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Simple Summary: HER2-positive breast cancer occurs in 15–30% of cases and has a poor prognosis.
Digital image analysis of HER2 is promising, but its implementation in real clinical practice remains
unclear. This systematic review evaluates the effectiveness of digital image analysis algorithms for
HER2 in breast cancer and their performance, with a focus on testing them in real-world clinical
settings. The authors aim to assess the applicability of these algorithms in practical clinical scenarios.
By analyzing 25 papers from the period 2013–2024 and emphasizing mostly deep learning approaches,
the review underscores the importance of standardized evaluation criteria, study designs tailored for
clinical applications, and clinical validation. While direct evidence of clinical application was not
found, the findings aim to guide future research and the implementation of digital image analysis
in breast cancer diagnosis within clinical settings, potentially impacting the research community by
advancing algorithmic applications in real clinical practice.

Abstract: This systematic review aims to address the research gap in the performance of computa-
tional algorithms for the digital image analysis of HER2 images in clinical settings. While numerous
studies have explored various aspects of these algorithms, there is a lack of comprehensive evaluation
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regarding their effectiveness in real-world clinical applications. We conducted a search of the Web of
Science and PubMed databases for studies published from 31 December 2013 to 30 June 2024, focusing
on performance effectiveness and components such as dataset size, diversity and source, ground truth,
annotation, and validation methods. The study was registered with PROSPERO (CRD42024525404).
Key questions guiding this review include the following: How effective are current computational
algorithms at detecting HER2 status in digital images? What are the common validation methods
and dataset characteristics used in these studies? Is there standardization of algorithm evaluations
of clinical applications that can improve the clinical utility and reliability of computational tools
for HER2 detection in digital image analysis? We identified 6833 publications, with 25 meeting the
inclusion criteria. The accuracy rate with clinical datasets varied from 84.19% to 97.9%. The highest
accuracy was achieved on the publicly available Warwick dataset at 98.8% in synthesized datasets.
Only 12% of studies used separate datasets for external validation; 64% of studies used a combination
of accuracy, precision, recall, and F1 as a set of performance measures. Despite the high accuracy
rates reported in these studies, there is a notable absence of direct evidence supporting their clinical
application. To facilitate the integration of these technologies into clinical practice, there is an urgent
need to address real-world challenges and overreliance on internal validation. Standardizing study
designs on real clinical datasets can enhance the reliability and clinical applicability of computational
algorithms in improving the detection of HER2 cancer.

Keywords: breast cancer; HER2; digital image analysis; performance evaluation; applicability in real
clinical practice

1. Introduction

Breast cancer (BC) remains the most common cancer among women globally [1]. Per-
sonalized approaches to diagnosing and treating BC underscore the need to precisely assess
biomarkers such as human epidermal growth factor receptor 2 (HER2) [2]. HER2 expression
is critical for predicting disease patterns and determining treatment strategies [3,4]. Since
the late 1990s, immunohistochemical (IHC) screening of breast cancer patients for HER2
has been the standard practice due to the introduction of HER2-targeted therapies such as
trastuzumab [5–7]. Trastuzumab reduces recurrence and mortality in early-stage HER2-
positive BC by one-third and enhances chemotherapy outcomes in metastatic cases [3,8].
In recent studies, dual HER2-targeted therapy (pertuzumab and trastuzumab) further
improved survival in metastatic BC [9].

HER2 status is primarily assessed by using IHC for protein expression and in situ
hybridization (ISH) for gene amplification. ASCO/CAP guidelines recommend IHC screen-
ing, followed by ISH in equivocal cases, due to IHC’s high sensitivity, speed, and cost-
effectiveness [2]. However, IHC has drawbacks, including manual assessment errors,
inter-observer variability, and labor-intensive procedures caused by inconsistent staining
and large slide areas [10–16]. Visual assessment led to notable inter-observer variability,
particularly due to variations in staining across different laboratories and the requirement
to estimate percentages within the tumor area. Approximately 20% of HER2 tests may be
inaccurate due to various sources of variability (pre-analytic, analytic, or post-analytic) [17].
ASCO suggests that image analysis systems can improve HER2 test accuracy by providing
quantitative measurements and enhancing the consistency of results [17].

Advancements in digital pathology and computer vision technologies are leading to
the automation of IHC slide analysis, offering reproducible and objective interpretations
of whole-slide images (WSIs) [18–22]. Automated scoring can mitigate the challenges
of manual methods by reducing subjective bias and assisting pathologists in consistent
scoring [23]. IHC quantification through image analysis, along with standardization and
IHC automation, aims to improve marker reproducibility and foster further biomarker
research [20,24,25]. Automated digital HER2 IHC analysis also addresses reproducibility
issues, particularly with borderline HER2 values [26–28]. The College of American Pathol-
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ogists is developing guidelines to improve IHC HER2 interpretation accuracy, precision,
and reproducibility when interpreting IHC HER2 in BC, particularly where quantitative
image analysis is used [29].

With the advent of digital pathology and image analysis, numerous algorithms have
been developed for automating HER2 expression evaluation in experimental work. Despite
these advancements, the integration of digital HER2 IHC analysis into national protocols
has not occurred. While these algorithms demonstrate high performance, the feasibility of
using and adopting the digital image analysis of HER2 in clinical practice, as well as its
acceptability for clinical assessment, remain unclear. These uncertainties highlight existing
gaps that require further exploration and resolution.

To the best of our knowledge, no previous systematic review has evaluated the effec-
tiveness of HER2 automation classification algorithms in terms of clinical applicability. In
light of this, we aimed to systematically assess the digital image analysis algorithms for
HER2 in clinical settings, focusing on their performance criteria and key components to
enhance the diagnosis of HER2 expression levels in breast cancer patients.

Key questions guiding this review include the following:
How effective are current computational algorithms at detecting HER2 status in

digital images?
What are the common validation methods and dataset characteristics used in these

studies?
Is there standardization for algorithm evaluations for clinical applications that can

improve the clinical utility and reliability of computational tools for HER2 detection in
digital image analysis?

2. Materials and Methods
2.1. Search Strategy

We conducted the search in two electronic literature databases: Web of Science and
PubMed (latest search: 30 June 2024). The search strategy involved combinations of
keywords related to breast cancer, HER2, immunohistochemistry, and digital image analysis
algorithms. The full search strategy is provided in Table S1. By utilizing Medical Subject
Headings (MeSH) and free-text keywords, we developed a search strategy based on the
PEO conception, where P is population, E is exposure, and O is outcome. The time frame
of the search was from 31 December 2013 to 30 July 2024. The search included articles in
English only. To ensure the quality of our review, we followed the guidelines outlined by
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [30].
A flow diagram illustrating the process of study selection for this review is presented in
Figure 1.
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Figure 1. Study selection and eligibility criteria for systematic literature review. Abbreviations: TMA,
tissue microarray; IHC, immunohistochemistry.

2.2. Study Selection

The inclusion and exclusion criteria for study selection were established by three
reviewers (N.D., G.D., and N.G.) and are presented in Table 1.

Type of Participants: Studies involving breast cancer patients with known immunohis-
tochemical markers.

Type of Exposure: Automatic analysis of IHC HER2 slides in digital WSI format.
Type of Outcome: The outcome focused on components of digital image analysis

algorithms for HER2, facilitating their implementation in clinical settings. We considered
factors essential for clinical use, including performance criteria (sensitivity, specificity,
accuracy, precision, recall, F1 score, AUC-ROC), methods applied (algorithms, techniques,
preprocessing steps), dataset characteristics (size, diversity, source), details on ground truth
(method, level of annotation), and demonstration of clinical application (clinical validation,
integration with clinical workflows).
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Table 1. Inclusion and exclusion criteria for study selection.

Inclusion Criteria Exclusion Criteria

Experimental or clinical studies on the use of AI in DIA of HER2 in
patients with BC

Availability of full-text studies
Availability of criteria of performance evaluation (image, slide,

patch levels)
Availability of the components of DIA

Studies outside of the scope of the search

Reviews (systematic, scoping)

Studies with no criteria for performance evaluation

Abbreviations: AI, artificial intelligence; DIA, digital image analysis; HER2, human epidermal growth factor
receptor 2; BC, breast cancer.

Study Design: Original studies were eligible for inclusion. Reviews were excluded
from the search.

2.3. Data Extraction and Quality Assessment

Recognizing the importance of specialized scales for assessing the diagnostic accuracy
of methods, including those involving artificial intelligence, we aimed to evaluate the
selected articles from a clinical use perspective. For this purpose, we assessed the risk of
bias by using the Newcastle—Ottawa Scale (NOS), considering scores ≥7 as indicative of
higher quality. This assessment was conducted independently by the two primary authors,
G.D. and N.G. The quality of the studies was evaluated based on six evidence-based criteria
covering selection, comparability, and outcome. In cases where there was a disparity in
the scores assigned by the two reviewers for a particular study, the reviewers reached an
agreement following discussion.

2.4. Data Synthesis and Analysis

In total, 25 publications were considered suitable for inclusion. Data extraction from
the selected papers was conducted by two authors, G.D. and N.G., who resolved any
discrepancies through joint interpretation. Subsequently, G.D. and N.G. drafted the ini-
tial version of this paper, taking into account all the relevant papers. The final version
was produced based on feedback from all authors and scores were obtained from the
Newcastle—Ottawa Scale. Then, we summarized the key findings on the components of
digital image analysis algorithms for HER2, emphasizing their potential for implementa-
tion in clinical settings, and elaborated on the resulting conclusions. Data on performance
evaluation criteria and elements of digital image analysis algorithms for IHC HER2 were
compiled and presented using a narrative synthesis. The systematic review was registered
in PROSPERO (CRD42024525404).

3. Results

A combined search of Web of Science and PubMed identified 6833 publications, which,
after screening by using the online software Rayyan (https://www.rayyan.ai/) (accessed
on 14 March 2024) [31] and applying the Newcastle—Ottawa Scale, resulted in 25 articles
included in the review; further details are provided in Figure 1.

In Table 2, we compile basic information from the included articles, encompassing
general details, performance evaluation criteria, and limitations on clinical applicability.
Table 2 includes extracted data: (i) last name of the first author and year of publication;
(ii) dataset used; (iii) number of cases; (iv) features; (v) criteria of evaluation; (vi) key
findings; and (vii) limitations.

https://www.rayyan.ai/
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Table 2. The main characteristics of the included studies.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Kabir, 2024
[32]

Three key stages: tumor patch
classifier, patch score classifier,
and WSI-level score classifier.

Public
(Warwick)

86 WSI (77 in final)
/6641 patches

(0) 9
(1) 11
(2) 36
(3) 21

DL models
(DenseNet201,
GoogleNet,
MobileNet,
Vision
Transformer—ViTs).

Accuracy:
ViTs: 92.6% (tumor patch
classifier);

patch score classifier:
The RF: 91.15% (4 classes, patch),
88% (4 classes, WSI);
96% (3 classes, WSI);
DenseNet201: 96.17%.

Annotated dataset (50 WSIs);
internal validation;
ground truth: 2 pathologists’
assessment.

No clinical
dataset;no
external
validation.

Bórquez, 2023
[33]

Patch-level classification with
different dropout rates and
aggregation methods to classify
tissue objects. Patch-level
predictions were combined for
classifying HER2 images at the
tissue object level.

Public
(Warwick)

52 WSI

(0) 13
(1) 13
(2) 13
(3) 13

DL (Bayesian neural
networks with Monte
Carlo dropout).

Accuracy (4 classes, WS-tissue
level):
0.89 on average.

Dataset, labeled previously;
balanced dataset;
Internal validation (5-fold CV);
ground truth: pathologist’s
assessment.

No clinical
dataset;
no external
validation.

Mukundan,
2019 [34]

Characteristic curves for
representing the % of staining,
rotation-invariant uniform local
binary pattern curves as texture
descriptors, and a
connectedness measure as a
morphological feature of the
staining patterns.

Public
(Warwick)

52 WSI
/4019 image patches

(0) 13
(1) 13
(2) 13
(3) 13

DL for cell region
detection and
classification.
ML (Logistic
regression, SVM) for
scoring.

Accuracy (4 classes, patch level):
Average = 91%
logistic regression algorithm:
93.86%
SVM: 89%.

Dataset, labeled previously,
balanced;
ground truth: pathologist’s IHC
assessment;
internal validation (CV, 70%:30%
images).

No clinical
dataset;
no external
validation.

Tewary, 2022
[35]

2 CNN networks were
compared with
ImmunoMembrane.

Public
(Warwick)

40 WSI of 3 classes (from 52
WSI with 13 cases for 4
classes (0, 1+, 2+, and 3+)).

Transfer learning
(Xception);
DL CNN
(AutoIHCNet);
ImmunoMembrane.

Accuracy (3 classes):
Patch-based score:
Xception—95%
AutoIHCNet—96%
ROI image-based score:
Xception—97%
AutoIHCNet—98%
ImmunoMembrane—87%.

Dataset, labeled previously;
ground truth: pathologist’s IHC
assessment;
internal validation (train-30
labeled images, test—10 WSIs).

No clinical
dataset;
no external
validation.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Saha, 2018
[36]

Semantic segmentation of cell
membrane and nucleus
detection and scoring.

Public
(Warwick)
188 for each score,
i.e., 0, 1+, 2+, 3+

79 WSIs/752 core images

(0) 188 core images
(1) 188
(2) 188
(3) 188

DL (Her2net—LSTM
recurrent network).

Accuracy (4 classes, patch level):
98.33%.

Dataset, labeled previously,
balanced dataset;
ground truth: pathologists
assessment;
internal validation (train:
51 WSIs; test: 28 WSIs).

No clinical
dataset;
no external
validation.

Mirimogha-
ddam, 2024
[37]

GAN-based model was used for
generating high-quality HER2
images to overcome the scarcity
of HER2 images; 5 different
types of classifiers were used for
HER2 classification
(MobilenetV2, InceptionV3,
InceptionResNetV2, ViT, and
Swin-T).

Mixed dataset
(Warwick,
clinical).

Clinical—126 patients:

(0) 32
(1) 40
(2) 30
(3) 24

Transfer learning
(HER2GAN).

Accuracy (4 classes, patch level,
with InceptionResNetV2):
98.8% (Warwick, synthetic train +
test sets);
90.5% (Warwick, original train +
test sets);
85.71% (clinical dataset, original
train + test sets)
92.13% (clinical dataset, synthetic
train + test sets).

Labeled datasets;
ground truth in a clinical dataset:
pathologist’s assessment;
internal validation (5-fold CV,
80%:20%).

No external
validation;
Best
accuracy
rates were
achieved
on a fully
syn-
thetized
dataset
based on
Warwick.

Pham, 2023
[38]

An interpretable, weakly
supervised
constrained deep learning
model for HER2 scoring.

Mixed dataset:
Warwick, clinical
(Erasme), and
AIDPATH.

Clinical (270
WSIs)/Warwick (50 WSIs)

(0) 49/13
(1) 76/12
(2) 109/12
(3) 36/13

AIDPATH (50 WSIs)
37 negative
6 equivocal
7 positive.

DL (4 classes, patch level)
F1 score: 0.78

Precision in the testing set
(0) 0.822
(1+) 0.841
(2+) 0.909
(3+) 0.845

Recall in the testing set
(0) 0.839
(1+) 0.905
(2+) 0.937
(3+) 0.938.

Clinical dataset (Erasme):
labeled previously, annotated;
AIDPATH datasets: labeled
previously, annotated.

Ground truth based on the
clinical outcomes (negative,
equivocal, positive).

Erasme and AIDPATH were
used to train the model to
segment all tumor pixels. The
patches are randomly split into
80%:10%: 10% for training,
validation, and test set.

Warwick: labeled previously as
a part of the HER2 scoring
contest training set.

No
accuracy.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Si Wu, 2023
[39]

The authors conducted 2 rounds
of HER2 0 and 1+ assessment.
The first ring study (RS1)
involved 15 pathologists
interpreting 246 HER2 IHC
sections via conventional
microscopic examination. The
second ring study
(RS2—pathologist review):
pathologists reassessed images
with AI assistance using an AI
microscope (by embedding an
augmented reality module
under the microscope eyepiece).
The study aimed to improve the
accuracy of HER2 0 and 1+
assessment and evaluate the role
of AI in assessing low
HER2 heterogeneity.

Clinical 246 cases

(0) 120
(1) 126
(2) Out of scope
(3) Out of scope

(0) 120, (1+) 126.

DL (Microscope
with AI).

Accuracy (2 classes (0, 1+),
WSI level).

RS1 (pathologists review) 0.80

RS2 (pathologists + microscope
with AI) 0.93.

Balanced dataset;
Annotation was likely
conducted for detecting tumor
areas;
ground truth: pathologist’s IHC
assessment;
internal validation (validation
conducted through a
multi-institutional two-round
ring study involving
15 pathologists with varying
levels of experience).

No external
validation.

Yuxuan Che,
2023 [40]

Binary classification of labeled
patches (tumor patch/normal
patch), WSI segmentation,
scoring by integrated calculation
of staining intensity,
circumferential membrane
staining pattern, and proportion
of positive cells.

Clinical 95 WSI

(0) 14
(1) 25
(2) 36
(3) 20

DL (ResNet) Accuracy (4 classes)
73.49% (segmentation, patch level)

97.9% (scoring, WSIs).

Annotation of concentrated
tumor areas (23 WSIs);
ground truth: pathologist’s IHC
assessment;
16 WSI for training, 79 for test.

No external
validation.

Cordova,
2022 [41]

Classification of
photomicrographs of HER2
using pathologists’ diagnoses
(IHC only) vs. the final
diagnosis (IHC + FISH) as
training outputs, with applying
of an explainability algorithm
based on Shapley Additive
exPlanations (SHAP) values to
determine feature contributions
(IHC only vs. IHC + FISH).

Clinical 131 patient samples and
10 controls (423
photographs) + 30 control
samples (with and without
tumor).

Supervised ML
(logistic
regression-based).

Accuracy (2 classes (IHC model
and IHC + FISH model),
WSI level):

0.88 (IHC model)

0.93 (IHC + FISH).

Dataset, labeled previously;
ground truth: IHC+ ISH
(previous reporting of
pathologist’s diagnosis by IHC
and IHC + FISH)

0.65:0.35 a ratio of
training/testing sets.

No external
validation.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Qian Yao,
2022 [42]

Predicting HER2 expression
level in IHC and HER2 gene
status in FISH analysis and
comparing two models
(GrayMax and its updates
model, GrayMap + CNN).

Clinical 228 biopsy cases of IBC-NST
with both IHC and FISH
information

(0) 5
(1) 21 cases

(FISH: negative—19,
positive—2)

(2) 157 cases
(FISH: negative—104,
positive—53)

(3) 45 cases
(FISH positive—45).

DL
(GrayMap+ CNN,
GrayMax).

Accuracy (3 classes, WSI level):

95.20% (GrayMap + CNN)

84.19% (GrayMax).

Labeled dataset;
ground truth: IHC and FISH.
For IHC, manual assessment of
3 “blinded” pathologists (2
times after a 4-week washout);
for ISH, 2 pathologists evaluated
HER2/CEP17 the HER2 ratios
of 20 tumor cells independently
and blinded to IHC results;
internal validation (5-fold CV).

No external
validation.

Meng Yue,
2021 [28]

1st ring study: 33 pathologists
from 6 hospitals read 50 HER2
WSIs through an online system.
2nd ring study: pathologists
read HER2 slides using a
conventional microscope.
3rd ring study: the pathologists
used our AI microscope
(Sunnyoptic ARM50) for
assisted interpretation.

Clinical 50 WSIs consisted of 50%
HER2-negative cases and
50% HER2-positive cases,
with a total of 25 cases in
each category.

(0) Removed (to increase
the efficiency of the
experiment)

(1) 12 (FISH negative
cases)

(2) 30 (FISH:
negative—13,
positive—17)

(3) 8.

(AI)–assisted
microscope
Sunnyoptic ARM50:
equipped with a
conventional
microscope and an
augmented reality
module.

For 3 classes, WSI level

“AI”: accuracy κ = 0.86 [95% CI
0.84–0.89]

“Pathologist Review”
accuracy κ = 0.84 [95% CI
0.82–0.86].

Labeled and annotated dataset;
ground truth: IHC consensus
scores of 2 pathologists and a
3rd pathologist for
discordant cases.

Annotated (identifying and
delineating tumor areas as
points on the image patches),
approx. 500 WSI from the
training dataset.

No external
validation.

Tewary, 2021
[43]

Transfer learning is applied using
five pre-trained deep learning
architectures (VGG16, VGG19,
ResNet50, MobileNetV2, and
NASNetMobile) with modified
output layers for three-class
classification. A statistical voting
scheme using the mode operator
is employed to combine the
patch-based scores and generate
the final image-based
HER2 score.

Public
(Warwick)

40 cases

(0/1) 14
(2) 13
(3) 13

Transfer learning;
DL

Accuracy (3 classes, patch and
image level, VGG19)

0.91 in training;

0.93 in testing (100 epochs)
patch-based scoring;

0.98 in image-based scoring.

Balanced, previously labeled
dataset;
ground truth: IHC pathologist’s
assessment;
internal validation (30 cases in
training = 2130 image patches;
10 test cases =100 images).

Combined
classes of
HER2 (0/1);
no clinical
dataset;
no external
validation.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Tewary, 2021 *
[44]

The approach
AutoIHC-Analyzer and a
publicly available open-source
ImmunoMembrane software
were compared with the scores
of expert pathologists.

Clinical (from
confusion matrix
on page 5).

180 images

(0/1) 60
(2) 70
(3) 50

DL
(AutoIHC-Analyzer);
Classifiers: SVM with
Gaussian kernel);
ML;
ImmunoMembrane.

Accuracy (3 classes)
93%—AutoIHC-Analyzer:
78%—Immuno Membrane:
Accuracy.

Labeled dataset;
ground truth: IHC score
provided by the clinical experts;
internal validation (90 images
for validation).

Combined
classes of
HER2 (0/1);
no external
validation.

Khameneh,
2019 ** [45]

The authors proposed an
approach based on (1)
Superpixel-based SVM classifies
epithelial/stromal regions, (2)
CNN segments membrane areas
on epithelial regions, and (3)
merged tiles evaluate
slide scores.
Experimental results compared
with state-of-the-art handcraft
and deep learning-based
approaches.

Mixed:
Warwick and
clinical.

Modified U-Net
for
classification.

total 127 WSIs
Warwick dataset—79 WSIs.

(0/1) 23
(2) 14
(3) 15

Clinical dataset (from
Acibadem)—48 WSIs.

Modified U-Net for
classification
ML (SVM) for
segmenting,
classifying and
quantifying.

DL (CNN) for
segmentation.

Accuracy (3 classes, WSI level)

0.87%—classification accuracy

0.9482%—segmentation accuracy.

Warwick dataset: labeled
previously,
ground truth: FISH and HER2
IHC (pathologist’s assessment);
used for testing.

Clinical dataset (from
Acibadem): annotated (on
tumor areas, cell membrane
staining patterns, epithelial and
stromal regions);
ground truth: pathologist’s
assessment; used for training.

Combined
classes of
HER2 (0/1)

Kwangil Yim,
2019
[46]

The results of the HER2 image
analysis software (Companion
Algorithm HER2 (4B5) image
analysis software (Roche)
compared with the manual
scoring method and with HER2
SISH results (as the gold
standard)).
Previously, the authors found
that at least 1000 tumor cells
need to be examined in the most
strongly stained areas (foci
of view).

Clinical 555 patients in main
research: SISH: (negative)
451, (positive) 104.

(0) 373
(1) 61
(2) 46 (29 SISH-positive)
(3) 75

32 HER2 2+ for
preliminary test.

Companion
Algorithm HER2
(4B5) image analysis
software (Roche).

Accuracy
(4 classes, foci of view level)

91.7%—manual scoring;
90.8%—image analysis.

Preliminary research resulted in
using the approach of analyzing
a certain area
(40,457.64 µm2) until FOVs with
at least 1000 tumor cells were
assessed.

Pathologists selected areas (“foci
of view” (FOVs)) for further
analysis. FOVs were chosen
based on the following criteria:
intense, thick, and complete
membrane staining in the HER2
IHC-stained breast cancer
specimens;
ground truth: based on
HER2 SISH.

No external
validation.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Vandenberghe,
2017 [47]

Results of ConvNets for HER2
cell assessment were evaluated
and compared to classical
machine learning techniques
(hand-crafted features + LSVM;
hand-crafted features + RF).

Private dataset:

from the
AstraZeneca
BioBank or
acquired from a
commercial
provider (Dako
Denmark A/S).

71 WSI

Negative—43
Equivocal—17
Positive—11.

DL
(ConvNets—Custom
CNN).

Accuracy (four classes, WSI level)

ConvNets
78% overall accuracy.

Annotated dataset (A total of
12,200 cells from a subset of
18 WSIs) was manually annotated
by extracting 18 biologically
relevant features (cell morphology,
nuclear color, texture, and HER2
membrane staining), training
classical machine learning models.
The dataset was annotated using
Definiens Developer XD for cell
detection and feature extraction).
Ground truth: manual
annotation of cell features and
HER2 scoring;
internal validation (10-fold CV).

No external
validation.

Palm, 2023
[48]

Results of groups (“pathologists”
and “pathologists + AI”) were
compared with AI results and a
ground truth.

Clinical a preliminary cohort: 495
newly diagnosed primary
IBCs and their 30 metastatic
BC (475 in total):

(0) 181
(1) 156
(2) 87
(3) 51

a study cohort, 97 (all 30
metastatic tumors and their
matched primaries and a
further random selection of
primary tumors from the
preliminary
cohort (67 primary tumors)).

ISH on 55/97 samples of all
cases with an IHC HER2
score of ≥1+

26/67 from primary tumors
with IHC 1+ or above were
assessed by ISH.

HER2 4B5 algorithm
in the uPath
enterprise software
(Roche Diagnostic
International,
Rotkreuz,
Switzerland).

Sensitivity/specificity (slide level):
93.8%/96.1%
for the IHC algorithm

100%/94.7% for the ISH algorithm.

Ground truth: consensus in the
pathologists’ opinions.
For IHC, a manual consensus
score of three pathologists.
For equivocal results of ISH (in
HER2 2+), recounting the ISH
signals of 20 cells by a second
pathologist.
As a result of testing the AI-IHC
algorithm on the preliminary
cohort, changes in incubation
and counterstaining time of the
automated slide stainer were
applied.
The adjusted protocol was used
for a newly prepared study
cohort.

No
accuracy;
no external
validation.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Koopman,
2019 [49]

HER2 image analysis was
compared between two
independent platforms
(Visiopharm Integrator System
(Denmark) and HALO (USA)
for inter-platform agreement, as
well as with the manual score.

Clinical 152 Resection specimens of
consecutive primary
invasive breast carcinomas.

136 ISH Negative
16 ISH Positive

(0/1) 114
(2) 23
(3) 12.

Visiopharm;
HALO

Sensitivity/specificity (3 classes,
slide level):
Visiopharm:
81.3%/100%

HALO:
100%/100%.

Ground truth: manual scoring
by two independent
pathologists and ISH in 2+ cases.

Combined
classes of
HER2 (0/1);
no external
validation.

Pedraza, 2024
[50]

Color transfer for data
augmentation was employed on
the initial dataset (DS1) to create
a new dataset (DS2) with five
classes: background, 0, 1, 2+,
and 3+. Additionally, a separate
dataset (DS3) was created with
seven classes, including 1.5+
and 2.5+. The results from DS3
were then merged back into five
classes for comparison. Multiple
CNNs were applied for
patch-wise grading of HER2.

AIDPATH 306 WSIs from 153 BC from
3 centers:
172 WSI from NHS
(Warwick);
104 WSI from SESCAM;
30 WSI from SAS

(0) 78
(1) 74
(2) 76
(3) 78

DL: five different
CNNs (AlexNet,
GoogleNet, VGG,
ResNet-101,
DenseNet-201).

Average accuracy = 97%

for DenseNet-201 on DS2 (dataset
2–5 classes: background, 0, 1, 2, 3;
balanced, augmented)

(0) 0.95
(1) 0.94
(2) 0.96
(3) 0.98

Best accuracy (4 classes, WSIs)—
ResNet-101 applied to DS3 dataset
with 7 classes (dataset 3–7 classes:
background, 0,1, 1.5, 2, 2.5, 3)

(0) 0.968
(1) 0.954
(1.5) 0.975
(2) 0.974
(2.5) 0.986
(3) 0.988.

Previously labeled dataset;
ground truth: at least 2
pathologists’ scoring;
70%:20%:10% WSI for training,
validation, and as a hold-out test
set.

No external
validation;
no clinical
dataset.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method

Dataset
(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class

Features Criteria of Evaluation Key Findings Limitations

Kabakçı 2021
[51]

Hybrid Cell Detection and
Membrane Intensity Histogram
Extraction methods were
sequentially used for HER2
scoring, with testing on public
and clinical datasets, and results
were compared with
ImmunoMembrane.

Mixed
(clinical:
ITU-MED-1,
ITU-MED-2;
Warwick).

ITU-MED-1: 13 cases/191
tissue images:

(0) 41
(1) 42
(2) 52
(3) 56

ITU-MED-2: 10 cases/148
tissue images:

(0) 24
(1) 18
(2) 49
(3) 57.

Warwick—79 WSI

DL (LSTM);
ML (k-Nearest
Neighbors (kNN),
Decision tree
classifiers) for
classification.

Accuracy (4 classes, patch-based)
91.43%

ITU-MED-1,
Best validation accuracy:
88.01% (LSTM),

Best tissue-based scoring accuracy:
91.43% (Ensemble Boosted Trees);
Compared with 74.07%.
(ImmunoMembrane);

ITU-MED-2,
Best validation accuracy:
88.88% (LSTM),

Best tissue-based scoring accuracy:
90.19% (Ensemble Boosted Trees,
Ensemble Bagged Trees. Weighted
kNN);
Compared with 80.39%
(ImmunoMembrane).

Ground truth: labeling by expert
pathologists + FISH;
The ITU-MED-1: 105 images for
training, 86 for testing;
the ITU-MED-2: 96 images for
training, 52 for testing;
Warwick: 51 WSI for training, 25
for testing.

Rashid, 2024
[52]

A combination of a transfer
learning model (ResNet50) for
feature extraction, a
metaheuristic optimizer
(NSGA-II) for selecting the most
relevant features, and a machine
learning algorithm (SVM) for
classification was applied and
tested on two datasets.

Mixed (Warwick,
clinical)

Warwick (HER2SC) 79WSI

clinical—126 individuals
(HER2GAN):

(0) 32
(1) 40
(2) 30
(3) 24.

Transfer Learning
Model (an ML
strategy)—Resnet50;

NSGA-II algorithm;
SVM classifier.

Best accuracy (four classes, patch
level) (Resnet50 +
NSGA-II + SVM):

94.4% on HER2SC;
90.75% on
HER2GAN.

5-fold CV, 80%:20%. No external
validation
for either
dataset.

Roshan, 2020
[26]

Digital image analysis using a
free web application.

Clinical (2) 60 samples/307 images. ImmunoMembrane. Accuracy (class “2+”, patch level)
86%.

Ground truth: manual IHC
scoring by 2 pathologists
and ISH.

No external
validation.
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Table 2. Cont.

Author Brief Presentation of HER2
Classifying Method
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(Public/Clinical)

Total Number of
Cases/Number of Cases in
Each Class
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Marcuzzo,
2016 [53]

Surgical samples and core
biopsies were prepared for
digital analysis by VISIA
Imaging, and results were
compared with FISH results.

Clinical 176 cases:

132 (75%) surgical
specimens
44 (25%) biopsies.

Negative (1+/0): 23
Equivocal (2+): 85
Positive (3+): 44
Inadequate: 24.

Specific software
package:
VISIA Imaging s.r.l.
software (version
2.5.0.1, San Giovanni
Valdarno, Italy).

Sensitivity/specificity (3 classes,
WSI level)

100%/82%.

Comparison of results between
types of specimen, staining
distribution was done.

Combined
classes of
HER2 (0/1);
no external
validation.

Shovon, 2023
[54]

Several popular deep-learning
architectures were employed for
feature extraction and
classification. Various activation
functions were utilized to
achieve better results. The
classification results of the
model trained on H&E and IHC
images were compared.

Public BCI dataset:
4870 image pairs with a
resolution of 1024×1024 of
H&E and IHC, equal
number images of HER2 0,
1+, 2+, 3+.

DL, ML:
DenseNet201-
Xception-SIE (single
instance evaluation)
(with the best
performance);
InceptionResNetV2;
VGG16; VGG19;
ResNet101;
ResNet152V2;
EfficientNetB7;
InceptionV3.

Best accuracy (4 classes, patch
level)
DenseNet201-
Xception-SIE:
97.56% (on IHC data)

97.12% (on H&E data).

3896/977 images of
H&E and IHC for training and
validation.

No external
validation;
no clinical
dataset.

* [44]—180 images with a resolution of 2240 × 1856 pixels. There were no data at the WSI or patch level. ** [45]—52 WSIs (used for training) from a total of 79 samples from the
Warwick dataset were mentioned. There were no data on the remaining images. Abbreviations: HER2, human epidermal growth factor receptor 2; WSI, whole-slide image, ViTs, Vision
Transformer; RF, Random Forest; CV, cross-validation; DL, Deep Learning; ML, Machine Learning; IHC, immunohistochemistry; SVM, support vector machine; CNN, convolutional
neural network; ROI, region of interest; LSTM, long short-term memory; GAN, generative adversarial network (artificial intelligence algorithm); AIDPATH, Academia and Industry
Collaboration for Digital Pathology (dataset); RS1, ring study; AI, artificial intelligence; FISH, fluorescence in situ hybridization; IBC-NST, invasive breast carcinoma of no special type;
SISH, silver-enhanced in situ hybridization.
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3.1. Criteria for Performance Evaluation

Among the articles that met the inclusion criteria, 21/25 authors included accuracy
as one of the main performance evaluation criteria, while in three articles sensitivity and
specificity were presented as evaluation criteria (Table 2). Accuracy was applied at the
evaluation level of the WSI (nine studies) and patches (nine studies) (Figures 2–4). Three
articles provided accuracy on levels “Patch/WSI”, “Patch/Region of interest”, and “Foci
of view”.

Additionally, the accuracy assessment was carried out for studies with all classes of
HER2 (0, 1+, 2+, 3+) (13 studies), as well as for three classes where HER2 0 and 1+ were
combined into one group (0/1+, 2+, 3+) (five studies). Two studies provided accuracy for
HER2 low tumor, Wu et al. for (0, 1+), and Roshan et al. for (2+; both used clinical datasets.
Out of 10 studies reporting WSI-level classifier accuracy, 7 provided accuracy metrics for
each HER2 class, with the highest reported accuracy being 97.9% on a clinical dataset in the
study of Che et al. [40] (Figure 2).
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Figure 2. WSI level classifier accuracy for each class of HER2 (4 or 2) scores (n = 7) [26,32,33,40,47].
* Si Wu, 2023 [39]—for two classes of HER2 (0, 1+). ** Cordova, 2022 [41]—0.93 for the IHC + FISH
model, 0.88 for the IHC model.
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In four studies, the accuracy was provided for three classes of HER2. The highest
accuracy in this group was achieved by Kabir et al. on a public dataset [32] (Figure 3); they
also reported the accuracy for four classes of HER2 on the WSI and patch levels.

Of the 11 studies that reported patch-level classifier accuracy, 8 were assessed with
four classes of HER2 and 4 with three classes.

Among the eight articles that assessed classifier accuracy at the patch level for four
classes of HER2 scores, Mirimoghaddam et al. achieved the highest accuracy (98.8%) in
fully augmented datasets (training and testing sets) based on the Warwick dataset with
the InceptionResNetV2 algorithm [37]. This was the highest accuracy among all articles
included in the review. The second-highest accuracy in this group was demonstrated by
Saha at 98.33% [36] (Figure 4).

A series of works by Tewary et al. demonstrated accuracy at both the patch, image,
and ROI levels for three classes: in 2021, the patch accuracy was 93% on images from a
clinical dataset [43], 95% in 2022 using the Xception algorithm, and 96% with AutoIHCNet
on the Warwick dataset [35].

In addition to using accuracy as the primary performance metric, 16 studies also
included precision, recall, and the F1 score in their set of metrics (Table S2).

Pham et al. used a combination of precision, recall, and the F1 score for HER2 scoring
in four classes on patch level, where F1 was 0.78, and the highest precision and recall in the
testing set were in (2+) (0.909 and 0.937), and in (3+) (0.945 and 0.938) [38].

Five articles provided sensitivity and specificity as the main findings (Table 2): Palm
et al. demonstrated sensitivity in the AI workflow for the IHC algorithm at 93.8%, 100% for
the ISH algorithm, 96.1% for the specificity of the IHC algorithm, and 94.7% for the ISH
algorithm [48]; Yim et al. achieved a sensitivity of 74.0% in image analysis compared with
72.1% in manual scoring and a specificity of 94.7% in image analysis in contrast with 96.2%
in manual scoring [46]. Both authors used the HER2 4B5 algorithm in uPath Enterprise
software (Roche Diagnostic International, Rotkreuz, Switzerland). In a study by Koopman
et al. (2019), when comparing two platforms for DIA, the authors achieved sensitivities of
81.3% (Visiopharm) and 100% (HALO) and a specificity of 100% for both platforms [49].
Marcuzzo et al., in 2016, demonstrated a sensitivity of 100% and a specificity of 82% in their
analysis of three classes of HER2 on the WSI level by using a specific software package,
VISIA Imaging s.r.l. software (version 2.5.0.1, San Giovanni Valdarno, Italy) [53].
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3.2. Characteristics of the Applied Methods

Out of 25 studies, 20 proposed algorithms (including two that used a microscope with
AI) and five used algorithms from existing platforms. The vast majority of authors who
developed their algorithms used deep learning—18 papers. Among the studies in which
deep learning methods were used, two authors utilized an AI-assisted microscope with a
HER2 scoring algorithm adhering to the 2018 ASCO/CAP guidelines: Yue (2021) [28] incor-
porated an AI-enhanced microscope featuring an augmented reality display and AI-driven
computer unit for HER2 scoring based on membrane delineation and cell classification,
while Wu et al. [39] employed a microscope equipped with a computer unit housing a
HER2 scoring algorithm. An augmented reality module displayed the calculation results,
with the algorithm leveraging membrane delineation, cell classification, and cancerous
region segmentation.

ML was used as the sole method in two studies. Cordova et al. used a logistic
regression-based supervised ML model to classify HER2 of IHC analysis and demonstrated
one of the two highest accuracies in WSI level for all classes of HER2 scores (93%) [41]. In
2021, Tewary et al. utilized SVM with a Gaussian kernel for classification in an automated
HER2 scoring approach. In their study, the AutoIHC Analyzer achieved an accuracy of
93%, and the accuracy of the ImmunoMembrane was 78% [44].

A few authors employed both machine and deep learning techniques [34,45,51].
Mukundan et al. used deep learning methods for cell region detection and classification of
different types of cells (immune, stroma, tumor cells, and artifacts) and machine learning
algorithms (logistic regression and SVM) for classifying HER2 [34]. Khamenen et al. used a
combination of a superpixel-based SVM feature learning classifier for classifying epithelial
and stromal regions and a convolutional neural network (CNN) for segmenting membrane
regions in the WSI of breast cancer tissue samples [45].

Algorithms of currently available platforms were evaluated in five studies: a commer-
cially available HER2 4B5 algorithm for automated scoring of HER2 protein expression
levels in tissue samples developed by Roche Diagnostic International [46,48]. Koopman et al.
compared HER2 image analysis between two independent platforms (the Visiopharm Inte-
grator System (Denmark) and HALO (USA)) for inter-platform agreement, as well as with
manual scores obtained from two pathologists (+ ISH in equivocal cases) [49]. Marcuzzo
et al., in 2016, used VISIA Imaging software [53]. The publicly available ImmunoMem-
brane software (based on machine learning) was compared with manual assessment by
an expert pathologist in the study of Roshan et al. [26], and in 2021, Tewary et al. com-
pared HER2 scoring assessments from the proposed AutoIHC-Analyzer software (based on
deep learning) and the ImmunoMembrane software with manual assessment by an expert
pathologist [44].

3.3. Dataset Characteristics

Based on dataset utilization, studies can be categorized into three groups: those em-
ploying only clinical datasets, those using publicly available (and/or commercial) datasets,
and those utilizing mixed datasets. Furthermore, we were interested in assessing the
balance of HER2 score distributions across images and the number of WSIs employed.
Among the 25 selected articles, clinical datasets were used as the only dataset by 11 au-
thors [26,28,39–42,44,46,48,49,53] and in five studies as a component of mixed datasets
along with the Warwick dataset [37,38,45,51,52].

In terms of the quantity of utilized images, the smallest clinical dataset was attributed
to Yue et al. [28], comprising 50 WSIs. In this dataset, the authors deliberately omitted the
HER2 0 group, with the exact number of removed images not specified. They retained
12 WSIs of HER2 (1+), 30 of HER2 (2+) (comprising 13 FISH-negative and 17 FISH-positive
cases), and 8 WSIs of HER2 (3+). Conversely, the largest clinical dataset was reported by
Yim [46], encompassing 555 patients in their primary research. Within this dataset, they
documented 373 cases of HER2 (0), 61 cases of HER2 (1+), 46 cases of HER2 (2+) (including
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29 SISH-positive instances), and 75 cases of HER2 (3+). Additionally, they included SISH
results, with 451 cases recorded as SISH-negative and 104 as SISH-positive.

Among the 25 studies, 8 used publicly available datasets only, with the majority (6
studies) relying on the Warwick dataset [32–36,43]. The authors of these studies employed
the Warwick dataset from 40 to 172 WSIs. Vanderberghe et al. utilized a dataset sourced
either from AstraZeneca BioBank, Cambridge, UK (71 WSIs) or a commercial provider
(Dako Denmark A/S, Glostrup, Denmark) [47]. Pedraza at al. (2024) used the AIDPATH
dataset with 360 WSI, where 172 WSI came from Nottingham University Hospital (Warwick
dataset) [50]. Shovon et al. employed the BCI dataset with 4870 image pairs of H&E and
IHC [54].

A mixed dataset incorporating data from Warwick was used in five studies. Khamenen
et al. utilized the Warwick dataset (79 WSIs for testing) and a clinical dataset (48 WSIs) [45].
Pham et al. employed a combination of three datasets, with 370 WSIs in total. The dataset
comprised a clinical dataset (Erasme Hospital dataset, 270 WSIs), 50 WSIs from the Warwick
dataset, and 50 WSIs from AIDPATH (Academia and Industry Collaboration for Digital
Pathology) [38]. In the work of Mirimoghaddam et al., a combination of a clinical dataset
(126 patients) and the Warwick dataset (the exact number of slides used in this study was
not specified) was utilized [37]. Kabakçı et al. presented a clinical dataset combining the
ITU-MED-1 (13 cases) and ITU-MED-2 (10 cases) with the Warwick dataset (79 WSIs) as a
part of a mixed dataset [51].

Of the 20 studies that developed the algorithm approach, 11 utilized the Warwick dataset,
including those that achieved the highest accuracy rates [32,36,37]. In all studies where a
pre-existing algorithm was employed [26,46,48,49,53], a clinical dataset was utilized.

In 5 out of the 25 studies, the ground truth encompassed both components of HER2
diagnosis (IHC and ISH), which were applied across the entire datasets. In a study by Yim
et al. (2019), the HER2 status of the dataset comprising 555 cases was confirmed through
both IHC and SISH [46]. Koopman et al. (2019) also used both methods in the ground truth
of 152 carcinomas [49]. Yao et al. (2022) confirmed, by ISH, the status of HER2 in a dataset
of 228 cases [42]. In a study conducted by Gordova et al., the final diagnosis of 141 samples
was supplemented with FISH (IHC + FISH) and utilized as training output [41]. This model
exhibited enhanced performance in classifying HER2 photomicrographs compared to the
IHC-only model. The authors proposed that incorporating FISH results as an additional
dimension in the reference diagnosis could enhance the predictive capacity of the model,
resulting in superior classification performance and more precise prediction of HER2 status.
In a study by Roshan, all 60 samples were confirmed by ISH due to the study design (only
equivocal cases in the dataset).

In addition, Palm et al. used evaluation of ISH of WSIs of all cases with an IHC HER2
consensus score of 1+ or above (55 WSIs out of 97 samples in a whole study cohort, which
included 26 WSIs of 67 cases of primary tumors) [48].

Since deep learning in pathology requires a substantial volume of precisely anno-
tated data, we were interested in the details of the process of labeling or annotating the
images (at the WSI or patch level). Nineteen articles provided information regarding
the labeling of the dataset, seven of which labeled the dataset as part of the original
research [28,32,41,42,44,48,49]. Annotated datasets were mentioned in eight studies. The
data annotation involved delineating the tumor region as the initial step in a subsequent
HER2 assessment. Kabir et al. used annotation of patches on the presence of tumor cells
with the aim of discarding patches with no tumor cells or very small regions with in-house
constructed annotation software (1016 of 6641 patches were discarded) [32]. Pham et al.
(2023) annotated tumor areas in 71 WSIs (Erasme and AIDPATH datasets) using Calopix
software [38]. A large-scale annotation dataset (more than 20,000 image patches) was built
in the work of Wu et al. for the forthcoming training of a cancerous region segmentation
model (in addition to differentiating between in situ and invasive carcinomas, pathologists
manually exclude in situ carcinomas) [39]. In a study by Che (2023), annotating cancer areas
with concentrated and evenly distributed tumor cells of 23 WSIs from the total dataset (95
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WSIs) was performed by two pathologists [40]. Yue et al. annotated patches from a training
dataset (approximately 500 WSIs) in the preparation stage by identifying and delineating
tumor areas by marking them as points on the images [28]. In the study of Khamenen et al.,
experts annotated features related to the classification of epithelial and stromal regions
as the first step in automated scoring of HER2 and then features on tumor areas and cell
membrane staining patterns of the dataset provided by Acibadem Hospital for training the
segmentation model [45].

Vandenberghe et al. applied annotation with 18 biologically relevant features for each
annotated cell, which was subsequently used for training classical machine learning models
(SVM and random forests) [47]. Yim (2019) categorized the areas chosen by pathologists as
annotated, referred to as “foci of view” (FOVs), since they were based on specific criteria
on the intensity, thickness, and completeness of membrane staining observed in HER2
IHC-stained breast cancer specimens for further analysis [46].

In the majority of the studies included in the review, there was no strict balancing of
the clinical dataset. A clinically balanced dataset was utilized by [39,44]. In most studies
where the Warwick dataset was utilized, it was considered balanced [33,34,36,38,43].

Eight studies used cross-validation to evaluate the models: one study used 10-fold cross-
validation [47], and four studies utilized a 5-fold cross-validation method [32,33,37,42,52].
Pham et al. used cross-validation with three different splits [38], and Mukundan mentioned
a cross-validation set consisting of 30% of samples [34].

In 3 out of 25 studies, the authors indicated the use of an external dataset for validation.
Khameneh et al. utilized a dataset from Acibadem Hospital to train their segmentation
model and employed the Warwick dataset to test the model’s performance and validate
the results [45]. Pham evaluated the proposed pipeline using the AIDPATH dataset as
an external dataset [38]. Kabakçı also used the Warwick dataset for external validation
purposes after training and testing on the ITU-MED datasets [51].

Pedraza utilized the AIDPATH dataset, which was obtained from three medical centers.
The dataset was divided into three parts: 70% for training, 20% for validation, and 10% for
a hold-out test set [50].

Data augmentation was mentioned in 13 of 25 studies. In the selected studies, six
augmentation techniques were used (Table S3). Almost all authors resorted to geometric
augmentation in combination with other methods [28,38,42], as well as the sole type of
augmentation [32,33,35,40,43,50–52]. One study [37] used image generation techniques,
such as the conditional generative adversarial network (CGAN) model, to create new
synthetic images based on patterns learned from a dataset to increase the sample size.
While image generation is a related concept that involves creating entirely new images
from scratch, it is not typically considered a form of augmentation [55].

3.4. Aspects of Clinical Use Perspectives

Although components of clinical application such as clinical validation and integration
with clinical workflows were considered significant, no evidence of these aspects was found
in the selected articles. Nevertheless, other important aspects of these studies should be
highlighted in terms of clinical adaptation. Specifically, intratumoral heterogeneity and
low HER2 expression were noted in six studies [38,39,42,47,48,53].

Wu et al. discussed the impact of HER2 intratumoral heterogeneity on the interpreta-
tion of HER2 IHC scores [39]. The authors noted that HER2 heterogeneity can contribute to
the poor consistency of HER2 interpretation, especially in cases with HER2-low tumors.
The intratumoral heterogeneity of HER2 was evaluated across different interpretation
approaches, revealing significant heterogeneity in HER2 (0) (ultra-low) of 28% and 86%
for HER2 (1+) cases. Pathologist review showed high accuracy in cases with homogenous
staining but decreased accuracy in cases with heterogeneity. The AI algorithm significantly
improved the accuracy of identifying heterogeneity types (accuracy of 0.68 to 0.89), particu-
larly when detecting scattered-type heterogeneity, where the improvement was notable
from 0.49 to 0.79.
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In the work of Pham et al., cases of boundary or heterogeneous slides were described
in which pathologists had difficulty deciding on the final label for tumor areas [38]. In such
cases, the authors suggest the utility of the proposed approach, which includes a spatial
class map representation and tumor surface percentages for invasive cancer within the
slide, as a useful tool to assist pathologists.

In a study by Vandenberghe et al., 12 discordant cases were reassessed independently
after applying the deep learning-based image analysis algorithm [47]. Heterogeneity
in HER2 staining was significantly greater in discordant cases than in concordant. The
presence of HER2 staining heterogeneity was identified as a significant factor associated
with disagreements between automated scoring and pathologist assessments, emphasizing
the importance of careful assessment in challenging cases to ensure diagnostic accuracy.
Additionally, the study highlighted that technical artifacts and poor tissue quality can
contribute to heterogeneity in HER2 staining, further complicating diagnostic ambiguity.

Yao et al. also reported that discordant HER2 IHC results were mostly caused by high
intratumoral heterogeneity (6 of 13), and the identification of HER2 staining heterogeneity
was a major factor in the disparity between automated scoring and pathologists [42].
The authors found that staining variability within tumor cells, nonspecific cytoplasmic
staining, and nonspecific staining in ductal carcinoma in situ were key factors contributing
to misinterpretations.

In the study by Palm, it was observed that, among the HER2-low tumor group, the AI
(utilizing the HER2 4B5 algorithm) showed moderate concordance with the established
ground truth (Cohen’s κ 0.54) [48]. The AI identified more tumors as HER2-low than the
ground truth, resulting in a 16% increase in the proportion of identified HER2-low tumors.
Pathologists demonstrated substantial agreement when classifying HER2-low tumors,
with slightly lower but still considerable concordance observed within the “AI-assisted
Pathologists” subgroup.

In a study by Marcuzzo et al., in 164 WSIs, 15% were found to be heterogeneous
cases, and the percentage of FISH-discordant cases was 17% vs. 2% in homogeneous
samples. The authors noted that variations in staining may arise either from true biological
differences, such as focal hyperexpression, or from artifacts related to sample handling,
fixation, and processing.

4. Discussion

While direct evidence of the clinical application of the digital image analysis of HER2
is still lacking, several important points highlight why developing this field is crucial, par-
ticularly given the significance of HER2. Advancing research in this area aims to overcome
key challenges in assessing outcomes for different types of cancer, including breast cancer.
The importance of accurately evaluating HER2 expression levels in breast cancer cannot be
overstated. HER2 overexpression has dramatic clinical implications for patients, as gene
amplification or protein overexpression leads to excessive and uncontrolled proliferation,
enhanced angiogenesis and oncogenesis, and dysregulated apoptosis [4,56]. Breast cancer
can have up to 25–50 copies of the HER2 gene and up to 40–100-fold increases in HER2
protein, resulting in the expression of 2 million receptors on the surface of tumor cells [57].
HER2 overexpression occurs in 15–30% of cases of invasive breast cancer [2,58].

HER2-positive breast cancer is characterized by its aggressive nature, poor prog-
nosis, reduced sensitivity to anthracycline-based chemotherapy, and better response to
HER2-targeted therapies such as trastuzumab, lapatinib, and pertuzumab [59,60], which
significantly improve disease-free and overall survival rates.

Pathologists currently face challenges related to the performance, accuracy, and ob-
jectivity of assessments. Visual analysis of IHC for HER2 in BC is a complex and time-
consuming process that requires a high level of expertise, particularly in cases of hetero-
geneous staining [48]. Moreover, in situ hybridization is costly and not always available,
limiting its use for screening HER2 status in BC. Therefore, improving HER2 diagnostics,
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which also includes the application of computational algorithms, is an anticipated process
that is undergoing evolutionary translational phases.

This systematic review addresses the effectiveness of digital image analysis for the
HER2 immunohistochemical marker in breast cancer within clinical settings, focusing
on performance evaluation criteria and key components of the approach. Our research
questions were: How effective are current computational algorithms at detecting HER2
status in digital images? What are the common validation methods and dataset character-
istics used in these studies? Is there standardization of algorithm evaluations of clinical
applications that can improve the clinical utility and reliability of computational tools for
HER2 detection in digital image analysis?

In terms of the effectiveness of computational approaches, the current algorithms
demonstrate high accuracy in detecting HER2 status, with reported accuracies ranging
from 86% to 98% at the WSI level and even higher at the patch level. In this review, the
highest performance criteria were achieved on a dataset that was fully synthesized by a
CGAN-based model used for both training and testing [37]. However, when using clinical
datasets, performance may decrease, indicating possible limitations in the generalizability
of the algorithms. This is due to differences in clinical data characteristics, such as sample
diversity and image quality. On a clinical dataset with original images under the same
conditions, the authors achieved a significantly lower accuracy. The authors highlighted
the importance of the quality of the synthesized images generated by the CGAN model,
which closely resembled that of the original clinical images. Despite the significant accuracy
rates achieved, these results may not fully translate to clinical settings due to variations
in real-world data, indicating that while its effectiveness is established, its applicability in
clinical practice remains uncertain.

In 88% of studies, validation was performed on the same dataset used for model
training. Only three authors (12%) indicated validation on a different dataset (external
validation), which may serve as a more reliable indicator of algorithm performance gener-
alization. A lack of validation on an external dataset is common in various other domains
of AI applications within the field of pathology [61]. In a recent study by Tafavvoghi
et al. on applying DL publicly available datasets of BC hematoxylin and eosin WSI, it
was found that only 28% of the studies utilized multiple datasets, and 14% employed an
external validation set. The authors proposed that there is a possibility of overestimating
the performance of other developed models [62]. A meta-analysis conducted by Liu et al.
in 2019, which compared the diagnostic accuracy of deep learning algorithms in medical
imaging with that of specialists, also highlighted the issue that many deep learning studies
lack external validation (of the 82 studies included, 25 studies had out-of-sample external
validation) and adequate reporting [63].

In the context of utilizing algorithms for the digital analysis of biomedical images,
dataset requirements play a crucial role in ensuring the accuracy and generalizability of
the proposed methods [64,65]. We incorporated in our study an analysis of the availability,
size, representativeness, balance, labeling, and ground truth methodology within datasets.
In general, the challenge with the availability and quality of the dataset is addressed by
utilizing public datasets or applying different methods of augmentation.

Both publicly available and clinical datasets were employed in the studies. There is a
positive trend of using clinical datasets in experimental works: 64% of studies employed
clinical datasets as either the only type or as a component of mixed datasets. This is an
encouraging sign for the practical application of computational algorithms for determining
HER2 status in real-world clinical settings.

The Warwick dataset was used in 44% of the selected studies. This is a public dataset
that was organized by the University of Warwick, the University of Nottingham, and the
Academic–Industrial Collaboration for Digital Pathology (AIDPATH) consortium for the
HER2 challenge contest workshop held in 2016 [23]. The Warwick dataset consists of 172
WSIs (both IHC and H&E-stained slides) from 86 cases of invasive BC, with 79 IHC WSIs
scanned by a Hamamatsu NanoZoomer C9600 scanner. The ground truth was provided
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as the clinical reports by at least two specialist consultants from a tertiary referral center
for breast pathology (Nottingham University Hospitals, NHS Trust) for 52 cases (training
dataset). The testing dataset comprised 28 cases, consisting of IHC- and H&E-stained WSIs
without ground truth information supplied or publicly shared.

Aside from the Warwick dataset, which represents HER2 IHC, there are existing
publicly available datasets, such as ITU-MED-1 (consisting of 13 cases and 191 tissue images)
and ITU-MED-2 (comprising 10 cases and 148 tissue images). These datasets include
ground-truth labels for both training and test sets, offering a distribution of sample scores
that is both balanced and unbalanced [51,66]. In general, using publicly available datasets
addresses issues of accessibility, consistent labeling, and experimental repeatability [67].
However, in clinical practice, it may not fully represent real-world challenges, such as
image quality and quantity.

In the studies included in the review, ground truth for breast cancer most commonly
involved expert pathologist opinion (68%)—for instance, two pathologists (an expert
pathologist and a senior resident) [28,32,49] or three pathologists [42]. Twenty percent of
studies utilized ISH in the ground truth analysis of the entire dataset.

Expert labels are an essential requirement for implementing the digital analysis of
biomedical images [68]. In our review, we differentiated the labeling and annotating proce-
dures according to Langlotzet et al., 2018, where labeling is the assignment of a category
to an entire image, and annotation provides information about a particular component of
an image [64]. Datasets usually require substantial effort for high-quality annotation to
delineate the tumor region and identify HER2 status features, but this is a requirement for
the further application of algorithms [69].

The size of the dataset is an important factor influencing effectiveness [70]. In 48%
of the studies in this review, data augmentation was employed, including the generation
of new synthetic images. Data augmentation in digital image analysis is used to increase
the volume of training data by creating new variations of images based on existing ones.
According to Moreno (2020), data augmentation can improve the prediction accuracy in
the 1–3% range [71].

The representativeness of the sample ensures that the analysis results will reflect the
real characteristics of the population to which they will be applied. A study by Althnian
et al. demonstrated that the overall effectiveness of classifiers is more dependent on the
representativeness of the sample than its size [72]. In digital HER2 analysis, representa-
tiveness implies the distribution of HER2-positive and HER2-negative cases, reflecting the
real patient population. With the accumulation of knowledge on the molecular biology of
breast cancer, there is currently a trend toward identifying another group, the HER2-low
group, due to its clinical significance [73]. A more balanced representation of classes helps
improve the model’s performance in model training [74]. The generation of new synthetic
images is a technique for addressing the imbalance between class samples by adjusting
the distribution of classes to prevent the model from being biased toward the majority
class [55].

Based on the analysis of available articles, there is currently no uniform standardization
for evaluating algorithms for clinical use, which makes it difficult to improve the clinical
utility and reliability of computational tools for HER2 detection in digital image analysis.
Different studies use different sets of criteria to evaluate algorithms: 64% of studies used a
combination of accuracy, precision, recall, and F1 as a set of performance measures [75,76].
The accuracy of the articles varied depending on the HER2 score level, with the highest
accuracy observed in cases with clearly positive or negative HER2 values. In contrast, cases
with a HER2 score of 2+ demonstrated only average accuracy. Attempts to interpret HER2
IHC in equivocal 2+ cases using digital image analysis are illustrated in studies [77,78].
Since a HER2 score of 2+ does not provide a definitive result, further testing with in situ
hybridization, which is expensive and not always available, is required. Therefore, from
a clinical practice perspective, achieving high accuracy in interpreting equivocal HER2
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cases using digital image analysis is essential, particularly for the clinical implementation
of these algorithms.

The studies use a variety of datasets and assessment levels, including three or four
classes (0, 1+, 2+, 3+) and image analysis levels such as whole-slide images (WSIs) and
patches. The diversity of methods and approaches leads to difficulties in comparing results
and reduces confidence in the applicability of algorithms in real clinical practice. The need
for standardization becomes obvious to improve the quality and reliability of diagnostics.

The studies primarily emphasized developing and assessing deep learning-based
computational approaches for automatically scoring HER2 in breast cancer using WSIs.
The articles predominantly focused on utilizing AI, particularly for describing the technical
aspects of system development and evaluation for HER2 IHC performance, as well as for
conducting comparative analyses with existing methods.

When the analysis includes the AI approach for segmentation and classification, there
is a clear predominance in the utilization of algorithms based on deep learning, a subfield
of machine learning [79]. This may be attributed to the fact that the search was initiated
in 2013, coinciding with the active development of convolutional neural networks in
various domains, including biomedical imaging, particularly in cancer detection [80–82].
Histopathological images constitute a large dataset with high-resolution and complex
tissue structures [83]. Deep learning algorithms offer clear advantages over humans when
handling vast amounts of data, processing intricate nondeterministic data, and conducting
a thorough analysis of potential information in datasets. Deep learning directly extracts
features from raw data and utilizes multiple hidden layers to generate output data [84,85].
Accordingly, deep learning has been actively applied in digital histopathology, which is
characterized by the complexity and diversity of data within images [86,87].

In various studies, intratumoral heterogeneity is observed in around 40% of breast
cancers, mostly occurring in HER2-low tumors and contributing to resistance to anti-
HER2 therapy [73,88–90]. In the majority of published data from completed and ongoing
clinical studies, HER2-low status is defined as IHC 1+ or 2+ combined with a negative
ISH test result [91]. While there are insufficient data to designate HER2-low breast cancer
as an individual disease subtype to date, it remains important for patient selection, as
certain individuals may derive treatment benefits [92–95]. A poor response to neoadjuvant
chemotherapy determines the clinical significance of HER2-low tumors [96], but at the
same time, correlates with favorable survival in hormone-positive patients compared with
HER2-zero patients [97].

In this review, one-quarter of the articles (24%) addressed additional questions per-
tinent to both clinical significance and relevance for HER2 digital analysis: intratumoral
heterogeneity and low HER2 status. In the automated quantitative assessment of HER2, the
research emphasizes the challenges associated with evaluating discordant cases, primarily
stemming from the high heterogeneity of intratumoral staining in HER2 IHC [23,42,47].
Kabir reported that the lowest precision and recall were in the HER2 (1+) group due to its
staining features and similarity to the HER2 (0) group, but the separation of these groups
was noticed as important in terms of therapeutic benefits.

Based on the included articles, the effectiveness of digital image analysis for HER2
detection and its applicability in real-world settings can be enhanced through several
strategies. First, incorporating larger and more diverse datasets from multiple centers
is crucial for improving model performance [33,35,36,41,48]. Additionally, integrating
additional biomarkers and data sources, such as clinical and genomic information, can
significantly enhance the predictive power of the approach [33,38,41].

Improving the interpretability and explainability of models is essential for building
trust among medical professionals [39]. Standardizing sample processing and staining will
enhance the quality of samples for digital analysis [53], and ensuring high-quality immuno-
histochemistry (IHC) slides will lead to better outcomes with digital image analysis [49].
Furthermore, further validation with larger and more diverse clinical datasets is necessary
to ensure the robustness of the methods [26,38,39,46].
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There is also a need for longitudinal studies to evaluate the long-term effectiveness
and reliability of AI-based image analysis tools in clinical settings [39]. Such studies can
provide insights into how these tools impact patient outcomes over time and help identify
any potential issues that might arise with prolonged use.

Integrating AI systems more seamlessly into clinical workflows, ensuring real-time
feedback for pathologists, and addressing regulatory compliance and user-friendly in-
terfaces are important areas for future research and development [28,39]. Additionally,
investigating the effects of training set size and the depth of experience of the operator
annotating the training set on model performance is essential for optimization [47]. These
strategies collectively aim to refine digital image analysis techniques for improved HER2
detection and broader clinical applicability.

Our systematic review has certain limitations. One of the primary limitations of our
study is the restricted access to bibliographic sources; we relied on only two bibliographic
sources. Additionally, we did not utilize technical sources such as IEEE. The majority of
IEEE publications were conference papers (CPAPER) and were excluded from our search
during the screening stage.

A variety of study designs are noted among authors in this field. Studies include
comparative analyses of different platforms, evaluations of the effectiveness of various
segmentation and classification algorithms, and comparisons with manual methods. The
absence of a unified approach to defining ground truth is acknowledged. This diversity
likely offers ample opportunities for interpreting results but also poses a challenge to
practical implementation due to the lack of standardization in evaluation methodologies.
The absence of standardization in algorithm methodology and assessment may impact
the comparability of results across different studies and the practical implementation of
developed methods.

In nearly all of the articles described except for three, validation was conducted on
datasets collected under identical conditions. From the perspective of potential practical
applications, we consider this a significant limitation. Validating on a single dataset, part
of which was already used for training, may result in an overestimation of the model’s
true performance. This can lead to overfitting and an inaccurate assessment of the model’s
ability to generalize to new data. Additionally, using the same dataset for both training
and validation may obscure overfitting issues, thereby rendering the model less capable of
generalizing to new data due to insufficient testing across diverse datasets.

The most significant limitation was the inability to apply the accuracy criteria achieved
in the studies by the authors in practical settings, as information on the implementation of
these criteria in practice is lacking.

While our study utilized the Newcastle—Ottawa Scale (NOS) to assess the quality of
reviewed articles with a focus on clinical relevance, we acknowledge a key limitation: the
lack of a dedicated methodology for appraising articles concerning the clinical application
of AI approaches. This underscores the necessity for more refined and standardized criteria
tailored specifically for evaluating AI articles within clinical contexts. One promising
avenue is the potential utilization of QUADAS-AI, a framework awaiting further validation
and real-world testing.

Thus, the evaluation criteria for algorithm effectiveness in the digital analysis of HER2
IHC images in breast cancer depend on the interaction of various factors. It is essential to
recognize that the successful implementation of AI in digital pathology for a wide range of
applications requires careful consideration of various factors to ensure accuracy, reliability,
and clinical utility. Achieving high accuracy in the digital analysis of HER2 IHC images in
breast cancer is crucial but not the sole criterion to be considered for future application in
clinical practice under real-world conditions.

5. Conclusions

This systematic review highlights advances in digital HER2 analysis in breast cancer,
emphasizing ongoing research efforts and improvements in accuracy. Although existing
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studies demonstrate promising results and explore key components for real-world imple-
mentation, such as the use of clinical datasets, further research is needed to integrate these
methods into clinical workflows to ultimately enhance patient care.

Future research should address key issues such as developing robust external vali-
dation frameworks, incorporating diverse and representative clinical datasets, improving
annotation and ground truth standards, and focusing on tumors with heterogeneity and
HER2-low expression. By targeting these areas, researchers can contribute to the develop-
ment of more reliable and clinically applicable computational tools for HER2 detection.
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