another hand, a weighted two-dimensional smoothing algorithm, called Headbanging,
was performed on PCa incidence rates in Virginia (Figure 4C). This allowed for smoother
mapping of PCa outcomes, allowing patterns to emerge from the data [41]. Lastly, the
Inverse Distance Weighting (IDW) interpolation technique was performed to provide
smoothed GIS mapping based on local odds ratios of highly aggressive PCa [57]. This
technique created continuous and smoothed surfaces for the entire state of Pennsylvania
based on the respondents’ addresses. This allowed the visualization of spatial patterns
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of the explanatory effect of the variable “race” as smoothed rates were racially stratified
(Figure 4D).

8. Application of GIS in PCa Disparities Research: Spatial Analysis

Although mapping and processing may produce key visual insights, spatial asso-
ciations can be examined by utilizing specific GIS analysis methods. In this systematic
review, 16 studies applied GIS analysis to spatially analyze and interpret associations with
PCa outcomes. Of those, 4 performed global spatial autocorrelation, 15 included a clus-
ter identification approach, and 1 study employed a geographically weighted regression
(Table 1).

8.1. GIS Analysis: Identification of Spatial Autocorrelation

Spatial autocorrelation is the term used to describe the presence of systematic spatial
variation in a variable, and it is the tendency for areas or sites that are close together to
have similar values [66]. As Waldo Tobler’s first law of geography states, “Everything
is related to everything else. But near things are more related than distant things” [67].
This was used as a key concept in geospatial research as it laid the rationale of spatial
autocorrelation methods that test whether geographically closer zones have more of the
same health outcome profiles. Spatial autocorrelation indicated the presence of clustering
or dispersion in a map; as such, examining the global spatial autocorrelation was used
as an initial step for assessing overall geographical variability in the study area and was
performed in 4 out of the 25 studies included (Table 1). Three spatial tests were utilized
to assess for global autocorrelation: the Global Moran’s I, Cuzick–Edwards’ k-NN, and
Tango’s Maximized Excess Events Test (MEET) (Table 1).

Data from the Pennsylvania Cancer Registry were used to test for significant global
autocorrelation using Global Moran’s I. The Global Moran’s I statistics with 95% confidence
intervals were calculated for each of the four time periods studied (2000–2002, 2003–2005,
2006–2008, and 2009–2011) and resulted in a non-significant negative value, indicating
a non-significant negative spatial autocorrelation or a dispersed pattern in the data. As
such, the authors’ interpretation included the presence of heterogenous dispersion of
PCa incidence across counties, which was also apparent in the quantitative mapping [56].
Similarly, a non-significant Global Moran’s I (p = 0.08) was also obtained upon testing
for spatial autocorrelation of MIRs in South Carolina [59]. Despite the lack of statistically
significant global heterogeneity, subsequent local cluster identification techniques detected
two significant clusters of higher-than-expected MIRs [59]. Although examining global
spatial autocorrelation was mainly utilized to test for general dispersion or clustering of
the whole area of study, this approach did not eliminate the presence or absence of local
PCa clusters.

A comparative study was performed to compare three different global spatial cluster-
ing techniques, utilized commonly in GIS research, to test for clustering in PCa stage and
grade: Cuzick–Edwards’ k-NN, Global Moran’s I, and Tango’s Maximized Excess Events
Test (MEET) [45]. Cuzick–Edwards’ k-NN and Moran’s I were found to be very sensitive to
the population’s density, while MEET turned out to be the simplest to use, as density does
not need to be specified for the test. For the stage at diagnosis, all three models showed a
reduction in clustering upon individual and area-level adjustments; however, some residual
clustering remained. This study showed that, in addition to testing for global dispersion,
those three global clustering techniques can be applied to check for residual clustering,
especially after adjusting for individual and area-level variables [45]. All in all, assessing for
global clustering allows for identifying dispersion in overall PCa outcomes within spatial
data. This initial step was important to understand the level of geographical heterogeneity
of the PCa measure in question and elicited the need to adjust for underlying factors.
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8.2. GIS Analysis: Cluster Identification

In addition to assessing for global spatial autocorrelation, GIS was utilized to identify
clusters of concern in 14 studies, as this was often performed with the aim of identifying
and prioritizing zones for public health interventions and/or locations that elicit further
analyses (Table 1). Methods of cluster detection varied (Figure 5) as eight studies employed
the Spatial Scan Statistic, two the local Moran’s I, two utilized a spatially weighted hier-
archical cluster analysis, one performed a hotspot analysis coupled with the Spatial Scan
Statistic, and another coupled with the local Moran’s I test (Table 1).
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Figure 5. Application of GIS Analysis in PCa Disparities Research. (A) Geographic incidence clusters
of invasive prostate cancer adjusted for age at the time of diagnosis Connecticut, 1994–1998: adjusted
for age at time of diagnosis (circle A), age and race (circle B), and age and poverty level (circle C) [54].
(B). LISA cluster maps for White men in Pennsylvania (2009–2011) [56]. (C). Getis-Ord Gi * statistic
for hotspot analysis of PCa incidence for both races by county, 1998–2008, Georgia [53]. (D). Results of
spatially weighted classification of 67 counties in Florida: grouping of counties based on the similarity
of their temporal trends in proportions of late-stage diagnosis and their geographical proximity [51].

The Spatial Scan Statistic developed by Kulldorff [68] was commonly used to identify
whether PCa outcomes were geographically randomly distributed or whether clusters were
present. Within these studies, SatScan software was utilized to generate ellipses and/or
circles of varying sizes and evaluate observed versus expected rate ratios (risk within
vs. outside the circles) to identify statistically significant “clusters” of disease rates [68].
Variations in the utilization of Kulldorff’s Spatial Scan Statistic are identified and described
in Table 2. Six studies relied on circular scanning windows, one on both circular and
elliptical, and two did not mention the scanning window shape employed. Variations
in scanning window size also occurred, which were mostly dependent on the size of the
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population at risk (four studies) and on the study period (one study). Furthermore, the
cluster delimitation approach was different among studies, as five studies did not rely on
geopolitical boundaries for cluster formation, while three based their clusters on county
and census tract boundaries (Table 2).

Table 2. Variations in the Spatial Scan Statistic Technique for Cluster Identification.

Study Scanning
Window Shape Scanning Window Size

Clusters Delimited
by Geopolitical

Boundaries
Outcome

Jemal A et al. (2002) [38] Circular 0–50% of the total population
at risk. Yes (county) PCa mortality

Klassen AC et al. (2005) [39] Circular 0–50% of the total population
at risk. No

PCa incidence,
missing stage, and
grade

DeChello LM et al. (2006) [40] Circular 0–50% of the total population
at risk. No PCa incidence

Oliver M N et al. (2006) [41] NA
NA (A Spatial Scan Statistic
was used to evaluate raw
counts).

NA (clusters not
mapped) PCa incidence

Gregorio DI et al. (2007) [42] Circular NA (varying sizes across the
geography of the study area). No PCa survival

Hsu et al. (2007) [44] NA
50% and 90% of the study
period.
50% of the population at risk.

Yes (county) PCa mortality

Altekruse et al. (2010) [48] Circular and
elliptical

0–50% of the total population
at risk. Yes (census tract) PCa incidence

(localized)

Wagner S et al. (2013) [53] Circular 50% spatial scanning window. No
Incidence and
high-grade or stage
PCa

Gregorio DI (2013) [54] Circular
NA (scanning circles at
random locations and of
varying sizes).

No PCa incidence

NA = Not Applicable.

Although all studies utilizing the Spatial Scan Statistic shared a similar purpose,
several rationales were employed. Some studies relied on racially stratifying cluster iden-
tification to highlight racial disparities in PCa outcomes. For example, four clusters of
higher PCa incidence were detected in NHW, while two clusters were detected in AA
within the states of Connecticut and Massachusetts between 1994 and 1998 (Figure 5A) [40].
Other studies attempted to understand the underlying factors behind cluster formation by
testing whether identified clusters remained after adjusting for designated factors. As an
example, the number of significant clusters diminished when adjusting for individual-level
variables such as race, age, and year and census-tract level SES. This approach explained
the potential variables affecting cluster formation as older age, Black race, and higher
county-level income increased the likelihood of missing stage while older age and higher
block-group income increased the likelihood of missing grade [39]. Similarly, the number of
clusters of poorer PCa survival decreased in Connecticut upon adjusting for disease severity.
However, the fact that some of those clusters remained demonstrated that additional factors
not accounted for in the study, were contributing to worse PCa prognosis [42]. Another
approach for employing cluster identification is to profile the SES characteristics of the
identified clusters in order to understand the relationship between poorer outcomes and
area-level variables within those specific geographical boundaries. For example, Altekruse
et al. focused on gathering clusters of higher PCa incidence to examine the relationship
between high incidence within those boundaries and area-level SES utilizing the Pearson
correlation test [48]. This resulted in significant associations between a higher relative risk
of localized PCa and urban locations as well as higher AA proportions [48].

The Getis-Ord-Gi technique developed by Getis and Ord in 1992 was also used to
identify hotspots of concentrated disease outcomes [69]. In contrast to clusters identified
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by the Spatial Scan Statistic, this approach mainly identified “cooler” or “hotter” zones
of the designated outcome in question. For example, in the state of Georgia, Wagner
et al. analyzed county-level hotspots of PCa incidence with the Getis-Ord-Gi statistic and
identified census-tract level clusters using the Spatial Scan Statistic. The rationale behind
this dual cluster identification approach was primarily to identify counties with the highest
PCa incidence and delineate clusters of higher incidence within smaller geographical
areas [53]. Another county-level hotspot analysis was performed in Georgia to detect
counties with the highest PCa mortality (Figure 5C). The analysis was then racially stratified
to compare racial disparities in PCa mortality. The identified hotspot counties were then
analyzed for SES characteristics and found to have a higher AA proportion and lower
median household income when compared with non-hotspot counties [60].

Furthermore, three studies employed the local Moran’s I to identify Local Indicators
of Spatial Autocorrelations (LISA) (Table 1). LISA was used to identify significant clusters
of Pennsylvania counties with either higher or lower PCa incidence as well as counties
that differed significantly from their neighboring counties, representing either a “high-low”
or “low-high” geographical cluster (Figure 5). In addition to identifying low and high-
incidence counties, LISA provided information on how a specific location compared with
its surroundings (Figure 5B). The analysis was repeated for four different time periods to
understand the temporal variation of identified clusters [56]. Lastly, two studies employed
the spatially weighted hierarchical cluster analysis using Ward’s minimum variance to
group counties that have similar temporal trends of late-stage incidence rates in the state
of Florida. This was mainly performed to examine the temporal and spatial clustering
of late-stage proportions, especially since screening recommendations were introduced
during the study period (Figure 5D) [51,52].

8.3. GIS Analysis: Geographically Weighted Regression (GWR)

Only a single study employed GWR (Table 1), which provided a spatial dimension to
traditional measures of associations. A geographically weighted local logistic regression
model was used to investigate how the covariate effects on PCa outcome changed spatially
by considering spatial dependence. In fact, higher weight was assigned to cases that were
geographically closer to each other to account for spatial dependence. This method was
mainly applied to represent how associations between predictors and PCa outcomes vary
geographically. For example, Goovaerts et al. identified specific areas where the risk of
advanced PCa is more sensitive to the census-tract median household income [55].

9. Discussion

This systematic review is the first to comprehensively summarize GIS applications
in prostate cancer (PCa) disparities research. Unlike previous reviews that focused on
geographical variability in PCa outcomes and associations with predictors, this review
emphasizes the utility of GIS [11,12,14,18]. GIS’s interdisciplinary approach is crucial for
addressing disparities in PCa outcomes [6,70].

9.1. Main Themes and Findings

GIS applications in PCa disparities research fall into three main themes: mapping,
processing, and analysis. Most studies (23 out of 25) utilized GIS to examine PCa incidence,
mortality, and survival rather than treatment and management. The primary rationale was
to visualize and statistically identify geographical areas with poorer PCa outcomes, aiding
in policy and public health intervention prioritization. Policymakers could also benefit
from identifying disparities in healthcare access, as disparities in procedure utilization and
PCa management contribute to worse outcomes [20–22,71]. A clear limitation in examining
PCa management outcomes in GIS research is the databases used. Including databases with
procedure information, such as SEER-Medicare [72] or SPARCS [73], could enhance GIS
research by visualizing healthcare access disparities and associating them with outcomes.
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Despite this, cancer registry data linked to census data proved valuable for examining PCa
outcomes and area-level characteristics (Table 1).

9.2. Specific GIS Applications in PCa Management

Two studies focused on PCa management, using GIS for mapping and regression
analyses to explore the relationship between radiation therapy uptake, travel distance, and
socioeconomic status (SES) [58,62]. Aghdam et al. mapped SES clusters of patients receiving
radiation therapy [58], while Tang et al. mapped PCa treatment modalities by county [62].
Other studies also examined the impact of travel distance on treatment utilization, finding
that longer distances were associated with lower radiation therapy likelihood [74,75]
and increased advanced-stage PCa rates among African Americans [76]. Dobbs et al.
used Google Distance Matrix API to calculate transit times and their impact on clinic
absenteeism, finding driving distance inversely associated with missed appointments [77].
This approach could help study the impact of distance and time on healthcare access among
PCa patients. Combining procedure uptake information with analytical GIS approaches
could provide insights into healthcare access for PCa patients. Such approaches have been
used to study spatial variation and identify clusters in other diseases, such as malignancies
and vaccine uptake [78–80]. For example, Zahnd et al. performed hotspot analysis and
spatial lag models to detect low mammography access clusters and identify associated
sociodemographic factors [80]. Translating these approaches to PCa procedure uptake,
such as multiparametric MRI for advanced diagnosis and detection, could advance the
understanding of PCa disparities. This is crucial as PCa is a screenable and highly curable
disease when appropriate screening and management are undertaken.

9.3. Multilevel Analyses in GIS Research

Four studies successfully integrated GIS with multilevel analyses, an essential ap-
proach given the complex relationship between race/ethnicity and area-level SES in PCa
disparities [39,41,43,50]. Klassen et al. identified high PCa grade and stage clusters and
evaluated variability before and after adjusting for census-level characteristics [39]. This
approach helps determine the contribution of multileveled factors to spatial clusters and
identifies areas for additional localized investigations. Similarly, Altekruse’s study further
examined identified clusters for local associations with area-level factors [48].

9.4. Limitations and Recommendations for GIS Mapping, Processing, and Analysis in PCa
Disparities Research

Several limitations and recommendations from this review are detailed in Table 3.
GIS Mapping and Scale Definition: Almost all studies (24/25) used mapping to visually

represent associations between geography and PCa. However, varying geographical
scales were adopted, resulting in different findings [41,43,46]. County-level data was most
commonly used due to ease of access. However, multiple scales within studies introduced
challenges in disentangling personal choice from contextual factors. For example, Meliker
et al. observed disappearing survival disparities between NHW and AAs when moving
from larger to smaller geographical scales [46]. Oliver et al. detected significant SES
associations with PCa outcomes at the census tract level but not at the county level [41].
This phenomenon, known as the Modifiable Areal Unit Problem (MAUP), introduces
statistical bias. The recommended geographical scale depends on the research question.
Smaller scales might better capture associations with area-level indicators, while larger
scales might better detect disparities between geographical areas. To mitigate MAUP,
using original point data or smaller units of analysis (e.g., “county” instead of “state”) and
performing sensitivity analyses for each geographical scale are suggested [81]. Luo et al.
demonstrated the context-dependency of aggregation error using a Monte Carlo simulation,
emphasizing the importance of population density consideration [82].
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Table 3. Summary of GIS Applications, Limitations, and Proposed Recommendations in PCa Research.

GIS Application Limitation(s)/Gap(s) Proposed Recommendations(s)

Overall Scope

• Limited focus on PCa management and/or treatment
• Limited variability in PCa database types
• Limited focus on racial disparities in remaining minority groups

(main focus on NHWs and AAs)

• Include more GIS research on PCa and procedure utilization in
PCa patients (i.e., access to screening)

• Utilize claims databases for procedure information
• Include the temporal element to account for clinical advancement

in PCa procedures and changes in guidelines
• Include other racial categories that have proven to exhibit PCa

disparities (i.e., NHAPI, NHAIAN)

Mapping

• Lack of justification for the determination of geographic scale for
PCa inferences

• Varying PCa associations dependent on the geographical scale
adopted (MAUP)

• Consider larger scales for examining PCa disparities in-between
geographical locations

• Consider smaller scales when examining associations between PCa
outcomes and area-level characteristics

• Utilize original point data instead of aggregates if possible
• Create districts based on the spatial patterns observed in the

selected PCa dataset
• Include sensitivity analysis across different geographical scales

Processing
• Low-quality geocoding leading to inaccurate PCa cluster detection
• Over-smoothing

• Adhere to geocoding principles as per NAACR
• Always include the geocoding quality percentage
• Avoid over-smoothing and utilize imputation techniques for

missing PCa data as appropriate

Analysis

• Lack of initial global spatial autocorrelation testing
• Variability in cluster detection methods, especially when using the

Spatial Scan Statistic

• Always include global spatial autocorrelation as an initial step to
assess for overall dispersion in PCa outcomes

• Employ alternative cluster detection methods that exhibit less
variability (i.e., LISA) or have proven to be superior in cluster
detection (i.e., SpODT and HBSM)

• Combine cluster detection techniques for more robust and
comprehensive findings (i.e., hotspot analysis followed by SSS or
LISA)

NHAPI: Non-Hispanic Asian Pacific Islander, NHAIAN: Non-Hispanic American Indian/Alaskan Native, MAUP: Modifiable Areal Unit Problem, LISA: Local Indicator of Spatial
Autocorrelation, SpODT: Spatial oblique decision tree, HBSM: Hierarchical Bayesian spatial modeling.
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GIS Processing: Geocoding quality and data smoothing were the main GIS processing
applications identified. Only eight studies reported geocoding, with success rates varying
between 74% and 100% (Table 1). Standardized geocoding approaches, such as those by
NAACCR, are recommended to improve outcome comparability [83]. Insufficient geocod-
ing can lead to systematically missing data and misinforming public health interventions.
This was illustrated by Oliver et al., who showed how varying geocoding quality resulted
in different cluster formations for PCa patients (Figure 6) [84]. Smoothing techniques help
aggregate results of adjacent areas with scarce or missing data but can introduce bias if
over-applied. Proper use of smoothing techniques can fill gaps, reduce bias, and prepare
data for spatial analysis.
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GIS Analysis: GIS applications enable rapid spatial analysis of PCa outcomes. Spa-
tial autocorrelation is crucial for examining the impact of space on PCa observations.
Three spatial autocorrelation approaches were identified: Global Moran’s I, Tango’s MEET,
and Cuzick–Edwards’ k-NN. Global Moran’s I is commonly used to test for global spatial
autocorrelation, but Geary’s c test could also be employed [85]. The absence of global
spatial autocorrelation does not imply the absence of localized spatial patterns. Cluster
detection methods varied, with the Spatial Scan Statistic (SSS), Local Indicator of Spatial
Autocorrelation (LISA), and hotspot analysis using the Getis-Ord-Gi statistic being the
primary techniques. Variations in SSS model specifications highlight the need for standard-
ization. LISA is more sensitive and specific in cluster detection but increases Type I error
with more cases. Hotspot analysis provides color-scaled visual representations of cold
and hotspots but is limited by pre-defined geographical boundaries. Combining multiple
geospatial approaches, such as hotspot analysis and LISA, is recommended for robust
findings. A table summarizing the strengths and weaknesses of the different GIS analysis
methods utilized in PCa research is presented below (Table 4).
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Table 4. Summary of strengths and weaknesses of GIS analysis methods applied in PCa research.

Method Strengths Weaknesses Example of Recommended Application

Spatial Scan Statistic (SSS)

• Provides the location, size, and statistical
significance of PCa clusters

• Identifies areas with
higher-than-expected PCa rates

• Publicly available

• Sensitivity to parameters: the choice of
scanning window, shape, and size can
influence the results

• Assumes circular or elliptical cluster
shapes

• Computational complexity increases
with larger datasets

To detect significant circular or elliptical
clusters of high PCa mortality within a
specific region, accounting for the population
at risk and considering varying cluster sizes

Local Moran’s I (LISA)

• Identifies areas where PCa cases are
spatially clustered or dispersed

• Does not need a priori specification of a
scan window shape and size

• More appropriate for finer scales (census
tracts, neighborhoods)

• Higher probability of false positives with
an increasing number of cases

• Scale sensitivity

To identify statistically significant clusters of
high or low PCa incidence rates, provide
insight into neighboring observations, and
understand spatial patterns of PCa incidence
at smaller scales (census tracts,
neighborhoods)

Hotspot Analysis (Getis-Ord Gi statistic)

• Allows for the visual identification of
geographically-delimited clusters at the
local level (i.e., census, county)

• Helps to pinpoint geographical-limited
areas with high or low prostate cancer
rates

• Identified areas are limited by
geopolitical boundaries

• Scale sensitivity

To identify local hotspots or coldspots of PCa
incidence within a specific geographic area,
such as a county or a census tract

Geographically Weighted Regression (GWR)

• Recognizes spatially varying
relationships

• Allows for localized and more accurate
modeling of the relationships between
variables

• Captures spatial heterogeneity
• Aids in the identification of localized

clusters or spatial patterns of PCa
outcomes

• May require a relatively large sample
size to ensure reliable estimation and
avoid issues of spatial outliers or sparse
data in specific regions

• Increased computational requirements
(estimates regression coefficients for each
location)

• Requires understanding of the spatial
context for accurate interpretation

• Multicollinearity

To investigate the locally dynamic relationship
between area-level characteristics (e.g., racial
composition, socioeconomic status,
availability of healthcare) and PCa outcomes
(i.e., appropriate for multilevel analyses)
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9.5. Future Recommendations for GIS Application in PCa Research and Policy Implications

Future GIS research in PCa disparities should focus on several key areas to enhance
the scope and impact of findings.

• Expanding the scope to include treatment and management outcomes is crucial. Uti-
lizing comprehensive databases like SEER-Medicare and SPARCS for procedure-level
information will provide valuable insights into healthcare access and utilization, lead-
ing to a more holistic understanding of PCa disparities.

• Incorporating both spatial and temporal dimensions in GIS research will allow for a
more comprehensive assessment of the cancer burden. This can be achieved through
preliminary stratification, joinpoint analysis, or detailed discussions that account for
ongoing medical advancements and changes in screening recommendations.

• Ensuring racial inclusivity in study populations is also vital. Future research should
extend beyond African Americans (AAs) and non-Hispanic Whites (NHWs) to include
other minority groups such as non-Hispanic Asian/Pacific Islanders (NHAPI). This
will provide a broader understanding of racial disparities in PCa outcomes.

• Combining multiple geospatial approaches for robust cluster detection and sensitivity
analysis will enhance the reliability and validity of research findings. Employing
techniques like Spatial Scan Statistic (SSS), Local Indicator of Spatial Autocorrela-
tion (LISA), spatial oblique decision trees (SpODT), and hierarchical Bayesian spatial
modeling (HBSM) will offer a comprehensive view of spatial patterns and their under-
lying causes.

• Addressing geocoding quality and the Modifiable Areal Unit Problem (MAUP) is
essential. Researchers should adhere to standardized geocoding principles and report
geocoding success rates. Conducting sensitivity analyses across different geographical
scales and using original point data when possible will mitigate issues related to
MAUP and enhance the robustness of findings.

• Leveraging GIS to identify high-risk regions: GIS mapping has identified specific
regions, such as the Mississippi Delta, Appalachia, and parts of the Deep South, with
significantly higher PCa mortality and lower survival rates. Continuing to utilize GIS
in this aspect has the potential to outline the most deprived areas, in the highest needs
of public health interventions.

• Implementing GIS mapping of PCa outcomes for a roadmap toward enhanced health-
care access. Geographical locations of poor PCa outcomes can help deploy mobile
screening units and expand telemedicine services to ensure early detection and contin-
uous care for PCa patients in rural and underserved urban areas.

• Addressing Socioeconomic Barriers and implementing financial assistance programs to
subsidize the cost of PCa screening, diagnosis, and treatment for low-income populations.

• Launching targeted community-based education and awareness campaigns to in-
form the public about PCa risks, the importance of early detection, and available
healthcare resources.

• Improving Data Collection and Reporting by adopting standardized geocoding meth-
ods to enhance the accuracy and comparability of spatial data and facilitate better
identification of disparities. It is thus important to foster data sharing between cancer
registries, healthcare providers, and public health agencies to support comprehensive
analyses and tailored interventions.

• Using GIS mapping to improve travel delays associated with public transportation,
especially for minority groups, can enhance PCa care [86]. GIS can identify areas with
significant delays, helping optimize transit routes and healthcare facility locations to
ensure better access to care.

By addressing these recommendations, future GIS research can leverage spatial analy-
sis to design effective public health interventions, ultimately reducing disparities in PCa
outcomes. Including visual aids such as tables and figures can further enhance the clarity of
the discussion. For example, a table summarizing the strengths and weaknesses of different
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GIS methods, a visual representation of geographical scales and their impact on findings,
and a flowchart of recommended GIS approaches for PCa disparities research can make
the information more digestible. Following these recommendations will ensure that future
GIS studies in PCa disparities are more robust, comprehensive, and impactful.

9.6. Study Strengths and Limitations

To my knowledge, this is the first systematic review of GIS applications within PCa
disparities research. This review is unique as it provided a comprehensive summary
of spatial analysis within this disease, highlighted the importance of specific methods
in relation to PCa outcomes, and discussed potential gaps while proposing potential
solutions. A GIS approach for PCa disparities is crucial for designing efficient and targeted
public health interventions. Although this review contains valuable information for future
researchers joining the rising trend of GIS research and disparities, a few limitations were
encountered. Limitations mainly include the search terms used to select the articles. Some
used terms might have been new to the literature, and thus, historical articles describing
the same initiative might have been missed by using obsolete terminology. Also, selections
have been restricted to published articles only. By doing so, valuable unpublished findings
might have been missed, especially since this area of research is evolving rapidly.

10. Conclusions

This review highlights current trends in GIScience for PCa surveillance and epidemiol-
ogy, categorizing GIS approaches into processing, mapping, and analysis. Mapping enables
visualization of PCa rates and disparities, processing involves geocoding and rate smooth-
ing, and analysis identifies clusters for public health interventions. Limitations were noted
in each area, with recommendations to expand GIS research to address healthcare access
disparities, justify scale selections, and combine cluster detection methods for improved
accuracy. The review emphasizes interdisciplinary collaboration to enhance PCa disparity
studies, guiding future public health and policy interventions effectively.
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Appendix A. Research Strategy

Research Question
State Question: What are the different geospatial approaches
for quantifying health disparities in prostate cancer
outcomes?
Specific Inclusions/Exclusions:
Inclusion: Studies that examine disparities in PCa using
geographical elements as independent variables
Exclusion: Studies conducted outside the US, studies that did
not assess for a direct relationship between a geographical
component and PCa disparities were excluded.

Select Core Databases:
PubMed
Embase
Web of Science

Limits:
English only
Years: Up to 2022
Age Groups: Adults 18 years and older

Concept: Health Disparities Concept: Geospatial Analysis Concept: Prostate Cancer
Thesaurus Terms/Subheadings “Socioeconomic Factors”[Mesh] OR

“Health Status Disparities”[Mesh] OR
“Healthcare Disparities”[Mesh] OR “Health Services
Accessibility”[Mesh] OR “Vulnerable
Populations”[Mesh] OR

“Geospatial analysis”[MeSH Terms] OR
“geographic [MeSH]) OR
(geographical[MeSH]) OR (spatial[MeSH])

“Prostatic Neoplasms”[Mesh] OR

Textwords socioeconomic* OR
disparit* OR
vulnerable OR
“healthcare access” OR
“healthcare accessibility” OR
“health service accessibility” OR
“health services accessibility”

Geograph* OR Spatial OR Geospatial OR GIS
OR Place of Residence OR Mapping

“prostate cancer” OR
“prostate cancers” OR
“cancer of the prostate” OR
“prostatic neoplasms” OR
“prostate neoplasms”
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PubMED SEARCH STRATEGIES
Search Number Query Search Details Results
4 (((“Prostatic Neoplasms”[Mesh] OR “prostate cancer” OR

“prostate cancers” OR “cancer of the prostate” OR “prostatic
neoplasms” OR “prostate neoplasms”)) AND ((“Socioeconomic
Factors”[Mesh] OR “Health Status Disparities”[Mesh] OR
“Healthcare Disparities”[Mesh] OR “Health Services
Accessibility”[Mesh] OR “Vulnerable Populations”[Mesh] OR
socioeconomic* OR disparit* OR vulnerable OR “healthcare
access” OR “healthcare accessibility” OR “health service
accessibility” OR “health services accessibility”)))) AND
(“Geography”[Mesh] OR “Geography, Medical”[Mesh] OR
geograph* OR spatial OR geospatial* OR geospatial analysis OR
GIS OR Mapping OR “Place of Residence”) Filters: English

(“Prostatic Neoplasms”[MeSH Terms] OR “prostate cancer”[All
Fields] OR “prostate cancers”[All Fields] OR “cancer of the
prostate”[All Fields] OR “Prostatic Neoplasms”[All Fields] OR
“prostate neoplasms”[All Fields]) AND (“Socioeconomic
Factors”[MeSH Terms] OR “Health Status Disparities”[MeSH
Terms] OR “Healthcare Disparities”[MeSH Terms] OR “Health
Services Accessibility”[MeSH Terms] OR “Vulnerable
Populations”[MeSH Terms] OR “socioeconomic*”[All Fields] OR
“disparit*”[All Fields] OR (“vulnerabilities”[All Fields] OR
“vulnerability”[All Fields] OR “vulnerable”[All Fields] OR
“vulnerables”[All Fields]) OR “healthcare access”[All Fields] OR
“healthcare accessibility”[All Fields] OR “health service
accessibility”[All Fields] OR “Health Services Accessibility”[All
Fields]) AND (“Geography”[MeSH Terms] OR “geography,
medical”[MeSH Terms] OR “geograph*”[All Fields] OR
(“spatial”[All Fields] OR “spatialization”[All Fields] OR
“spatializations”[All Fields] OR “spatialized”[All Fields] OR
“spatially”[All Fields]) OR “geospatial*”[All Fields] OR
((“geospatial”[All Fields] OR “geospatially”[All Fields]) AND
(“analysis”[MeSH Subheading] OR “analysis”[All Fields])) OR
(“proc acm sigspatial int conf adv inf”[Journal] OR “gis”[All
Fields]) OR (“mapped”[All Fields] OR “mapping”[All Fields]
OR “mappings”[All Fields]) OR “Place of Residence”[All Fields])

320
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Search
Number

Query Search Details Results

3 “Geography”[Mesh] OR “Geography, Medical”[Mesh] OR geograph* OR spatial
OR geospatial* OR geospatial analysis OR GIS OR Mapping OR “Place of
Residence”

“Geography”[MeSH Terms] OR “geography, medical”[MeSH Terms] OR
“geograph*”[All Fields] OR (“spatial”[All Fields] OR “spatialization”[All Fields]
OR “spatializations”[All Fields] OR “spatialized”[All Fields] OR “spatially”[All
Fields]) OR “geospatial*”[All Fields] OR ((“geospatial”[All Fields] OR
“geospatially”[All Fields]) AND (“analysis”[MeSH Subheading] OR “analysis”[All
Fields])) OR (“proc acm sigspatial int conf adv inf”[Journal] OR “gis”[All Fields])
OR (“mapped”[All Fields] OR “mapping”[All Fields] OR “mappings”[All Fields])
OR “Place of Residence”[All Fields]

1,116,497

2 (“Socioeconomic Factors”[Mesh] OR “Health Status Disparities”[Mesh] OR
“Healthcare Disparities”[Mesh] OR “Health Services Accessibility”[Mesh] OR
“Vulnerable Populations”[Mesh] OR socioeconomic* OR disparit* OR vulnerable
OR “healthcare access” OR “healthcare accessibility” OR “health service
accessibility” OR “health services accessibility”))

“Socioeconomic Factors”[MeSH Terms] OR “Health Status Disparities”[MeSH
Terms] OR “Healthcare Disparities”[MeSH Terms] OR “Health Services
Accessibility”[MeSH Terms] OR “Vulnerable Populations”[MeSH Terms] OR
“socioeconomic*”[All Fields] OR “disparit*”[All Fields] OR “vulnerabilities”[All
Fields] OR “vulnerability”[All Fields] OR “vulnerable”[All Fields] OR
“vulnerables”[All Fields] OR “healthcare access”[All Fields] OR “healthcare
accessibility”[All Fields] OR “health service accessibility”[All Fields] OR “Health
Services Accessibility”[All Fields]

950,029

1 (“Prostatic Neoplasms”[Mesh] OR “prostate cancer” OR “prostate cancers” OR
“cancer of the prostate” OR “prostatic neoplasms” OR “prostate neoplasms”)

“Prostatic Neoplasms”[MeSH Terms] OR “prostate cancer”[All Fields] OR
“prostate cancers”[All Fields] OR “cancer of the prostate”[All Fields] OR “Prostatic
Neoplasms”[All Fields] OR “prostate neoplasms”[All Fields]

184,831
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EMBASE SEARCH STRATEGIES
No. Query Results
#4 #1 AND #2 AND #3 317
#3 (‘geography’ OR ‘geography, medical’ OR geograph* OR spatial OR geospatial* OR geospatial)

AND analysis OR gis OR mapping OR ‘place of residence’
682,890

#2 ‘socioeconomic factors’ OR ‘health status disparities’ OR ‘healthcare disparities’ OR ‘vulnerable
populations’ OR socioeconomic* OR disparit* OR vulnerable OR ‘healthcare access’ OR ‘healthcare
accessibility’ OR ‘health service accessibility’ OR ‘health services accessibility’

583,093

#1 ‘prostatic neoplasms’/exp OR ‘prostatic neoplasms’ 291,595

WEB OF SCIENCE SEARCH STRATEGIES
Query Results
(‘prostatic neoplasms’ OR ‘prostatic neoplasms’) AND (‘socioeconomic factors’ OR ‘health status disparities’ OR ‘healthcare disparities’ OR ‘vulnerable
populations’ OR socioeconomic* OR disparit* OR vulnerable OR ‘healthcare access’ OR ‘healthcare accessibility’ OR ‘health service accessibility’ OR ‘health
services accessibility’) AND ((‘geography’ OR ‘geography, medical’ OR geograph* OR spatial OR geospatial* OR geospatial) AND analysis OR gis OR mapping
OR ‘place of residence’)

16

((‘geography’ OR ‘geography, medical’ OR geograph* OR spatial OR geospatial* OR geospatial) AND analysis OR gis OR mapping OR ‘place of residence’) 3,173,703
(‘socioeconomic factors’ OR ‘health status disparities’ OR ‘healthcare disparities’ OR ‘vulnerable populations’ OR socioeconomic* OR disparit* OR vulnerable
OR ‘healthcare access’ OR ‘healthcare accessibility’ OR ‘health service accessibility’ OR ‘health services accessibility’)

629,895

(‘prostatic neoplasms’ OR ‘prostatic neoplasms’) 8363
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