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Simple Summary: Esophageal cancer, a highly lethal tumor, contributes to 5% of all cancer deaths,
with its primary subtypes being esophageal squamous cell carcinoma (ESCC) and esophageal adeno-
carcinoma (EAC). While most studies focus on ESCC, this study investigates EAC using single-cell
RNA sequencing (scRNA-seq) to analyze CD45+ immune cells from tumors and matched non-tumor
tissues in therapy-naïve patients. By examining the transcriptional profiles of these immune cells
and the entire transcriptome in a cohort of 23 patients, this study identifies distinct transcriptional
signatures. These signatures were used to stratify a large cohort of TCGA EAC patients, revealing
strong associations with prognosis and clinical outcomes. The findings suggest that these transcrip-
tional profiles can improve prognosis accuracy post-surgery and potentially guide effective therapies,
including immunotherapy, for EAC patients.

Abstract: Esophageal cancer is a highly lethal malignancy, representing 5% of all cancer-related
deaths. The two main subtypes are esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC). While most research has focused on ESCC, few studies have analyzed EAC
for transcriptional signatures linked to diagnosis or prognosis. In this study, we utilized single-cell
RNA sequencing and bulk RNA sequencing to identify specific immune cell types that contribute
to anti-tumor responses, as well as differentially expressed genes (DEGs). We have characterized
transcriptional signatures, validated against a wide cohort of TCGA patients, that are capable of
predicting clinical outcomes and the prognosis of EAC post-surgery with efficacy comparable to the
currently accepted prognostic factors. In conclusion, our findings provide insights into the immune
landscape and therapeutic targets of EAC, proposing novel immunological biomarkers for predicting
prognosis, aiding in patient stratification for post-surgical outcomes, follow-up, and personalized
adjuvant therapy decisions.

Keywords: esophageal adenocarcinoma; cancer; immunotherapy; treatment; single-cell RNA;
single-cell sequencing; RNA sequencing; transcriptional signature; response to therapy; immune infiltrate

1. Introduction

Esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC)
are among the deadliest cancers in the world, and their incidence is rapidly increasing [1].
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In many gastrointestinal cancers, the tumor microenvironment (TME) has been shown to
be a prognostic feature and allows the establishment of an “immune core” [2]; however,
this approach has not yet been adopted in the management of EAC. While previous
studies have shown the important role of tumor-infiltrating lymphocytes (TILs) as a useful
predictor for therapeutic response and prognosis in ESCC patients [3], clinicians are still far
from effectively predicting the persistence of responses to neoadjuvant co-chemoradiation
(CTRT). Improving the prediction of a patient’s response to treatment, tumor progression,
and/or recurrence remains a significant challenge. RNA sequencing (RNA-seq) technology
has emerged as a powerful tool for the analysis of gene expression in cancer samples,
providing a comprehensive view of the transcriptome landscape. By analyzing the RNA
expression profiles of cancer samples, RNA-seq is able to reveal novel tissue heterogeneity
that can improve patients’ stratification and guide personalized treatment decisions [4]:
an example could be the TME and its transcription factors, already associated with tumor
development and progression, response to treatment, or antitumor response [5–8]. Until
now, in situ tumor immunology has been acknowledged as highly significant for the
prognosis of multiple cancers, even if most of the research in the field of esophageal cancer
has focused on ESCC, and marginal attention has been paid to the EAC [8,9]. To bridge
this gap, we deeply examined the immune infiltrate of three EAC tumor tissues and their
matched non-tumor tissues obtained from three patients who underwent surgery for EAC
resection. In parallel, we performed total transcriptome profiling by RNA sequencing
on a large cohort of EAC patients to determine the prognosis and other factors related to
the clinical course of the disease. Finally, the expression profiles of immune markers and
transcriptional signatures identified within our cohort were utilized to stratify a larger
cohort of TCGA EAC patients. A strong association with their prognosis was demonstrated,
thereby enabling the identification of immunological prognostic biomarkers linked to
tumor progression, recurrence, and survival. These findings shed light on the possibility
of incorporating immunotherapy strategies, such as immune checkpoint inhibitors and
cancer vaccines, into future potential treatment plans for EAC, and emphasize the potential
of new cancer treatments to improve patients’ outcomes.

2. Materials and Methods
2.1. Patients’ Recruitment, Tissue Collection, and Experimental Workflow

After obtaining appropriate consent, a total of 26 patients who underwent surgery
for esophageal adenocarcinoma at the Esophagogastric Surgery Unit at IRCCS Istituto
Clinico Humanitas from January 2020 to December 2020 were enrolled in this study. For
each patient, tumor (T) samples and their matched adjacent tissues (NT) were acquired.
Single-cell analyses were performed on patients that did not have any kind of neoadjuvant
chemoradiotherapy treatment preceding surgery (untreated patients) to avoid any bias in-
troduced by the therapy; both patients treated with neoadjuvant chemoradiotherapy before
surgery (treated patients) and without treatments were chosen for total RNA sequencing
analyses. T and NT tissues were processed for single-cell RNA sequencing and total RNA
sequencing according to specific protocols. The complete list of patients and their relative
clinical data are reported in Supplementary Table S1.

2.2. Single-Cell Sequencing: Cells’ Preparation, Library Preparation, and Sequencing

ScRNA-seq of the immune infiltrate in EAC was performed to unravel tissue hetero-
geneity, enabling a complete definition of all the immune cell subpopulations pervading
the tumor site and their gene expression alterations. After surgery, tumor and non-tumor
tissues were dissociated to obtain a single-cell suspension with the Tumor Dissociation
Kit, human (Miltenyibiotec); cells were then stained with live dead eFluor780 and CD45+

antibody and sorted with FacsAria III (BD Biosciences, San Jose, Ca, USA). An average
of 7000 cells were loaded into the Chromium controller System (10X Genomics) for gel
bead emulsion generation and libraries were prepared using the Single-cell 3’ library
preparation approach, according to the manufacturer’s instructions (ChromiumTM Sin-
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gle Cell 3’ Reagent Kits v2-rev C, 10X Genomics, Pleasanton, CA, USA). Libraries were
sequenced on the Illumina NextSeq550 platform and an average of 40.000 reads per single
cell was obtained.

2.3. Analysis of Single-Cell RNA Sequencing Data

The reads obtained from the sequencing of the tumor and non-tumor biopsies were
mapped to the reference genome GRCh38 using the CellRanger Software version 3.1.0
(10x Genomics). The raw counts were concatenated and then filtered using the Scater
(v1.28.0) [10] and DropletUtils (v1.20.0) [11] packages. We used the emptyDrops function
to remove all the droplets with a false discovery rate greater than 0.05, and all cells with a
number of UMIs, detected genes or a percentage of mitochondrial and ribosomal genes that
were outliers compared to the median absolute deviation. All genes that did not have a
minimum of 10 counts in the entire dataset were removed. Cells that were imputed arising
from doublets through the doubletCells function were excluded. After the quality filter,
cells were analyzed using the Seurat version 4.0.1 package [12,13]. The gene counts of
each cell were normalized by dividing them to the library size of their cell; counts were
converted in CPM and subsequently log transformed. The cells of the different patients
were then further filtered selecting only cells with at least one PTPRC gene count and
integrated with four patients’ scRNA-seq data from Croft et al. [14] into a single dataset via
canonical correlation analysis (CCA) workflow. Subsequent analyses were conducted using
only the 2000 most highly variable genes in the dataset. Principal Component Analysis
(PCA) was used for dimensionality reduction, selecting the first 15 dimensions for CD45+

and the first 40 for CD3+ cells, followed by clustering using a graph-based clustering
approach [15]; for clustering analysis, the resolution was set at 0.6 for CD45+ and 0.7
for CD3+ cells. Afterward, Uniform Manifold Approximation and Projection (UMAP)
was used for two-dimensional visualization of the resulting clusters. The clusters were
annotated by analyzing the expression of a panel of cellular-type marker genes. The T
cell sub-population was obtained by selecting the T cell clusters, CD8+ and CD4+, from
the CD45+ cell clustering and performing the previous analysis step. Subsequently, the
annotated clusters of the T cell subtypes were obtained with the same methodology as
those obtained with all the immune infiltrates. The differentially expressed genes among
each T cell cluster, extrapolated from tumoral and non-tumoral tissues, were calculated
with the normalized count matrix with the MAST algorithm, after the removal of ribosomal
and mitochondrial genes. To compare our EAC single-cell RNA data with the publicly
available ESCC dataset, we downloaded raw data from GSE145370 [16] and we performed
an integrated analysis of the two datasets using the reciprocal-PCA integration workflow
of the Seurat Package.

2.4. Identification of TF Regulons

Single-cell regulatory network identification was characterized using the Python 3.7.3
package pyscenic [17]. Putative target genes for a supplied list of human transcription
factors [18] were identified based on co-expression using the GRNBoost2 algorithm [19]. Co-
expression modules were filtered using cis-regulatory motif analysis (RcisTarget) and only
modules enriched for putative direct-binding targets of the corresponding transcription
factor were retained. Where multiple modules were identified for a TF, these were combined
to result in a single regulon per TF. Finally, cells were scored for the activity of each TF
regulon using the AUCell algorithm and results were visualized using the clustermap
function from the Seaborn Python package.

2.5. Polychromatic Flow Cytometry

Frozen samples were thawed in a RPMI-1640 medium supplemented with 10% FBS
(Sigma-Aldrich, St. Louis, MO, USA), 1% penicillin-streptomycin and 1% Ultra-glutamine
(both from Lonza), and 20 µg/mL DNase I from bovine pancreas (Sigma-Aldrich). After
extensive washing with PBS 1× without calcium and magnesium (Sigma-Aldrich), cells
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were immediately stained with the combination of monoclonal antibodies (mAbs) listed in
Supplementary Table S3. Intracellular detection of GZMK, Ki67, CD3, GZMB, and BATF
was performed following the fixation of cells with the FoxP3/transcription factor staining
buffer set (eBioscience, San Diego, CA, USA) according to the manufacturer’s instructions
and by incubating with specific mAbs for 30 min at 4 ◦C. The flow cytometry procedures
for high-dimensional single-cell panel development have been previously described [20].
All data were acquired using the FACS Symphony A5 flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA) equipped with 5 lasers (UV, 350 nm; violet, 405 nm; blue, 488 nm;
yellow/green, 561 nm; red, 640 nm; all tuned to 100 mW, except for UV, which was tuned to
60 mW). Flow cytometry data were compensated in FlowJo by using single stained controls
(BD Compbeads incubated with fluorescently conjugated antibodies) [21].

2.6. Computational Analysis of Flow Cytometry Data

Flow Cytometry Standard (FCS) 3.0 files were imported into FlowJo software (version 9)
and analyzed by standard gating to remove aggregates and dead cells and identify CD45+

CD3+ T cells. A total of 20,000 CD3+ T cells per sample were subsequently imported in FlowJo
(version 10), biexponentially transformed, and exported for further analysis in Python (version
3.7.3) by a custom-made pipeline of PhenoGraph (v1.5.7) [22] where we modified the Linux-
community and the core.py script of PhenoGraph package in order to fix the seed to “123456”).
Tumoral and peritumoral samples were labeled with a unique computational barcode for
further identification and converted into comma-separated (CSV) files and concatenated in a
single matrix by using the merge function of the pandas package. The K value, indicating the
number of nearest neighbors identified in the first iteration of the algorithm, was set at 500.
The data were then reorganized and saved as new CSV files, one for each cluster, which were
further analyzed in FlowJo to determine the frequency of positive cells for each marker and
the corresponding median fluorescent intensity (MFI). Subsequent metaclustering of iMFI
values was performed using the gplots R package (v3.1.3). UMAP was obtained by UMAP
Python package; all scripts mentioned above are available at https://github.com/luglilab/
Cytophenograph (accessed on 30 June 2024).

2.7. Analysis of Bulk RNA Sequencing Data

RNA was extracted with RNeasy Mini kit (QIAGEN, Hilden, Germany); libraries
were prepared with the SMARTer Stranded Total RNA Sample Prep Kit-HI Mammalian
(Takara Bio USA, San Jose, CA, USA) and sequenced on the Illumina NextSeq550 platform
by generating at least 80 million reads 75 bp paired-end per sample.

The raw reads were mapped against the reference genome GRCh38 with STAR
Aligner [23] and the count table was generated using FeatureCounts [24]. Genes with less
than 10 raw counts in 1% of the samples or with hypervariable expression were removed
before normalization. Normalization was calculated by variance-stabilizing transformation
(VST) using the DESeq2 package (v1.40.2) [25]. We excluded all biopsies of tumor tissue
that had a Pearson correlation coefficient with their respective tumor biopsy greater than
0.85 from the analysis. Subsequently, surrogate variables that generated non-biological
variance among samples were identified. The filtered matrix was used for the differentially
expressed gene identification. The surrogate variables identified using the R package
“DaMiRseq” [26] were indicated in the design slot of the DESeqDataSet object: in this way,
the counts were corrected from the batch effect before the identification of differentially
expressed genes. The tumor vs non tumor signature is defined by the differentially ex-
pressed genes with a P-adjusted value lower than 0.05. This signature was used for pathway
enrichment analysis and to identify potential biomarkers or pharmaceutical targets using
the Ingenuity Pathway Analysis (IPA) software (Ingenuity H Systems, www.ingenuity.com).
The top 100 upregulated genes outlined by the IPA analysis defined the IPA signature.
Finally, to verify whether some of these genes were associated with an early prognosis
(progression or relapse of tumor) we repeated the analysis of the RNA-seq data among the
tumor biopsies of the patients for whom the early prognosis was known and who had a
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Pearson coefficient greater than 0.85 with their class, positive or negative early prognosis
(Positive or Negative) using only the previously identified upregulated gene counts in
tumor biopsies compared to non-tumor biopsies. The resulting differentially expressed
genes with a p-value lower than 0.05 were selected as early prognosis signatures (EPS).

2.8. SODEGIR Analysis

We integrated our total RNA-seq data with CNV data of 87 esophageal adenocarcinoma
patients from the TCGA database and PREDA package [27] to verify whether there are
genomic regions that are overexpressed or inhibited in our tumoral tissue samples. The matrix
of the total RNA-seq counts normalized and corrected with the Damirseq package was used
to produce a GE score along chromosomes 1–22 using the statistic option within the PREDA
package between the expression values of the T biopsies and the NT biopsies. The average of
the CNA values for each gene of the TGCA data was calculated and subsequently the log2
was calculated; finally, these data were used within PREDA to calculate a CN score along the
genome. Chromosomal regions showing a GE score above or below a threshold of +/− 0.5
with a q-value < 0.01 and a CN score, according to the GE score, above or below a threshold
of +/− 0.1 with a q-value < 0.01 were classified, respectively, as GAIN or LOSS.

2.9. Survival Analysis

The IPA signature, the EPS, and the 37 genes of the DEGs that fall into GAIN regions
were used to verify the existence of an association between these and the prognosis of
78 patients with esophageal adenocarcinoma. The ESCA court of TCGA, using RNA-seq
data and the present clinical information, were used to construct Kaplan-Meier curves
through the survival package (v3.5-7) [28] and survminer R package (v0.4.9).

For each signature, a score was obtained for each of the 78 patients who were divided
into two groups based on a threshold. For bulk RNA-seq, the threshold to separate the
patients in two cohorts was chosen between the first (25% of the patients) and the third
quartile (75%). For scRNA-seq signatures, the patients were splitted by median of the
score signatures. The signature scores were calculated as the average of the logTPMs of the
signature gene counts.

Furthermore, the association between the survival of the patients and their content of
cell types, that we found in our single-cell analysis, was analyzed. The bulk RNA-seq data
from the 78 TCGA patients were normalized for the T cell content to evaluate the effective
impact of our scRNA-seq signature. Then, the top 50 genes differentially expressed by
each cell type were used to estimate the cell type content in the bulk RNA-seq data of each
sample (Supplementary Table S2).

The p-values for all curves were calculated with the log-rank test. The EPS and
single-cell signatures were tested as overall survival across 30 months, the top 100 IPA
biomarker DEGsS and DEGsS in GAIN regions were tested across 60 months. For the
correlation between the survival and clinical parameters of patients with signatures, the
TNM parameters, when available for the patient, were reorganized as follows: staging
N and M other than N0 and M0 were all merged into N1 and M1; for the T staging, the
pairs T1 and T2 and T3 and T4 were merged with each other; and the age of the patients
was divided into two categories based on whether the patients were over or under 65.
The R survminer package was used for the cox regressions and for the chi-square tests
and for the odd ratios, the function oddratio.fisher from the R epitools package was used.
The association between the age of the patients and the signatures was tested with the
wilcox.test by the compare_means function of the ggpubr package.

3. Results
3.1. Single-Cell Level Analysis of Esophageal Adenocarcinoma Immune Infiltrate

For scRNA-seq experiments, the entire workflow of our study is shown in Figure 1A,
tumor (T) and matched non-tumor (NT) biopsies from three patients who did not receive
any pharmacological treatment were collected and analyzed. We then integrated our data
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with scRNA-seq data from Croft et al. [14], selecting only CD45+ cells, including four
treatment-naïve patients for a total of seven patients analyzed to obtain a larger cohort
of EAC. Uniform Manifold Approximation and Projection (UMAP) of T and NT EAC
immune cells outlined a differential enrichment of those cells according to the tissue of
origin (Figure 1B) and bioinformatic analysis was able to define eight clusters of CD45+

cells. In detail, EAC immune infiltrate was composed of myeloid, mast, plasma, NK, B,
CD8+ T, and CD4+ T cells (Figure 1C). The dot plot in Figure 1D shows the expression of
marker genes used for the cell type annotation.
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Figure 1. CD45+ cells annotation. (A) Schematic representation of the experimental workflow.
(B) UMAP visualization of CD45+ clusters according to their tissue of provenance. (C) UMAP
visualization of annotated CD45+ cell clusters. Annotations were made considering the differential
expression of the main cell type gene markers. (D) DotPlot of the expression level of gene markers
specific for each cell type. (E) Barplots of the relative abundance of cell clusters according to their
tissue of provenance; the bars represent the mean of the frequencies while the error bar represents
the standard deviation; p-values were computed by Mann-Whitney U test.
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When comparing the percentage frequencies of CD45+ cells across EAC samples based
on their tissue of origin, we observed that tumor samples generally exhibited an enrichment
of T-infiltrating lymphocytes (TILs), specifically CD4+ T cells and NK cells, compared to
non-tumoral samples (Figure 1E). Furthermore, NT tissues showed a higher presence of B
cells and CD8+ T cells, whereas T tissue resulted in enrichment in the other identified CD45+

cell types. To assess whether the different subsets of T cells could be differentiated according
to a specific transcriptional program, we employed python single-cell regulatory network
inference and clustering (pySCENIC) analysis on our single-cell dataset for CD8+ and CD4+

cells infiltrating tumor tissue. This analysis revealed several active regulons that confirm the
differentiation and activation of these cell types (Supplementary Figure S1). Additionally,
we integrated the dataset of the seven EAC patients with the scRNA-seq data of ESCC from
Zheng et al. [16]. We identified the same cell types reported in Supplementary Figure S2A,
albeit with differences in the relative abundances between the two types of esophageal
cancer (Supplementary Figure S2B). In particular, EAC seems to be characterized by a
greater number of tumor-infiltrating CD4+ T cells, while ESCC shows a marked enrichment
of myeloid cells.

3.2. Dissection of T Cells’ Heterogeneity in Esophageal Adenocarcinoma

The heterogeneity of the T cells’ cluster was explored by reanalyzing the subset of
CD45+ CD3+ cells. As depicted in Figure 2A, the sub clustering of only T cells revealed eight
distinct clusters, which were manually annotated based on their gene marker expression
(Figure 2B). The markers’ genes for each cell type were chosen among the differentially
expressed genes (DEGs) identified through researching the literature. The DEGs among
CD45+ cells originating from tumor tissue are reported in Supplementary Table S2. We
outlined three clusters with higher frequency in tumor tissues (Supplementary Figure S3):
T regulatory (Treg) cells, Mucosal Associated Invariant T (MAIT) and exhausted CD8+

cells. In contrast, Temra CD8+ were more abundant in NT tissues. CD4+ naïve, CD4+

Tcm, CD8+ Tcm and CD8+ Tem cells showed no differences in abundance between tumor
and non-tumor tissues. With reference to annotation, the CD8+ Tem cluster showed high
expression of cytotoxic markers such as granzyme K (GZMK), granzyme A (GZMA),
granzyme B (GZMB), granzyme H (GZMH), and perforin 1 (PRF1), but low expression
level of CCR7. Naïve CD4+ T cells were characterized by the expression of IL7R and the T
cell differentiation markers SELL and CCR7. The subset of cells expressing CCR7, SELL,
and FAS was defined as CD4+ Tcm. Treg cluster was characterized by the expression of
CD4, CD25 (IL2RA), BATF, and FOXP3. Cells within the CD8+ Temra cluster were also
found to be widely distributed in NT tissue; they exhibited enrichment in cytotoxic markers
including PRF1, GZMA, GZMB, GZMH, although with low expression of the CD8+ Tem
gene marker GZMK. Additionally, these cells also expressed inflammatory markers like
CCL5 and CCL4. CD8+ cells with lower expression of cytotoxic markers but higher levels
of IL7R were annotated as CD8+ Tcm. The MAIT cluster was defined by the expression
of the cytotoxicity markers CD61 (KLRB1), IL7R, and CCL5. We then analyzed the highly
differentially expressed transcripts between tumor and non-tumor tissue in each CD8+ T cell
subpopulation (Supplementary Table S2). A strong fold change in the average expression
level of the main differentially expressed gene (DEG) markers of each CD3+ cell cluster was
observed when comparing tumor and non-tumor tissues (Figure 2C). As expected, CD8+ T
cell-infiltrating tumor tissues showed high levels of cytotoxic markers and metallothionein,
which are involved in maintaining homeostasis and regulating apoptotic and autophagy
pathways. Interestingly, at the gene expression level, TILs from tumor and non-tumor
tissues displayed distinct profiles. This allowed us to define a differential transcriptome
profile signature for each CD8+ subcluster in tumor and non-tumor tissue. We then focused
our analysis on TILs within the tumor tissues. After defining their specific transcriptional
signature, we used it for subsequent analyses. To validate our findings with a protein-
based approach, we designed a 22-parameter polychromatic flow cytometry panel using
the signature markers previously identified from our single-cell analysis. This panel was
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equipped to detect markers of activation (CD38, CD45RO, CD127, HLA-DR), exhaustion
(CD39), proliferation (KI67), and metabolic activity (GZMB, GZMK), which were identified
at the transcriptomic level by the single-cell sequencing analysis in both tumoral and non-
tumoral tissues. This flow cytometry panel was specifically designed to be representative
of the cell clusters we previously described and outlined in Figure 2A. Figure 2E shows the
differential expression of the markers used to identify these clusters. The UMAP shows
the dimensional reduction in the cells according to the tissue type (Figure 2D, left panel)
and the CD8+ or CD4+ T cell phenotype (Figure 2E, central panel). We then focused our
attention on CD8+ T cells: using PhenoGraph, we identified seven different CD8+ clusters
(Figure 2D, right panel).
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Figure 2. T cell annotation and differential expression analyses. (A) UMAP visualization of annotated
T cell clusters. (B) Violin plot with the average expression of cell type marker genes used for
annotation. (C) Differential gene expression in each T cell subcluster comparing tumor and non-
tumor samples. (D) UMAP analyses of the separation of the cells according to the tissue type (left
panel), the T cell type (central panel), and the annotation of each subcluster (right panel). (E) Dot
plot showing the cluster identification according to the MFI of the antibody, the frequency of positive
cells (left panel), and the frequency of each cell population according to the tissue of origin (tumor
or non-tumor tissue, right panel). Each cluster was identified considering the mean fluorescence
intensity (MFI) of the antibody and its frequency in each tissue type.
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Among the memory T cell subsets, we distinguished between resident and effector cells.
TRM cells showed high expression of residency markers such as CD39+ and CD103+, and
variable levels of the proliferation marker KI67+. Interestingly, this subset appeared to be
exclusive to tumor tissue. The remaining effector cells were characterized by the memory
marker CD45RO. Notably, two subclusters expressed the tissue residency marker CD69, and
were labeled as CD127hi and CXCR6+. The CD127hi was characterized by high expression of
the differentiation marker CD127, encoded by the Interleukin 7 receptor (IL7Ra). The CXCR6+

subset exhibited high levels of the exhaustion marker CD39 along with variable levels of the
activation marker CD38, being more prevalent in tumor cells. The effector subset consisted of
two clusters: TTE and TTEKI67+. Both expressed high levels of the effector molecule GZMB,
but TTEKI67+ also displayed high expression of KI67 and the activation markers HLA-DR
and CD38. At last, we identified CTLs cells with a cytotoxic phenotype characterized by
GZMK expression and the effector differentiation marker CD127. Detailed information about
the antibodies used for the panel can be found in Supplementary Table S3.

We then integrated our EAC dataset with a public ESCC dataset to investigate the
potential similarities among the TILs of the two types of esophageal cancer. The distribution
of EAC CD45+ cells mostly overlapped with the one of ESCC. As expected, the abundance
of CD45+ cells differed due to the diverse sample sizes and cancer types (Supplementary
Figure S2A). Additionally, UMAP identified 12 clusters using a panel of markers selected
from the highly differentially expressed genes, highlighting the similarity of CD45+ cells
between EAC and ESCC (Supplementary Figure S2B). The complete list of genes used for
the annotation is provided in Supplementary Figure S3. Bar plots showing the differential
composition of EAC and ESCC tissues are presented in Supplementary Figure S2C.

3.3. Whole-Transcriptome Profiling of Esophageal Adenocarcinoma Tissues for the Identification of
a Prognostic Signature

Total RNA sequencing was performed on a wider cohort of patients compared to
the one used for single-cell sequencing. For this task, we also included patients who had
undergone neoadjuvant therapies before surgery. In total, RNA from 55 tissue samples was
extracted and subsequently sequenced. Principal Components Analysis (PCA) confirmed
the segregation of the samples according to the tissue of origin: PC1 separated tumor and
non-tumor tissues, explaining the 63.91% of the variance. The distance measurement of
the centroids yielded a statistically significant p-value (p-value < 0.001) (Figure 3A). In
Figure 3B, a hierarchically clustered heatmap shows the topmost significant DEGs between
tumor and non-tumor samples, indicating a clear separation in the expression profiles of the
two tissue types. We then investigated whether a specific transcriptional profile could be
associated with an early prognosis of EAC. Figure 3C shows the PCA plot with a significant
separation of the samples according to the postoperative course (p-value < 0.001).

In Figure 3D, the top differentially expressed genes between positive and negative
postoperative courses are shown in a hierarchically clustered heatmap, revealing a clear
separation between the two groups and identifying a specific transcriptional profile associ-
ated with relapse/progression. Ingenuity Pathway Analysis (IPA) of upregulated genes in
EAC tumor samples was then performed to evaluate the enrichment of markers involved
in tumor onset and/or progression or known drug targets. As shown in Figure 3E, a wide
panel of gene markers associated with diagnosis, disease progression, low drug efficacy,
poor prognosis, or low response to therapies was outlined. As expected, pathway enrich-
ment analysis of genes upregulated in tumor samples revealed enrichment in the pathways
involved in tumorigenesis (Supplementary Figure S4). Finally, we integrated our total RNA
sequencing data with Copy Number Variation (CNV) data from the TCGA database using
SODEGIR analysis, highlighting regions of chromosomal instability previously associated
with esophageal cancer [29–31] (Figure 3F). Then, we merged data from SODEGIR and
IPA analyses, and identified seven genes (TREM1, PGC, AGR2, AGR3, SFRP4, INHBA and
COL4A1) that were already recognized as IPA biomarkers (Supplementary Table S4). The
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upregulated DEGs, which were located inside the GAIN genomic regions, were used to
construct a signature used for subsequent analyses.
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Figure 3. Total RNA expression analysis of tumor and non-tumor esophageal tissues. (A) PCA of
bulk RNA-seq samples visualized according to the tissue of origin (*** p-value < 0.001). (B) Heatmap
of differentially expressed genes from total RNA sequencing data comparing tumor and non-tumor
samples (*** p-value < 0.001). (C) PCA of bulk RNA-seq samples visualized according to the early
prognosis. Patients with a bad prognosis could have had either progression or relapse of the tumor.
(D) Heatmap of differentially expressed genes according to early prognosis data. (E) IPA analysis of the
differentially expressed genes in tumor samples after bulk analysis showing the annotated biomarkers
among the top 100 upregulated DEGs. (F) Plot showing GAINs and LOSSes in genomic regions obtained
by SODEGIR analysis of total RNA-seq data integrated with CNV data from TGCA database.
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3.4. Association between the Prognostic Signatures and Patients’ Survival

We used the transcriptional signatures derived from our data analysis to predict
survival in a larger and different cohort of EAC patients. Total RNA-seq data from
tumoral biopsies of 78 EAC patients from the TCGA database were obtained, and sur-
vival prediction was performed. We tested whether the differential signatures could
separate TCGA patients into two groups: one with low expression and one with high
expression of the signatures. We then assessed if the expression levels of the signatures
were associated with different prognoses. We specifically examined the association of
DEGs in GAIN genomic regions, DEGs related to the IPA signature, and those specific to
the early prognosis signature (EPS), with the overall patient survival (Figure 4A). In all
three analyses, the separation of patients according to their prognosis was statistically
significant (p-values = 0.023, 0.031, 0.002, respectively). Patients with higher overall
survival probability (up to 60 months post-surgery) and, thus, a good prognosis, exhib-
ited low expression levels of both DEGs in GAIN genomic regions and IPA biomarkers.
Conversely, patients showing high expression levels of these differential signatures
had a lower overall survival probability, indicating a poor prognosis. Similarly, high
expression of EPS was negatively associated with patient prognosis within the first
30 months post-surgery. Next, we examined survival curves using the signatures of
the T cell subtypes identified in our scRNA-seq analysis, focusing only on the T cells
infiltrating tumor tissues (Figure 4B). Patients with high expression of the CD4+ Tcm
cluster signatures had a good prognosis, showing a high overall survival probability
in the first 30 months post-surgery. Additionally, exhausted CD8+ T cells were able to
stratify patients in our cohort (analyzed with total RNA-seq) for disease-free survival
(DFS) data, suggesting a potential link to treatment success in preventing relapse. In
particular, high expression of these cells seemed to be associated with a poor response
to treatments.

Finally, we investigated whether the transcriptomic signatures derived from this
study could predict patient prognosis alongside established clinical parameters in EAC
diagnosis, such as the TNM staging system and the histological grade of the tumor.
Initially, univariate Cox regression estimated the hazard ratios (HR) for each parameter
independently, revealing correlations and a substantial increase in HR with survival at
30 and 60 months only for TNM N and M factors, and histological grade (Figure 4C).
Subsequently, these factors alongside each expression signature (excluding TNM M to
ensure sufficient event numbers across cohorts over time) were included in a multivariate
Cox regression analysis. Among the signatures, only EPS maintained an association
with a poorer prognosis after adjusting for the other factors (Figure 4D). To understand
the type of correlation with clinical parameters, odds ratios and chi-square tests were
performed, demonstrating independence from clinical parameters through the distinct
associations of the signatures (Supplementary Figure S5). Additionally, the Wilcoxon
test showed no age-related differences between low and high signature cohorts.
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Figure 4. Survival Kaplan-Meier curves of TCGA EAC patients. (A) The first two plots show the
Kaplan-Meier curves with overall survival of TGCA EAC patients at 60 months separated according to
their values of expression of the PREDA signature score, to the values of the DEGs signature reported
from IPA as the biomarkers’ signature score. The last plot shows overall survival of TGCA EAC
patients at 30 months separated according to their values of expression of the EPS score. (B) Kaplan-
Meier curves with the overall survival of TGCA EAC patients at 30 months separated according to
their values of expression of the CD4 Tcm cells signature (on the left) and the disease-free survival
ones of our cohort of total RNA patients separated according to the CD8 exhausted expression score.
p-values were calculated using the log-rank test. (C) Univariate Cox proportional hazards regression
between the signatures, the main available clinical parameters used for the diagnosis of EAC, and the
OS of TCGA patients at 30 or 60 months of follow-up; the size of the dots reflects the hazard ratio,
the color represents the -log(p-value). (D) Multivariate Cox regression analysis of early prognosis
signature with M, N and histological grade parameters (* p-value < 0.05).
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4. Discussion

In this study, we conducted single-cell sequencing and total RNA sequencing analyses
on tumor and matched non-tumor tissues from patients with esophageal adenocarcinoma
(EAC) to characterize immune cell subpopulations and identify gene markers associated
with patients’ clinical outcomes. CD45+ cells infiltrating tumor tissues were analyzed at
the single-cell level, resulting in the identification of eight distinct subpopulations. Further
analysis of T cells revealed eight subclusters with differential gene expression between
tumor and non-tumor tissues.

Bulk total RNA-seq analysis across a larger cohort of patients clearly distinguished
between tumor and non-tumor tissues. Transcriptome analysis focused on tumor samples
enabled stratification of patients based on early prognosis, outlining a panel of DEGs linked
to clinical outcomes. Notably, UGT2B15, previously associated with pathogenesis and prog-
nosis of gastric cancer [32,33] and HEPACAM2, upregulated in patients with poor prognosis
and linked to metastasis in various types of cancer, were highlighted. MMPs, including
MMP-1 and MMP-10, known for their roles in esophageal tumorigenesis, were also found
to be upregulated in tumor samples [34,35]. Conversely, we observed downregulation of
IGKV2D-40, part of an immune-related gene panel for colorectal cancer prognosis.

We performed gene set enrichment and SODEGIR analyses to identify enrichment in
TREM1, PGC, INHBA, and AGR, all of which are involved in cancer-related pathways and
associated with patient prognosis in esophageal carcinomas and premalignant Barrett’s
epithelium [36].

Analysis of EAC patients from the TCGA dataset showed that high expression of
genes located within genomic GAIN regions, as outlined by SODEGIR analysis, correlated
with poor prognosis (Figure 4A). This is consistent with previous studies linking genomic
alterations in EAC to tumor malignancy.

Through gene set enrichment analysis, we identified potential prognostic biomarkers
in EAC, suggesting their utility in predicting patient outcomes. To further validate our
findings, we tested this signature on the TCGA dataset: patients with low expression of the
identified DEGs had a better prognosis within the first 30 months of follow-up. Additionally,
we observed that elevated expression levels of the CD4+ Tcm cluster signature and reduced
expression of the exhausted CD8+ cluster signature reflected differences in the tumor
immune infiltrate composition and were associated with positive treatment outcomes.

We speculate that these immune cell types contribute to the anti-tumor responses, and
the identified differential expression signatures could be used to develop a cytofluorimetric
panel for early detection and the prediction of tumors which are likely to respond favorably.
Overall, our study delineates immune cell subpopulations pervading at the EAC tumor site
and their gene expression profiles, providing insights into the EAC immune landscape and
potential therapeutic targets. Furthermore, these results propose the potential role of novel
immunological biomarkers for predicting EAC prognosis, aiding in the stratification of the
patients for post-surgical outcomes and follow-up or guiding the design of personalized
follow-up programs and decisions regarding adjuvant therapies.

5. Conclusions

In conclusion, this study provides a detailed characterization of immune cell sub-
populations and their gene expression profiles within esophageal adenocarcinoma (EAC)
tissues. The identification of specific transcriptional signatures and differentially expressed
genes linked to clinical outcomes underscores their potential as prognostic biomarkers.
These findings enhance our understanding of the EAC immune landscape and highlight
novel therapeutic targets. The results also propose new immunological biomarkers that
can predict patient prognosis, assist in post-surgical stratification, and inform personalized
follow-up and adjuvant therapy decisions.
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