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Simple Summary: Cancer is a difficult-to-cure disease with high worldwide incidence and mortality.
Among the many changes observed in cancer cells and patient samples is altered glycosylation, a
commonly observed modification of biomolecules such as proteins. These glycan structures can
dictate protein function, and dysregulation of glycosylation can contribute to tumor migration and
metastasis. Thus, manipulation of glycosylation states may be a novel approach to cancer treatment.
One target of the well-known tumor suppressor p53 is FUCA1, encoding alpha-L-fucosidase, which
plays a role in glycosylation, although the exact mechanism linking FUCA1 to cancer is unclear.
Investigation into these glycosylation processes and the mechanisms linking the p53-FUCA1 axis to
cancer development may provide new insights into this disease and suggest new drug targets for
cancer therapies.

Abstract: Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large
part due to drug resistance and disease relapse. Glycosylation, which is a common modification of
cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to
its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation
types and structures regulate the function of biomolecules and are potential targets for investigating
and treating cancer. The link between glycosylation and carcinogenesis has been more recently
revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase
1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of
glycan structures and glycosylation-related enzymes to cancer development. The interplay between
glycosylation and tumor microenvironmental factors is also discussed, together with involvement of
glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth
factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated
pathways. Glycan structures also modulate cell–matrix interactions, cell–cell adhesion as well as cell
migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation
of the mechanistic relationships among glycosylation, related enzymes and cancer progression may
provide insights into potential novel cancer treatments.

Keywords: p53; FUCA1; glycosylation; fucosylation; tumor microenvironment; cell adhesion; tumor
trans-endothelial migration; cell signaling pathways

1. Introduction

In recent years, glycosylation has attracted a lot of research interest because of its
importance in cancer development and diagnosis, as well as potential cancer therapies.
Glycosylation is the enzyme-catalyzed addition of saccharides to biomolecules such as
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proteins, sphingolipids and free-circulating polypeptides [1], and it plays a major role
in modulating cellular functions. Glycosylation can be classified as O- or N-linked, de-
pending on its target [2]. The covalent linking of sugar molecules requires them to be in
a positive energetic state, most commonly provided by sugar nucleotides. Examples of
such sugar nucleotides include uridine diphosphate N-acetylgalactosamine (UDP-GalNAc)
(Figure 1a), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) (Figure 1a), guano-
sine diphosphate mannose (GDP-mannose) (Figure 1b) and guanosine diphosphate fucose
(GDP-fucose) [2–5] (Figure 1c).
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Figure 1. Schematical representation of sugar nucleotide biosynthesis for various types of glycosyl-
ation. (a) Uridine diphosphate N-acetylgalactosamine (UDP-GalNAc), UDP-N-acetylglucosamine 
(UDP-GlcNAc) biosynthesis from glucose via the glycolysis-related hexosamine biosynthesis path-
way (HBP). Other glycolysis-related pathways including the pentose phosphate pathway, aerobic 
glycolysis and oxidative phosphorylation are also depicted. (b) Dolichol-phosphate-mannose (Dol-
P-Man) biosynthesis from Dolichol and mannose. (c) Guanosine diphosphate fucose (GDP-fucose) 
biosynthesis from guanosine diphosphate mannose (GDP-mannose) (de novo synthesis) and free 
cytosolic fucose (salvage pathway). 
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cone type, the resulting glycosylated molecule can be classified as glycoprotein, glycolipid 
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Figure 1. Schematical representation of sugar nucleotide biosynthesis for various types of glycosy-
lation. (a) Uridine diphosphate N-acetylgalactosamine (UDP-GalNAc), UDP-N-acetylglucosamine
(UDP-GlcNAc) biosynthesis from glucose via the glycolysis-related hexosamine biosynthesis path-
way (HBP). Other glycolysis-related pathways including the pentose phosphate pathway, aerobic
glycolysis and oxidative phosphorylation are also depicted. (b) Dolichol-phosphate-mannose (Dol-
P-Man) biosynthesis from Dolichol and mannose. (c) Guanosine diphosphate fucose (GDP-fucose)
biosynthesis from guanosine diphosphate mannose (GDP-mannose) (de novo synthesis) and free
cytosolic fucose (salvage pathway).
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The main cellular compartments where glycosylation takes place include the endo-
plasmic reticulum (ER) and the Golgi apparatus, although some glycosylation can occur
in the cytosol [1]. These glycosyl modifications can take many diverse forms through the
attachment of various types of saccharides, different sugar–sugar and sugar–target linkage
types and the generation of complex branching structures, each of which can potentially
modulate biological function [2]. The tumor suppressor p53 has been shown to inhibit
aerobic glycolysis and protein glycosylation [6]. One target of p53 is FUCA1, which encodes
alpha-L-fucosidase 1, a hydrolase that plays a role in degrading glycan structures [7]. These
observations suggest that characterization of glycan structures and their regulation may
provide novel insights into cancer development.

This review describes the various glycosylation processes, the enzymes involved, and
their relationship with cancer development. We further discuss the roles of glycosylation in
tumorigenesis, progression and metastasis, together with the role of several well-known
cancer-associated cell signaling pathways such as epidermal growth factor receptor (EGFR),
phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and p53 pathways affected
by glycosylation.

2. Cancer and Glycosylation

Glycosylation refers to the process of adding carbohydrates (monosaccharides or
glycans) to a noncarbohydrate molecule, referred to as an aglycone. Depending on the agly-
cone type, the resulting glycosylated molecule can be classified as glycoprotein, glycolipid
or proteoglycan. The addition of various carbohydrates can modulate the structure and
conformation of the target and regulate intermolecular interactions such as cell–cell and
cell–ECM (extracellular matrix) interactions. Accordingly, aberrant glycosylation can result
in the dysregulation of these interactions and potential pathology [1].

Protein glycosylation occurs post-translationally, mostly in the ER and the Golgi
apparatus and sometimes in the cytoplasm or nucleus. Glycoproteins can be further
divided into several subtypes, depending on the linkage site. The two most common
subtypes are N-linked to asparagine (Asn) or arginine (Arg), and O-linked to serine (Ser) or
threonine (Thr) [2].

Depending on the conjugated monosaccharide, O-linked glycans can be of several
types, as follows: O-GalNAcylated mucin (UDP-GalNAc), O-GlcNAcylated glycan (UDP-
GlcNAc) or O-mannosylated glycan (GDP-mannose) (Figure 2a). High expression of
O-glycans has been observed in lung cancer patients and are a consequence of signal trans-
ducer and activator of transcription 3 (STAT3) hyper-activation induced by the PI3K/Akt
pathway, which has been implicated in oncogenesis [8,9]. The generation of truncated
O-glycans, resulting from premature terminal formation, is also associated with cancer
progression [1,2]. Sialylation, a process of covalently adding sialic acids—derivatives of
neuraminic acids—to elongated glycans, is a common step in generating terminal structures
of carbohydrate chains [10]. These antigens are targets for antigen-binding adhesin which
mediates cell–cell interactions [2]. Premature O-glycan truncation often leads to heavy sia-
lylation, which causes an increase in net negative charge and consequent steric hinderance
of cell–cell interaction, and thereby may lead to metastasis [11,12]. Furthermore, O-GlcNAc
transferase (OGT), the enzyme responsible for the initial generation of O-GlcNAcylated
glycans (Table 1), has been linked to carcinogenesis. The translocation of nuclear factor
kappa B (NF-κB) to the nucleus, and consequent transcriptional activity, is modulated by
O-GlcNAcylation [13] (Figure 3). OGT also modulates the function of RNA polymerase II
(Pol II), as O-GlcNAcylation can compete with phosphorylation of regulatory sites in the
enzyme complex [14,15] (Figure 3). The observed elevation of O-GlcNAcylation in cancer
cells may be due to the preference of OGT for unstructured and flexible protein regions,
which have a higher abundance in cancer compared to normal cells [16–20].
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Figure 2. Representative glycans common in protein glycosylation. (a) O-linked (mucins, O-Glc-
NAcylated and O-mannosylated) glycosylation. Core structures of O-GalNAcylated mucins consist 
of Thomsen-nouveau (Tn) antigen, Thomsen–Freidenreich antigen (TF antigen or T antigen or core 
1), core 2, core 3, core 4 and sialyl-Tn (STn). After adding the first GalNAc to serine/threonine (S/T), 
this monosaccharide-linked structure is termed the Tn antigen. If galactose is added to the Tn anti-
gen, it will result in the formation of core 1. If a sialic acid is attached to Tn, a terminal structure STn 
is formed. O-GlcNAcylation of proteins is balanced between O-GlcNAc transferase (OGT) and O-
GlcNAcase (OGA). O-mannosylation contains the major structures of coreM0, coreM1, coreM2 and 
coreM3. Linkage between GlcNAc and mannose differs CoreM1 (β1-2 attachment) and CoreM3 (β1-
4 attachment) structures. (b) Asparagine (N)-linked (N-GlcNAcylated) glycosylation. Mature N-gly-
can precursor is formed from the Man3GlcNAc2 core into oligomannose, complex and hybrid gly-
cans. Extension by the Galβ1-4GlcNAc building block (LacNAc sequence) or GalNAcβ1-4GlcNAc 
building block (LacdiNAc sequence) is commonly observed in glycans. (c) Terminal glycan struc-
tures (Lewis antigens). Common precursors of Type 1 and Type 2 chains are synthesized by a β1,3-
GlcNActransferase which catalyzes the attachment of β-GlcNAc block onto glycans and glycolipids 
(represented by R). Attachment of the outermost galactose defers Type 1 (β1-3 attachment) and Type 
2 (β1-4 attachment) glycans. From Type 1 and Type 2 backbones, Lewis antigens, assisted by fuco-
syltransferases (FUTs) and sialyltransferases, are differentiated into Leb, Lea, SLea, Ley, Lex and SLex. 

Figure 2. Representative glycans common in protein glycosylation. (a) O-linked (mucins, O-
GlcNAcylated and O-mannosylated) glycosylation. Core structures of O-GalNAcylated mucins
consist of Thomsen-nouveau (Tn) antigen, Thomsen–Freidenreich antigen (TF antigen or T antigen or
core 1), core 2, core 3, core 4 and sialyl-Tn (STn). After adding the first GalNAc to serine/threonine
(S/T), this monosaccharide-linked structure is termed the Tn antigen. If galactose is added to the
Tn antigen, it will result in the formation of core 1. If a sialic acid is attached to Tn, a terminal
structure STn is formed. O-GlcNAcylation of proteins is balanced between O-GlcNAc transferase
(OGT) and O-GlcNAcase (OGA). O-mannosylation contains the major structures of coreM0, coreM1,
coreM2 and coreM3. Linkage between GlcNAc and mannose differs CoreM1 (β1-2 attachment) and
CoreM3 (β1-4 attachment) structures. (b) Asparagine (N)-linked (N-GlcNAcylated) glycosylation.
Mature N-glycan precursor is formed from the Man3GlcNAc2 core into oligomannose, complex and
hybrid glycans. Extension by the Galβ1-4GlcNAc building block (LacNAc sequence) or GalNAcβ1-
4GlcNAc building block (LacdiNAc sequence) is commonly observed in glycans. (c) Terminal glycan
structures (Lewis antigens). Common precursors of Type 1 and Type 2 chains are synthesized by a
β1,3-GlcNActransferase which catalyzes the attachment of β-GlcNAc block onto glycans and gly-
colipids (represented by R). Attachment of the outermost galactose defers Type 1 (β1-3 attachment)
and Type 2 (β1-4 attachment) glycans. From Type 1 and Type 2 backbones, Lewis antigens, assisted
by fucosyltransferases (FUTs) and sialyltransferases, are differentiated into Leb, Lea, SLea, Ley, Lex

and SLex.
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enhances its nuclear localization and transcriptional activity. OGT also adds O-GlcNAc to the C-
terminal domain (CTD) of RNA polymerase II (Pol II), which competes with phosphorylation at the 
same sites and can switch Pol II between the pre-initiation and the elongation states. 
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Figure 3. Examples of O-GlcNAc transferase (OGT) involvement in the regulation of various signaling
pathways. OGT catalyzes the addition of O-GlcNAc to nuclear factor kappa B (NF-κB), which
enhances its nuclear localization and transcriptional activity. OGT also adds O-GlcNAc to the
C-terminal domain (CTD) of RNA polymerase II (Pol II), which competes with phosphorylation at
the same sites and can switch Pol II between the pre-initiation and the elongation states.

N-glycosylation serves to localize and direct proteins to secretory pathways, to track
proteins within cells, and to regulate cell signaling [21–24]. A diversity of N-glycan glyco-
forms (Figure 2b) are involved in cellular and disease processes [25,26]. These processes
can be influenced by N-contained side chain exposure, changes in protein conformation
and the availability of glycosidase and glycosyltransferases inside the respective subcom-
partments [24]. N-glycosylation is frequently observed on receptors involved in cellular sig-
naling pathways such as the EGFR pathway, and the biological outcome of these pathways
is significantly influenced by the extent of N-glycosylation [23], including an association of
N-glycosylation with carcinogenesis.

Glycan extension can also be terminated by special structures such as Lewis antigens
(Lea, Leb, SLea, Lex, Ley and SLex) (Figure 2c). Overexpression of Lewis antigens and the
resulting loss of cellular adhesion have been observed in cancer samples. For instance,
SLea expression has been used to monitor patient responses to cancer therapy, as detection
of SLea by assay is a clinically approved cancer-associated marker [2]. SLex, on the other
hand, has been implicated in mediating cell–cell adhesion as ligands for lectins, and can
contribute to tumor cell migration and metastasis when dysregulated [2].

Glycosylated proteins play a role in various cellular processes predominantly as
secreted and cell-surface proteins. These aberrant glycan structures can disturb receptor–
ligand binding and cell–cell adhesion and thereby skew cellular signaling pathways
toward conditions favoring carcinogenesis, invasion and metastasis [27–36]. As such,
cancer-associated glycosylation patterns and expression of glycosylation-related enzymes
could serve as potential biomarkers for cancer detection and as potential drug targets for
cancer therapeutics.
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Table 1. Summary of major glycosylation-related enzymes together with their enzymatic functions,
implication in glycosylation process and cancer indication.

Gene Enzyme Mechanism of
Action

Glycosylation
Process Cancer Indication Reference

OGT

O-N-
acetylglucosamine

(O-GlcNAc)
transferase

Addition of
GlcNAc to

serine/threonine
(Ser/Thr)

O-GlcNAcylation
initiation

Transcription; cancer
epigenetics; cell

signaling;
carcinogenesis

[37]

OGA O-GlcNAcase
Removal of

GlcNAc from
Ser/Thr

DeGlcNAcylation
of O-glycan

Transcription; cancer
epigenetics; cell

signaling;
carcinogenesis

[37]

FUT1 Fucosyltransferase 1 α1,2-
Fucosyltrasferase

Lewis antigen
Leb/y synthesis

Cell proliferation;
metastasis; invasion;

angiogenesis
[38,39]

FUT2 Fucosyltransferase 2 α1,2-
Fucosyltrasferase

Leb/y antigen
synthesis

Cell migration;
invasion; cancer

progression
[38,39]

FUT3 Fucosyltransferase 3 α1,3/4-
Fucosyltrasferase

Lea/b/x/y, SLea/x

antigen synthesis

Cancer progression;
poor prognosis;

Epithelial-to-
mesenchymal

transition (EMT)

[38,39]

FUT4 Fucosyltransferase 4 α1,3-
Fucosyltrasferase

Lex, SLex antigen
synthesis

Cell proliferation;
anti-apoptosis;

multidrug
resistance (MDR)

[38,39]

FUT5 Fucosyltransferase 5 α1,3-
Fucosyltrasferase

SLex antigen
synthesis

Cell proliferation;
metastasis [38,39]

FUT6 Fucosyltransferase 6 α1,3-
Fucosyltrasferase

SLex antigen
synthesis

Cell proliferation;
metastasis; MDR [38,39]

FUT7 Fucosyltransferase 7 α1,3-
Fucosyltrasferase

SLex antigen
synthesis

Cell proliferation;
anti-apoptosis [38,39]

FUT8 Fucosyltransferase 8 α1,6-
Fucosyltrasferase

Core fucosylation
of N-glycans

Cell proliferation;
metastasis; MDR;
poor prognosis

[38,39]

FUT9 Fucosyltransferase 9 α1,3-
Fucosyltrasferase

Lex antigen
synthesis

Cancer stemness; cell
proliferation; MDR [38–40]

FUT10 Fucosyltransferase 10 α1,3-
Fucosyltrasferase

Core fucosylation
of N-glycans

Not yet observed
in human [39,41]

FUT11 Fucosyltransferase 11 α1,3-
Fucosyltrasferase

Core fucosylation
of N-glycans

Not yet observed
in human [39,41]

POFUT1/FUT12 Protein
O-fucosyltransferase 1

Transfer fucose to
Ser/Thr O-Fucosylation

High expression in
cancer samples;

invasion;
differentiation

[39,42]

POFUT2/FUT13 Protein
O-fucosyltransferase 2

Transfer fucose to
Ser/Thr O-Fucosylation

High expression in
cancer samples; poor
prognosis; invasion;

differentiation

[39,42,43]

FUCA1 alpha-L-fucosidase 1 Removal of
attached fucose Defucosylation Cell proliferation;

patient survival [7,39]
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Table 1. Cont.

Gene Enzyme Mechanism of
Action

Glycosylation
Process Cancer Indication Reference

FUCA2 alpha-L-fucosidase 2 Removal of
attached fucose Defucosylation

High expression in
cancer samples;
poor prognosis

[39]

ST6GALNACs

α-N-
acetylgalactosaminide

(GalNAc) α-2,6-
sialyltransferases

α6-Sialylation of
O-GalNAc

Terminal
sialylation

Sialyl-Thomsen-
nouveau (STn)

overexpression; cancer
prognosis marker; cell

proliferation;
migration;

cell adhesion

[2,44]

ST3GALs ST3 β-galactoside α-
2,3-sialyltransferases

α3-Sialylation of
galactose

Terminal
sialylation

O-glycan truncation;
metastasis; invasion;

cell proliferation;
cancer

prognosis marker

[2,44]

GMDS GDP-mannose-4,6-
dehydratase

GDP-mannose-4,6-
Dehydratase

GDP-fucose de
novo synthesis

High expression in
cancer samples;

anti-apoptosis; EMT
[5,45,46]

GFUS

Guanosine
diphosphate fucose

(GDP-L-fucose)
synthase

Synthesis of
GDP-fucose

GDP-fucose de
novo synthesis

Cell–selectin binding;
cell differentiation; cell

proliferation;
extravasation

[47,48]

3. Glycosylation and the Tumor Microenvironment

Not only do cancer cells adapt to grow and survive, but they also alter interactions
within the local microenvironment to promote tumor maintenance and metastasis. Glyco-
sylation plays an important role in these interactions. The tumor microenvironment (TME)
is a complex set of cellular, physical and soluble mediators surrounding the tumor tissue.
These include blood and lymph vessels, endothelial cells and immune cells [49,50] as well
as acellular components such as cytokines and the ECM [50–52]. These cell–stromal interac-
tions can skew the physical and biochemical properties of the TME toward conditions that
favor tumor growth and survival.

Dysregulated cell growth subjects cells within tumor tissue to constant stress, includ-
ing hypoxia (Table 2). The arrangement of blood and lymph vessel surrounding tumors
tends to be disorganized, resulting in poor oxygen penetration into the tumor center [53]. As
a result, tumor cells may shift from oxidative phosphorylation to aerobic glycolysis [54,55]
(Figure 1a). This shift is called the Warburg effect, and it is an adaptation to the limited
oxygen availability that serves to maintain the energy required for cell growth [54]. One
response induced by hypoxia is the activation of hypoxia-inducible transcription factors
(HIFs) and their signaling pathways [56–59]. These HIFs transcriptionally regulate gly-
colysis and glycosylation, although exactly how they alter glycosylation is unclear at
present [60]. Hypoxia causes a shift toward the biosynthesis of glycans with low α2,6-
sialylation and high β1,6-branching, as well as elongation by poly-N-acetyllactosamine
(poly-LacNAc) [61] (Figure 2b). This biased generation of glycans leads to weaker cell
adhesion, which could potentially facilitate metastasis.

Acidification of the TME is another adaptive strategy to promote the growth of tumor
versus normal cells by creating a hostile, low pH extracellular microenvironment [62–65]
(Table 2). TME acidification is attributed to increased aerobic glycolysis and lactate pro-
duction due to the Warburg effect [55]. Additionally, the disorganization of lymphatic
vessels responsible for the degradation of lactic acids also contributes to the lower pH of
the TME [63,66]. Moreover, the accumulation of lactic acids contributes to the synthesis
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of hypoxanthine (a potential oxygen free radical generator) [67], as well as the expression
of the cell-surface CD44 antigen [68]. CD44 antigens, which are themselves glycopro-
teins, function as receptors of proteoglycans (one subtype of glycan) including hyaluronic
acid [2,60,69,70] and chondroitin sulfates [71,72], and these interactions are known to be
tumor-associated [2]. Thus, TME acidification and the consequent alteration in CD44-
mediated cellular interactions provide another example linking glycosylation with cancer
progression and tumor metastasis.

In addition, biological molecules involved in cell–cell and cell–matrix adhesion may
be altered in the TME, influencing endothelial adhesion, cell mobility and metastasis [60]
(Table 3) Altered glycosylation of intercellular adhesion molecule 1 (ICAM1) [73,74], vas-
cular cell adhesion protein 1 (VCAM1) [75] or platelet endothelial cell adhesion molecule
(PECAM1) [76] can influence monocyte rolling and cell adhesion (Table 3). Altered glycosy-
lation of glycoproteins, collagen, glycosaminoglycans (GAGs) and proteoglycans (multi-
GAG chains) residing in the ECM are also potential mediators of cell–matrix interactions [2].

In summary, a hostile TME favors the survival of tumor cells over normal. Glycosyla-
tion plays various essential roles in the establishment of the TME, the adaptation of tumors
to this environment and the downstream consequences of these processes. This involves
altered communication between cells and the extracellular environment, mediated by gly-
cosylated cellular surface receptors and transmembrane proteins. As such, dysregulation
in glycosylation can lead to the loss of cell–cell and cell–matrix contact, which, in turn, can
facilitate cancer cell migration from the primary tumor to distant sites [52].

Table 2. Summary of glycosylation alterations that are induced during tumor microenvironment
establishment and maintenance.

Tumor Microenvironment
Properties Causation Cancer-Promoting Functions Glycosylation Alteration

Hypoxia
• Poor oxygen penetration due to

suboptimal blood and lymphatic
arrangement [53].

• Shift from oxidative
phosphorylation to aerobic
glycolysis [54,55];

• Produces lactate [55,62] to meet
energy requirement in tumor
cells [54].

• Alteration in glycosylation by
hypoxia-inducible factors (HIFs)
[56–59];

• Favors biosynthesis of glycans with
low α2,6-sialylation, high
β1,6-branching and poly-LacNAc
structure [61];

• Promotes galectin-1 production [61].

Low pH

• High level of lactate production
due to Warburg Effect [55];

• Low level of lactate degradation
due to lack of functional
lymphatic vessels [63,66].

• Hostile to normal cells but
favors tumor cell growth
[62–65].

• CD44 production [68];
• CD44–proteoglycan binding

mediated intercellular interactions
[2,69,71].

Table 3. Summary of glycosylated and glycosylation-related molecules that are implicated in tumor
microenvironment establishment and maintenance.

Function Glycosylated & Glycosylation-Related Molecules Cancer Indication

Cell adhesion

• Intercellular adhesion molecule 1 (ICAM1)
glycoforms [73,74];

• SLex antigens [77,78];
• Selectins [79];
• Vascular cell adhesion molecule 1 (VCAM1)

glycoforms [75];
• Platelet endothelial cell adhesion molecule

(PECAM1) glycoforms [76].

Cell rolling, migration and adhesion [73,74];
cancer progression [27–33].

Trans-Endothelial Migration
• Glycosylated epitopes on tumor cells [71,80];
• SLex antigen [27–33];
• ST3Gals [81].

Loss of cell adhesion [60]; cell intravasation,
rolling and extravasation [60]; tumor
metastasis [82–85]; cell migration [86].
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4. p53 and Glycosylation

The gene TP53 codes for the tumor protein p53—the well characterized “guardian of
the genome”—which was originally characterized as a tumor suppressor that activates the
transcription of target genes responsible for repairing DNA damage (Figure 4a). However,
subsequent studies revealed that p53 function is not limited to the DNA damage response
and repair pathways but also extends to the maintenance of energy metabolism [6]. A high
rate of intracellular glycolysis and the acidification of the TME due to lactate accumulation
induce p53 expression and activation, which functions to protect cells from glycolytic
stress [87]. During tumor development, the loss of p53 in cells surrounding the tumors can
further acidify the TME and promote carcinogenesis. Moreover, reactive oxygen species
(ROS) that are produced during mitochondrial respiration via oxidative phosphorylation
are also harmful to cells (Figure 1a) [88,89], and wild-type p53 is upregulated in response to
protect cells from high levels of toxic ROS. However, oncogenic mutation of p53 (mt p53) in
cancer cells abrogates this protective response against ROS, leading to increased oxidative
damage to cells [90].

The inhibition of glycolysis and shift to aerobic metabolism, known as the Warburg ef-
fect, are also known to depend on p53 activity [91]. Thus, the loss of p53 function in various
cancers further promotes aerobic glycolysis [6], a hallmark of cancer cell metabolism [92].
Increased glucose uptake and lactate production from aerobic glycolysis is considered
to be an adaptation of cancer cells to the hypoxia microenvironment created by tumor
growth [55,62]. High energy demand, TME acidification and an increase in ROS production
can induce the expression and activation of normal p53 [87–89]. p53 in turn regulates
energy metabolism by modulating the glycolysis pathways [91]. A main effector of this
regulation is the TP53-induced glycolysis regulatory phosphatase protein (TIGAR), whose
expression is induced by activated p53 (Figure 4b) and which functions to reduce levels
of fructose-1,6-biphosphate, an intermediate of glycolysis [93]. Limiting the abundance
of this substrate results in a reduction in glycolysis, which in turn prevents extensive
production of harmful ROS. In contrast, loss of functional p53 is a profound enhancer of
aerobic glycolysis [94].

Another link between p53 and cellular energy metabolism is seen in the regulation
of NF-κB-dependent transcriptional activity by p53. Mutation of p53 causes enhanced
O-GlcNAcylation of IKK, inhibitor of nuclear factor-κB (IκB) kinase, thereby upregulating
IKK activity and upregulating NF-κB activity (Figure 4b). IKK is composed of the subunits
IKKα and IKKβ, and O-GlcNAcylation of IKKβ occurs at Ser733, which is also the site
of inactivating phosphorylation. O-GlcNAc interferes with phosphorylation at this site,
enhancing IKK activity and promoting the ubiquitination and removal of IκB. This leads
to enhanced NF-κB activation and increased cell survival [95] (Figure 4b). Upregulation
of NF-κB also can promote aerobic glycolysis [96] and drive oncogenesis by enhancing
expression of solute carrier family 2 member 3 (SLC2A3) [97]. O-GlcNAcylation of IKKβ

provides another example of a competition between glycosylation and phosphorylation that
can dictate protein function, similar to the example of Pol II regulation mentioned earlier.

Furthermore, p53 itself can be O-GlcNAcylated (Figure 4b). Studies have demonstrated
that O-GlcNAcylation of p53 occurs at Ser149, and this modification inhibits ubiquitin-
based degradation of p53. Ser149 is proximal to a phosphorylation site at Thr155 and when
O-GlcNAcylated can potentially suppress phosphorylation at Thr155 and thereby decrease
susceptibility to ubiquitination [98] (Figure 4b). Moreover, Thr155 phosphorylation is
necessary for p53 nuclear export mediated by Jun activation domain-binding protein 1
(JAB1) (Figure 4b). Thus, O-GlcNAcylation prevents phosphorylation at Thr155, inhibits
p53 nuclear export, inhibits ubiquitination and consequently increases p53 half-life in
cells [99,100]. Thus, the p53 protein, which previously has been characterized as a DNA
damage response factor, is also implicated in glycosylation. p53 not only modulates
glycosylation on other proteins via its effect on glycolysis, but is itself glycosylated in a
manner that can affect its function.
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Figure 4. Involvement of p53 in cell stress responses and glycosylation-related pathways and
the relationship between p53 glycosylation and cancer progression. (a) Upon cellular stress, p53 is
upregulated and translocated into the nucleus to transcriptionally regulate genes that are implicated in
stress response pathways including the DNA damage response and energy metabolism homeostasis.
(b) During the response to DNA damage, wild-type p53 is phosphorylated and activated, which
leads to cell cycle arrest and apoptosis via transcription of p21 and NOXA. p53 also transcriptionally
regulates expression of alpha-L-Fucosidase 1 (FUCA1) and TP53-induced glycolysis and apoptosis
regulator (TIGAR) protein to modulate fucosylation and glycolysis pathways. Hyperactivation
of these two pathways is associated with cell proliferation and tumor survival. p53 inhibits pro-
proliferative NF-κB activation by favoring phosphorylation (Ser733) of Inhibitor of nuclear factor-κB
(IκB) kinase (IKK), which competes with O-GlcNAcylation (Ser733) of IKK. O-GlcNAcylation of p53
(Ser149) competes with phosphorylation (Thr155), which attenuates ubiquitination-mediated p53
degradation as well as p53 nuclear export mediated by Jun activation domain-binding protein 1
(JAB1). Oncogenic mutant of p53 (mt p53) also promotes cancer by inducing N-glycan folding of
receptor tyrosine kinases (RTKs) via the transcriptional regulation of ectonucleoside triphosphate
diphosphohydrolase 5 (ENTPD5) protein.
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Mutated p53 in cancer cells has also been implicated in the aberrant folding of N-
glycosylated proteins via its transcriptional regulation of the ectonucleoside triphosphate
diphosphohydrolase 5 (ENTPD5) gene [101,102]. ENTPD5 protein is a component of the
calnexin/calreticulin chaperon system that facilitates N-glycoprotein folding [103,104]. Re-
ceptor tyrosine kinases (RTKs), including transforming growth factor beta (TGFβ) receptor
and EGFR [105], are highly modified by N-glycans, and their oncogenic mutations are
associated with the calnexin/calreticulin chaperon system [103,106]. Moreover, ENTPD5
expression level is highly associated with the presence of mt p53 at both the transcript and
protein levels, and knockdown of either ENTPD5 or mt p53 attenuates the invasiveness
and metastatic potential of cancer cells [102]. These observations indicate that mt p53 can
modulate the folding of N-glycoproteins essential for tumorigenesis and cancer progression
via ENTPD5 and the calnexin/calreticulin chaperon system in cancer cells (Figure 4b).

Taken together, p53 is involved in the modulation of energy metabolism and generation
of protein glycoforms, including modulation of its own activity by glycosylation, illustrating
the potential contribution of p53 to cancer development from the energy homeostasis
perspective [98].

5. Fucosylation in Cancer

Another type of protein glycosylation is fucosylation, which has been extensively
studied in human metabolism and has been the subject of much interest due to its apparent
involvement in oncogenesis. Fucosylation is classified into terminal (α1-2 or α1-3/4 linked)
and core fucosylation (α1-6 linked), depending on the sites of attachment [2]. Unlike
GlcNAcylation or GalNAcylation, which are direct linkages to the target, fucosylation
decorates previously synthesized glycans with fucose.

5.1. Fucose Nucleotide Biosynthesis

GDP-fucose is the sugar donor used for fucosylation. This sugar nucleotide is formed
in the cytosol via the following two possible routes: de novo synthesis and salvage path-
ways. 90% of GDP-fucose comes from the de novo pathway, during which cytosolic
GDP-mannose is converted step-wise into GDP-fucose via catalysis by GDP-mannose-4,6-
dehydratase (GMDS) [5] and GDP-L-fucose synthase (GFUS or protein FX) [47] (Figure 1c)
(Table 1). In contrast, the salvage pathway utilizes free cytosolic fucose to synthesize
GDP-fucose via catalysis by fucose kinases and fucose-1-phosphate guanylyltransferase
(FPGT) [107] (Figure 1c). GDP-fucose is thereafter transported into the Golgi apparatus and
serves as the sugar donor for fucosylation, catalyzed by FUTs [108].

5.2. Fucosyltransferases (FUTs) and Fucosidases

The human genome encodes 13 FUTs that are responsible for terminal and core fu-
cosylation with different α-linkages (Table 1). FUTs are mostly located in the following
two subcellular compartments: the N-glycan targeting FUTs reside in the Golgi appa-
ratus while O-fucosyltransferases reside in the ER [39]. Two fucosidases (FUCA1 and
alpha-L-Fucosidase 2 (FUCA2)) were found to carry out the defucosylation of glycans
in humans [39]. The distinct functions of each FUT and fucosidase is listed in Table 1.
Fucosylation is enhanced in cancer development [109–112] and cancer aggressiveness is
apparently inhibited when fucosylation is reduced [113] Thus, FUTs and fucosidases may
be novel candidate drug targets for cancer therapeutics.

5.3. Fucosylation and Cancer

Aberrant fucosylation is frequently observed in cancer samples. Lewis antigen Lex

(Figure 2c) is used as a biomarker for glioblastoma multiforme (GBM) due to the correlation
between its high expression and the tumorigenic potential of cells [109,110]. FUT8, which
attenuates cancer aggressiveness when knocked down [113], is overexpressed at both the
mRNA and protein levels in lung and colorectal cancer (CRC) samples and its expression
is associated with poor prognosis [111]. In addition, the sialylated Lewis antigens SLex
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and SLea (Figure 2c) are globally elevated in cancer specimens [2] and are implicated in
carcinogenesis and tumor metastasis via their ability to enhance cancer cell mobility across
the endothelium [114,115]. General upregulation of fucosylation is also observed in lung
cancer adenocarcinoma, often accompanied by increased GMDS expression [45]. FUCA1
mRNA expression is generally lower in cancer samples compared to normal counterparts,
and this is associated with poor patient prognosis [7,116]. In contrast, FUCA2 is proposed to
be a cancer prognostic marker due to its high mRNA expression in pan-cancer patients and
association with poor survival rates [117]. The correlation between FUCA2 high expression
and cancer has also been confirmed at the protein level in lung carcinoma and uterine
corpus endometrial carcinoma [117].

Current studies on the contribution of fucosylation to carcinogenesis have revealed its
effects on malignant cell proliferation, invasion, metastasis, immune surveillance escape
and multidrug resistance (MDR) [39].

5.4. Fucosylation in Cancer Cell Proliferation

Fucosylation levels are positively associated with cancer cell proliferation. Maintaining
higher fucosylation in cancer cells requires securing higher amounts of its sugar nucleotide
donor GDP-fucose. Inhibition of GDP-fucose synthesis leads to decreased fucosylation
of receptors implicated in the EGFR signaling pathway and, thus, reduces cancer cell
proliferation [118]. In addition, knocking down GMDS induces cell cycle arrest and acti-
vates apoptosis [45]. FUTs have been shown to promote cell cycle progression [119–122].
In addition, alterations in FUTs’ mRNA expressions result in changes in the levels of
Lewis antigen abundance, which interfere with various well-known cancer-associated
signaling pathways including the PI3K/Akt [123] and EGFR/mitogen-activated protein
kinase (MAPK) pathways [124]. Multiple lines of evidence have also supported the notion
that fucosidases are involved in cancer progression and metastasis, as follows: (1) ectopic
expression of FUCA1 in samples having low endogenous levels of FUCA1 significantly
attenuates the invasiveness of cancer cells; (2) transient FUCA1 knockdown results in the
loss of cell–cell contact; and (3) prolonged FUCA1 knockdown leads to increased cancer
cell proliferation, invasion and migration [125]. Moreover, fucosylation can contribute to
the hyperactivation of the EGFR, a well-known driver of carcinogenesis, and this can be
reversed by FUCA1 overexpression, which reduces fucosylation [7]. These observations
indicate the tumor suppressor potential of FUCA1. In contrast, FUCA2 expression is com-
monly elevated in cancer [117,126]. Anti-FUCA2 antibodies inhibit the proliferation of
breast cancer cells, and this is reversed by ectopic expression of FUCA2, suggesting that
this fucosidase has oncogenic potential [127].

5.5. Fucosylation in Cancer Stem Cells

Similarities have been observed between cancer development and embryonic de-
velopment, and thus important biological pathways for embryogenesis are expected to
demonstrate similar significance in cancer progression. Although the exact role of fuco-
sylation in human embryo development has not been fully elucidated, resultant lethal
phenotypes in mouse embryos arising from defects in fucosylation hints at the essentiality
of this process for proper cell growth and proliferation [128]. This is further supported
by fucosidosis, a rare neurodegenerative autosomal recessive disorder, being mediated by
FUCA1 mutation [129].

Cancer stem cells (CSCs), as the postulated origin of most human tumors, have
also been proposed to contribute to cancer development. Research in oral squamous
cell carcinoma has demonstrated that inhibiting fucosylation negatively affected tumor
initiation and CSCs invasion, and fucosylated SLex antigen is implicated in metastasis
associated with CSCs [130]. These observations could be explained by the fucosylation of
integrins—cellular surface molecules that function to guide movement and localization
of cells through intercellular interactions with glycan-binding proteins (GBPs) presented
on other cells. This implication is not limited to cancerous cells. For example, modulating
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the fucosylation status of integrins is a potential strategy for the delivery of noncancerous
multipotent stromal cells to target tissues for tissue repair [131]. Moreover, enhanced
fucosylation of cytotoxic T lymphocytes improves their homing to tumor tissue and thus
is proposed to be an effective strategy for cancer treatment [132]. These results indicate
that fucosylation is also implicated in cancer progression from the aspect of stem cells
potentially through its role in guiding cell migration.

5.6. Fucosylation in the Epithelial-to-Mesenchymal Transition (EMT)

Fucosylation has been shown to be involved in the EMT. EMT refers to a biological
process consisting of the following: (1) the transition of epithelial tumor cells bearing
epithelial cellular markers to cells that mimic the mesenchymal cell phenotype and exhibit
mesenchymal cellular markers; and (2) the degradation of basement membrane, enhancing
the capability of tumor cells to migrate to distant sites [133]. Similar to other types of
glycosylation, fucosylation may also affect cell–cell adhesion by modulating the function of
EMT factors. Cancer-associated upregulation of GMDS and FUT8 leads to an enhancement
in core fucosylation followed by appearance of mesenchymal markers [46], indicating
enhanced EMT. Furthermore, transcription of EMT factors is induced by fucosylation
of translocation-facilitating proteins, which in turn promote the nuclear translocation of
transcription coactivators that skew cells toward the mesenchymal cell phenotype [134].
Additionally, upregulation of fucosylation promotes an elevation in matrix metallopro-
teinases (MMPs) that degrade the ECM [135], clearing boundaries around tumor cells
and facilitating metastasis. EMT can also be induced by signaling pathways such as the
TGFβ-dependent cascade, which is regulated by both FUT8 and FUCA1 [136,137]. Expres-
sion of FUCA1 decreases during TGFβ-induced EMT, resulting in the generation of highly
fucosylated N-glycans associated with cancer development [136].

5.7. Fucosylation and Tumor Cell Trans-Endothelial Migration

Translocation of leukocytes across tissue barriers during the inflammatory response
involves glycoprotein-mediated alterations in cell adhesion, and tumors utilize this mech-
anism to allow trans-endothelial migration and metastasis [71,138,139]. Glycosylated
epitopes on tumor cells facilitate cell rolling along the endothelium by binding to GBPs
exposed on endothelial cells [71,80] (Figure 5). These interactions between GBPs exposed
on the endothelial cellular surface and the glycan structures of circulating biomolecules
such as leukocytes and tumor cells are modulated by enzymes such as glucosyltransferases
and FUTs [80,140] (Table 3).

Fucosylation reduces cell adhesion, thereby allowing intravasation and extravasation
of tumor cells across the endothelium [60]. Specifically, these cellular interactions are modu-
lated by terminal fucosylated glycans binding to lectins. Fucosylation alters the interactions
of glycans with lectin, allowing enhanced cell rolling mobility [79]. Similarly, fucosylation
allows tumor cells to mimic leukocyte transportation and travel from the primary site to
colonize distant parts of the body [27–33,71,138,139] (Figure 5). This argument is consistent
with the observed increase in the abundance of fucosylated SLex motifs on migrating tumor
cells [27–33].

Various glycosylation-related enzymes contribute to the synthesis of fucosylated
glycans. One example of a sialylation-related enzyme implicated in cancer development
is ST3 beta-galactoside alpha-2,3-sialyltransferase 6 (ST3GAL6), which is essential for
sialylated Lewis antigen synthesis. Knockdown of ST3GAL6 was observed to attenuate cell
trans-endothelial migration ability, while elevation of ST3GAL6 expression was found to be
associated with low overall survival in multiple myeloma patients [81] (Table 1). Reduction
in enzymes involved in fucosylation decreases the synthesis of the lectin ligands SLea and
SLex, leading to attenuated binding of tumor cells to lectins [48].
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Figure 5. Glycan-mediated intravasation, rolling and extravasation of tumor cells along the endothe-
lium. Adhesion-disfavoring glycans attenuate adhesion and reduce cell–cell interactions with the
endothelium and enhance endothelial permeability, thereby facilitating tumor intravasation and
extravasation. Glycans on tumor cells bind to lectin receptors on endothelial cells with low affinity,
which contributes to tumor cell rolling along the endothelium. Glycan structures involved in this
process include Lewis antigens and lectin receptors.

These observations indicate that cancer-associated changes in fucosylation-related
enzymes affect the adhesion of cells essential for endothelium integrity, contributing to
tumor cell trans-endothelial migration and metastasis.

5.8. Fucosylation in Metastasis

The function of fucosylation in metastasis is not limited to facilitating EMT and trans-
endothelial migration of tumor cells across blood vessels. The amount of circulating tumor
cells (CTCs) shed from primary tumors as well as their rolling velocities along blood
vessels are also dependent on fucosylation levels. For instance, in a simulated model,
knockdown of FUT3 significantly reduced the number of flowing cells under shear stress.
High rolling velocity that disfavors settlement of flowing cells was also observed in cells
with FUT3 knockdown [141]. Moreover, knockdown of FUT3 lowered expression of the
lectin ligand SLex, hence weakening interactions between CTCs and GBPs present on other
cells [141,142]. As proper binding of CTCs toward GBPs is required for the attachment of
tumor cells to secondary sites [142], the attenuated binding affinity to GBPs caused by FUT3
knockdown is one example of the metastatic regulation of CTCs by fucosylation alteration.

In addition, fucosylation affects information transmission between tumor cells and
other cells within TME. This behavior, primarily regulated by tumor-derived exosomes,
also facilitates metastasis. Exosomes are integrin-coated extracellular vesicles carrying
miRNAs, mRNAs, long noncoding RNAs (lncRNAs), DNAs and lipids, and are primarily
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involved intercellular communication [143]. Although the mechanisms behind regulation of
exosomes by fucosylation remain underexplored, evidence suggests an association between
these two biological features. Compared to those from normal cells, exosomes derived from
tumors display analogous features to their parent cells such as aberrant fucosylation. For
instance, evidence has shown that integrins were over-expressed and heavily fucosylated
in tumor-derived exosomes [144]. Meanwhile, others have demonstrated that fucosylated
exosomes promote cancer growth while soluble fucosylated glycans had no effect on cell
proliferation [145]. Moreover, exosomes derived from tumor cells could be used to relieve
cellular stress to maintain cell growth and survival. Evidence suggests that tumor cells
sequester miRNAs that disfavor tumor growth into fucosylated exosomes to mitigate the
suppressive effects of these miRNAs [146].

Taken together, fucosylation status significantly affects metastasis in almost every step
of the process including EMT, detachment of tumor cells from primary tumor, intravasation,
CTCs rolling along blood vessels, extravasation, and settlement to secondary sites. The
most well-characterized mechanism of fucosylation contribution to metastasis is through
intercellular interactions between fucosylated surface molecules and tumor cells or tumor-
derived exosomes with GBPs presented on the surface of other cells. Despite this, studies
have been limited to the effects of FUTs on fucosylation-dependent metastasis promotion,
while the function and relevance of fucosidases remain underexplored.

5.9. Fucosylation in Immune Surveillance

Fucosylation also participates in the escape of tumor cells from immune surveillance.
The innate immune response involves binding of receptors on immune cells to antigens
presented on target cells. The binding and function of either the immune receptors or target
cell antigens can be modulated by glycosylation, including fucosylation. Often tumor cells
utilize glycosylation to mask their foreignness and escape from immune surveillance [39].
For example, fucosylation of tumor cell antigens promotes their recognition by Natural
Killer (NK) cells [147]. Accordingly, some cancer cells have reduced GDP-fucose production
due to a mutation in GMDS [148,149], leading to a reduction in the abundance of Lewis
antigen. This attenuates NK cell responses that depend on recognition of antigen, including
activation of tumor necrosis factor (TNF) receptor superfamily member 6 (CD95) and TNF-
related apoptosis-inducing ligand (TRAIL)-induced apoptosis pathways, thus protecting
tumor cells from immune cell attack [148,150].

These results demonstrate that fucosylation is essential for antigen presentation on the
cell surface, and when compromised can enable tumor cells to evade the immune response.

5.10. Fucosylation in Multidrug Resistance (MDR)

MDR is a major obstacle to cancer treatment, as it results in resistance to chemotherapy [39].
Fucosylation has been linked to the acquisition of MDR in tumor cells, suggesting that
it could be targeted as an adjunct to chemotherapy. Cells that have acquired MDR often
display N-linked glycans with high levels of core fucosylation [151], attributed to altered
FUT8 and FUCA1 activities [7,126,137,152,153]. Furthermore, enhanced expression of FUTs
observed in cancers can contribute to MDR development by activating the PI3K/Akt and
extracellular signal-regulated kinase (ERK)/MAPK pathways, which facilitate the survival
of cells and compromise the efficacy of anticancer therapies [154,155]. In addition, MDR-
associated protein 1 (MRP1), which promotes MDR, has been reported to be regulated by
FUTs [154].

In summary, fucosylation can modulate the functional properties of proteins and
has been linked to carcinogenesis and cancer progression, similar to other glycosylation
processes. One major effect is the regulation of Lewis antigen synthesis, affecting their
interaction with lectin receptors on immune cells to escape from immune surveillance
and on endothelial cells to promote tumor migration [147–149]. The strong correlation
between fucosylation levels and cancer progression suggests that these fucosylation-related
enzymes could be potential therapeutic targets for new cancer treatments. This may include
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inhibition of FUTs to decrease fucosylation [156], or enhancement of FUCA1 activity, which
has been speculated to possess tumor-suppressive potential.

6. Regulation of Fucosylation by the p53-FUCA1 Axis

Investigations of the tumor-suppressive potential of FUCA1 led to the discovery that
its gene is a transcriptional target of p53. Thus, p53, in addition to its other reported
functions, appears to promote cancer by regulating fucosylation [7].

6.1. Transcriptional Regulation of FUCA1 by p53

The idea that FUCA1 is regulated by p53 was first proposed based on the observed co-
expression of p53 protein and FUCA1 mRNA [7,157]. This was confirmed by the observation
that p53 protein binds to the FUCA1 gene [7] and that proper binding of p53 to its responsive
elements on FUCA1 is necessary for the transcription activation of FUCA1 [157]. Thus,
FUCA1 was deemed a direct transcriptional target of p53. Moreover, chemotherapies that
induce p53-dependent pathways upregulate FUCA1 mRNA expression in a p53-dependent
manner [157]. However, FUCA1 does not respond to regulation by p73, a p53 family
member that shares many transcription targets with p53 [157]. These results indicate that
transcriptional control of FUCA1 by p53 is innate and specific to endogenous p53.

Confirmation of the transcription regulation of FUCA1 by p53 is not limited to in vitro
but also extends to in vivo studies. In specimens collected from breast cancer patients
bearing wild-type p53, FUCA1 expression is high, whereas specimens containing mutant
p53 show low levels of FUCA1 [7]. The same trend was observed in thyroid cancer patients,
as follows: FUCA1 RNA expression is high in papillary thyroid cancers (PTCs) which
mostly carry wild-type p53, while low levels of FUCA1 RNA were detected in anaplastic
thyroid cancers (ATCs) where p53 is frequently mutated. These observations indicate
that regulation of FUCA1 transcription is dependent on p53 status (wild-type or mutated).
In highly aggressive cancer types, common phenotypes include the loss of wild-type
p53, which could explain the observed correlation between cancer aggressiveness and
the difference in FUCA1 expression in ATCs that are derived from more differentiated
PTCs [158].

6.2. Regulation of Fucosylation by the p53-FUCA1 Axis

FUCA1 fucosidase activity is also positively corelated with the extent of p53 induction [157].
FUCA1 fucosidase activity can be upregulated by DNA damage and overall fucosylation
levels are decreased in cells having wild-type p53 [7]. Moreover, fucosidase activity can be
induced by exogenous p53 overexpression, and this is further potentiated by the additional
induction of DNA damage [7]. Similarly, increases in the levels of FUCA1 proteins was
observed following p53 induction, whereas knocking down FUCA1 led to a loss of overall
fucosidase activity in the cell [157]. Taken together, these results indicate that FUCA1
fucosidase activity as well as cellular fucosylation levels are both regulated by p53.

6.3. Tumor Suppression by the p53-FUCA1 Axis

This relationship with p53 suggests that FUCA1 could function to suppress tumors.
This is supported by the observation that p53 exhibits a greater impact on tumor sup-
pression compared to p73 [157], consistent with FUCA1 being a specific target of p53 but
not p73.

The p53-FUCA1 axis have been shown to play a role in the induction of apoptosis [7].
Overexpression of FUCA1 inhibits cell proliferation by increasing apoptosis in breast cancer,
CRC, GBM, and lung cancer cells, independent of p53 status [7]. FUCA1 was shown to
reduce fucosylation of EGFR by catalyzing α1,6-defucosylation (Figure 6). The resulting
decrease in EGFR fucosylation in turn represses phosphorylation of both EGFR and Akt [7]
(Figure 6), a downstream effector of the EGFR pathway, indicating attenuated activity
of both EGFR and Akt. The observation that expression of FUCA1 inhibits the EGFR
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pathway, implicated in promoting cancer, again supports the potential role of FUCA1 as a
tumor suppressor.
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Another study has shown that FUCA1 fucosidase plays a role in p53-mediated apop-
tosis in an osteosarcoma cell line previously subjected to chemotherapy [157]. This study
showed that while overexpression of FUCA1 does not affect cancer cell viability, knock-
down of FUCA1 impairs the ability of p53 to induce activation of effector caspases that
would otherwise cause apoptosis and cell death [157]. On the other hand, other studies
have demonstrated that overexpression of FUCA1 does not affect the clonogenic potential
of thyroid cancer or normal cells [158].

These results demonstrate the tumor suppressing potential of FUCA1 is at least
partially dependent on its regulation by p53. On the other hand, the inconsistent effects
of FUCA1 on cancer cell viability show that the mechanisms linking FUCA1 and cancer
progression are as yet not fully understood. As such, further investigation on FUCA1,
fucosylation and p53 would improve our understanding of cancer development from the
aspect of protein glycosylation and could provide novel targets for cancer therapies.

7. Conclusions and Future Directions

Glycoconjugates are present in every cellular compartment and can play a critical role
in determining the function of biomolecules. The enzymatic regulation of glycosylation and
the generation of multiple glycoforms play an important role in many cellular mechanisms,
including the development of cancer [1]. Glycosylation patterns often change when cells are
subjected to stress [2]. Understanding these changes and their mechanistic consequences
may explain the relationship between glycosylation and cancer development. These mech-
anisms include receptor–ligand binding, cell–cell adhesion, extracellular interaction and
communication within the tumor microenvironment. There are a number of unexplored
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areas here. For instance, although a correlation between the expression of the p53 target
FUCA1 and cancer has been reported, the precise mechanism that underlies this correlation
is not well understood [7,116,125,126]. Understanding the mechanisms by which altered
glycosylation can contribute to tumorigenesis, cell migration, metastasis, immune escape
and the drug resistance of cancer cells may inform the development of cancer therapeutics
that modulate glycosylation. In addition, investigation into cancer-promoting glycan struc-
tures and the responsible enzymes could enhance our understanding of the relationship
between cancer development and glycosylation [1,2,24,37,39,52,60,159]. Moreover, utiliz-
ing bioinformatic strategies such as metabolomics, glycomics and glycoproteomics could
unravel more biomarkers for cancer diagnosis and prognosis, as well as identify novel
candidates for cancer drug development.
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