Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Permanent 2D TET Cell Lines
Cell Line | Primary Tissue | Donor | Passages Survived * | Reference |
---|---|---|---|---|
Ty-82 | NUT carcinoma | 22-year-old male | n.s. | [20] |
ThyL-6 | Thymic carcinoma, undifferentiated | 57-year-old male | n.s. | [23] |
T1889 | Thymic carcinoma, poorly differentiated | 56-year-old male | 85 | [24] |
MP57 | Thymic carcinoma | 45-year-old male | >80 | [32] |
IU-TAB-1 | Thymoma, type AB | 53-year-old male | n.s. | [34] |
Thy0517 | Thymoma, type AB | 50-year-old male | 160 | [28] |
T68 | Thymoma, type AB | 44-year-old male | 20 | [31] |
3. Ex Vivo Isolation and Cultivation of TET Cells
4. TEC-Tailored Media Supplements
5. Long-Term Cultivation: Replicative Senescence and Morphological Shifts
6. Advanced 3D TET Cell Culture Models
7. Alternatives to Isolated Cell Cultures
8. Future Directions
9. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart, 4th ed.; WHO: Geneve, Switzerland, 2015; Volume 7. [Google Scholar]
- Rich, A.L. Epidemiology of thymoma. J. Thorac. Dis. 2020, 12, 7531–7535. [Google Scholar] [CrossRef] [PubMed]
- Strobel, P.; Hartmann, E.; Rosenwald, A.; Kalla, J.; Ott, G.; Friedel, G.; Schalke, B.; Kasahara, M.; Tomaru, U.; Marx, A. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology 2014, 64, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Marx, A.; Pfister, F.; Schalke, B.; Saruhan-Direskeneli, G.; Melms, A.; Strobel, P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun. Rev. 2013, 12, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Kurup, A.; Loehrer, P.J., Sr. Thymoma and thymic carcinoma: Therapeutic approaches. Clin. Lung Cancer 2004, 6, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Ruffini, E.; Marx, A.; Faivre-Finn, C.; Peters, S.; Committee, E.G. Thymic epithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. 5), v40–v55. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Marx, A.; Chen, W.H.; Yong, J.; Puppe, B.; Stroebel, P.; Mueller-Hermelink, H.K. New WHO histologic classification predicts prognosis of thymic epithelial tumors: A clinicopathologic study of 200 thymoma cases from China. Cancer 2002, 95, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Loehrer, P.J., Sr.; Kim, K.; Aisner, S.C.; Livingston, R.; Einhorn, L.H.; Johnson, D.; Blum, R. Cisplatin plus doxorubicin plus cyclophosphamide in metastatic or recurrent thymoma: Final results of an intergroup trial. The Eastern Cooperative Oncology Group, Southwest Oncology Group, and Southeastern Cancer Study Group. J. Clin. Oncol. 1994, 12, 1164–1168. [Google Scholar] [CrossRef]
- Loehrer, P.J., Sr.; Jiroutek, M.; Aisner, S.; Aisner, J.; Green, M.; Thomas, C.R., Jr.; Livingston, R.; Johnson, D.H. Combined etoposide, ifosfamide, and cisplatin in the treatment of patients with advanced thymoma and thymic carcinoma: An intergroup trial. Cancer 2001, 91, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Seoud, D.E. Multimodality treatments in locally advanced stage thymomas. Hematol. Oncol. Stem Cell Ther. 2009, 2, 340–344. [Google Scholar] [CrossRef]
- Thomas, A.; Rajan, A.; Berman, A.; Tomita, Y.; Brzezniak, C.; Lee, M.J.; Lee, S.; Ling, A.; Spittler, A.J.; Carter, C.A.; et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: An open-label phase 2 trial. Lancet Oncol. 2015, 16, 177–186. [Google Scholar] [CrossRef]
- Strobel, P.; Bargou, R.; Wolff, A.; Spitzer, D.; Manegold, C.; Dimitrakopoulou-Strauss, A.; Strauss, L.; Sauer, C.; Mayer, F.; Hohenberger, P.; et al. Sunitinib in metastatic thymic carcinomas: Laboratory findings and initial clinical experience. Br. J. Cancer 2010, 103, 196–200. [Google Scholar] [CrossRef] [PubMed]
- NCCN Guidelines® Updates. J. Natl. Compr. Canc. Netw. 2013, 11, 562–594. [CrossRef]
- Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.; McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33, 244–258.e10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Thomas, A.; Lau, C.; Rajan, A.; Zhu, Y.; Killian, J.K.; Petrini, I.; Pham, T.; Morrow, B.; Zhong, X.; et al. Mutations of epigenetic regulatory genes are common in thymic carcinomas. Sci. Rep. 2014, 4, 7336. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, O.B.; Nusser, A.; Boehm, T. Human thymoma-associated mutation of the GTF2I transcription factor impairs thymic epithelial progenitor differentiation in mice. Commun. Biol. 2022, 5, 1037. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Kim, I.K.; Bian, J.; Polyzos, A.; Di Giammartino, D.C.; Zhang, Y.W.; Luo, J.; Hernandez, M.O.; Kedei, N.; Cam, M.; et al. A Knock-In Mouse Model of Thymoma With the GTF2I L424H Mutation. J. Thorac. Oncol. 2022, 17, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Mendogni, P.; Affatato, R.; Cabri, E.; Chiappa, M.; Ndembe, G.; Tosi, D.; Del Gobbo, A.; Fratelli, M.; Pardini, E.; Petrini, I.; et al. Isolation and characterization of two newly established thymoma PDXs from two relapses of the same patient: A new tool to investigate thymic malignancies. J. Exp. Clin. Cancer Res. 2022, 41, 343. [Google Scholar] [CrossRef] [PubMed]
- Strobel, P.; Marx, A. The Way Ahead: Lessons Learned from Decades of Cancer Research on Thymomas and Thymic Carcinomas. Cancers 2024, 16, 1040. [Google Scholar] [CrossRef]
- Kuzume, T.; Kubonishi, I.; Takeuchi, S.; Takeuchi, T.; Iwata, J.; Sonobe, H.; Ohtsuki, Y.; Miyoshi, I. Establishment and characterization of a thymic carcinoma cell line (Ty-82) carrying t(15;19)(q15;p13) chromosome abnormality. Int. J. Cancer 1992, 50, 259–264. [Google Scholar] [CrossRef]
- French, C.A.; Miyoshi, I.; Aster, J.C.; Kubonishi, I.; Kroll, T.G.; Dal Cin, P.; Vargas, S.O.; Perez-Atayde, A.R.; Fletcher, J.A. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am. J. Pathol. 2001, 159, 1987–1992. [Google Scholar] [CrossRef]
- Roden, A.C. Molecularly Defined Thoracic Neoplasms. Adv. Anat. Pathol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Inai, K.; Takagi, K.; Takimoto, N.; Okada, H.; Imamura, Y.; Ueda, T.; Naiki, H.; Noriki, S. Multiple inflammatory cytokine-productive ThyL-6 cell line established from a patient with thymic carcinoma. Cancer Sci. 2008, 99, 1778–1784. [Google Scholar] [CrossRef] [PubMed]
- Ehemann, V.; Kern, M.A.; Breinig, M.; Schnabel, P.A.; Gunawan, B.; Schulten, H.J.; Schlaeger, C.; Radlwimmer, B.; Steger, C.M.; Dienemann, H.; et al. Establishment, characterization and drug sensitivity testing in primary cultures of human thymoma and thymic carcinoma. Int. J. Cancer 2008, 122, 2719–2725. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.; Mazzeo, P.; Koch, R.; Bosherz, M.S.; Welter, S.; von Hammerstein-Equord, A.; Hinterthaner, M.; Cordes, L.; Belharazem, D.; Marx, A.; et al. Functional apoptosis profiling identifies MCL-1 and BCL-xL as prognostic markers and therapeutic targets in advanced thymomas and thymic carcinomas. BMC Med. 2021, 19, 300. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Belharazem, D.; Li, L.; Kneitz, S.; Schnabel, P.A.; Rieker, R.J.; Korner, D.; Nix, W.; Schalke, B.; Muller-Hermelink, H.K.; et al. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas—Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c. Front. Oncol. 2013, 3, 316. [Google Scholar] [CrossRef] [PubMed]
- Petrini, I.; Meltzer, P.S.; Zucali, P.A.; Luo, J.; Lee, C.; Santoro, A.; Lee, H.S.; Killian, K.J.; Wang, Y.; Tsokos, M.; et al. Copy number aberrations of BCL2 and CDKN2A/B identified by array-CGH in thymic epithelial tumors. Cell Death Dis. 2012, 3, e351. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Y.; Zhang, P.; Chen, Y.; Liu, Y.; Guo, F.; Zhang, H. Establishment and characterization of a novel cell line derived from thymoma with myasthenia gravis patients. Thorac. Cancer 2015, 6, 194–201. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, S.; Wang, Y.; Chen, Y.; Zhang, P.; Liu, Y.; Zhang, H.; Zhang, P.; Tao, Z.; Xiong, K. High expression of KITLG is a new hallmark activating the MAPK pathway in type A and AB thymoma. Thorac. Cancer 2020, 11, 1944–1954. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Chen, Y.; Wang, Y.; Liu, Y.; Zhang, P. Downregulation of HMGB1 in thymoma cells affects T cell differentiation. Cent. Eur. J. Immunol. 2023, 48, 237–244. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, Z.; Zhu, L.; Yang, X.; Zhao, W.H.; Guan, S.; Fang, W. Establishment and characterization of a novel cell line derived from type AB thymoma. Transl. Cancer Res. 2018, 7, 1634–1642. [Google Scholar] [CrossRef]
- Alberobello, A.T.; Wang, Y.; Beerkens, F.J.; Conforti, F.; McCutcheon, J.N.; Rao, G.; Raffeld, M.; Liu, J.; Rahhal, R.; Zhang, Y.W.; et al. PI3K as a Potential Therapeutic Target in Thymic Epithelial Tumors. J. Thorac. Oncol. 2016, 11, 1345–1356. [Google Scholar] [CrossRef]
- Abu Zaid, M.I.; Radovich, M.; Althouse, S.; Liu, H.; Spittler, A.J.; Solzak, J.; Badve, S.; Loehrer, P.J., Sr. A phase II study of buparlisib in relapsed or refractory thymomas. Front. Oncol. 2022, 12, 891383. [Google Scholar] [CrossRef] [PubMed]
- Gokmen-Polar, Y.; Sanders, K.L.; Goswami, C.P.; Cano, O.D.; Zaheer, N.A.; Jain, R.K.; Kesler, K.A.; Nelson, R.P., Jr.; Vance, G.H.; Smith, D.; et al. Establishment and characterization of a novel cell line derived from human thymoma AB tumor. Lab. Investig. 2012, 92, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Seach, N.; Wong, K.; Hammett, M.; Boyd, R.L.; Chidgey, A.P. Purified enzymes improve isolation and characterization of the adult thymic epithelium. J. Immunol. Methods 2012, 385, 23–34. [Google Scholar] [CrossRef]
- Stoeckle, C.; Rota, I.A.; Tolosa, E.; Haller, C.; Melms, A.; Adamopoulou, E. Isolation of myeloid dendritic cells and epithelial cells from human thymus. J. Vis. Exp. 2013, 19, e50951. [Google Scholar] [CrossRef]
- Jain, R.; Gray, D.H.D. Isolation of thymic epithelial cells and analysis by flow cytometry. Curr. Protoc. Immunol. 2014, 107, 3–26. [Google Scholar] [CrossRef]
- van der Kwast, T.H.; van Vliet, E.; Cristen, E.; van Ewijk, W.; van der Heul, R.O. An immunohistologic study of the epithelial and lymphoid components of six thymomas. Hum. Pathol. 1985, 16, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Chilosi, M.; Iannucci, A.M.; Pizzolo, G.; Menestrina, F.; Fiore-Donati, L.; Janossy, G. Immunohistochemical analysis of thymoma. Evidence for medullary origin of epithelial cells. Am. J. Surg. Pathol. 1984, 8, 309–318. [Google Scholar] [CrossRef]
- Strobel, P.; Chuang, W.Y.; Chuvpilo, S.; Zettl, A.; Katzenberger, T.; Kalbacher, H.; Rieckmann, P.; Nix, W.; Schalke, B.; Gold, R.; et al. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: Role of MHC class II and AIRE genes and genetic polymorphisms. Ann. N. Y Acad. Sci. 2008, 1132, 143–156. [Google Scholar] [CrossRef]
- Zhang, X.; Schalke, B.; Kvell, K.; Kriegsmann, K.; Kriegsmann, M.; Graeter, T.; Preissler, G.; Ott, G.; Kurz, K.; Bulut, E.; et al. WNT4 overexpression and secretion in thymic epithelial tumors drive an autocrine loop in tumor cells in vitro. Front. Oncol. 2022, 12, 920871. [Google Scholar] [CrossRef]
- Varecza, Z.; Kvell, K.; Talaber, G.; Miskei, G.; Csongei, V.; Bartis, D.; Anderson, G.; Jenkinson, E.J.; Pongracz, J.E. Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence. Mech. Ageing Dev. 2011, 132, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Wertheimer, T.; Velardi, E.; Tsai, J.; Cooper, K.; Xiao, S.; Kloss, C.C.; Ottmuller, K.J.; Mokhtari, Z.; Brede, C.; deRoos, P.; et al. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci. Immunol. 2018, 3, eaal2736. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Kim, B.S.; Kim, H.J.; Lee, C.W.; Yoo, H.J.; Kim, J.B.; Yoon, S. Upregulation of receptor activator of nuclear factor-kappaB ligand expression in the thymic subcapsular, paraseptal, perivascular, and medullary epithelial cells during thymus regeneration. Histochem. Cell Biol. 2005, 123, 491–500. [Google Scholar] [CrossRef]
- Akiyama, N.; Shinzawa, M.; Miyauchi, M.; Yanai, H.; Tateishi, R.; Shimo, Y.; Ohshima, D.; Matsuo, K.; Sasaki, I.; Hoshino, K.; et al. Limitation of immune tolerance-inducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation. J. Exp. Med. 2014, 211, 2425–2438. [Google Scholar] [CrossRef]
- Irla, M. RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells. Front. Immunol. 2020, 11, 623265. [Google Scholar] [CrossRef]
- Rossi, S.W.; Jeker, L.T.; Ueno, T.; Kuse, S.; Keller, M.P.; Zuklys, S.; Gudkov, A.V.; Takahama, Y.; Krenger, W.; Blazar, B.R.; et al. Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 2007, 109, 3803–3811. [Google Scholar] [CrossRef] [PubMed]
- Revest, J.M.; Suniara, R.K.; Kerr, K.; Owen, J.J.; Dickson, C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 2001, 167, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Hadden, J.W.; Galy, A.; Chen, H.; Hadden, E.M. A pituitary factor induces thymic epithelial cell proliferation in vitro. Brain Behav. Immun. 1989, 3, 149–159. [Google Scholar] [CrossRef]
- Chu, Y.W.; Schmitz, S.; Choudhury, B.; Telford, W.; Kapoor, V.; Garfield, S.; Howe, D.; Gress, R.E. Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 2008, 112, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- Alawam, A.S.; Anderson, G.; Lucas, B. Generation and Regeneration of Thymic Epithelial Cells. Front. Immunol. 2020, 11, 858. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Goldschneider, I.; Lai, L. In vivo administration of the recombinant IL-7/hepatocyte growth factor beta hybrid cytokine efficiently restores thymopoiesis and naive T cell generation in lethally irradiated mice after syngeneic bone marrow transplantation. J. Immunol. 2011, 186, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Hu, R.; Song, Y.; Liu, Y.; Lai, L. Targeted deletion of c-Met in thymic epithelial cells leads to an autoimmune phenotype. Immunol. Cell Biol. 2018, 96, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Zheng, X.; Zheng, Y. Cell-type-specific role of lamin-B1 in thymus development and its inflammation-driven reduction in thymus aging. Aging Cell 2019, 18, e12952. [Google Scholar] [CrossRef] [PubMed]
- Galy, A.H.; Hadden, E.M.; Touraine, J.L.; Hadden, J.W. Effects of cytokines on human thymic epithelial cells in culture: IL1 induces thymic epithelial cell proliferation and change in morphology. Cell Immunol. 1989, 124, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Wang, Y.; Zhang, N.; Zhu, X. Induction of epithelial to mesenchymal transition (EMT) and inhibition on adipogenesis: Two different sides of the same coin? Feasible roles and mechanisms of transforming growth factor beta1 (TGF-beta1) in age-related thymic involution. Cell Biol. Int. 2016, 40, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Hauri-Hohl, M.M.; Zuklys, S.; Keller, M.P.; Jeker, L.T.; Barthlott, T.; Moon, A.M.; Roes, J.; Hollander, G.A. TGF-beta signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 2008, 112, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Shimo, Y.; Yanai, H.; Qin, J.; Ohshima, D.; Maruyama, Y.; Asaumi, Y.; Kitazawa, J.; Takayanagi, H.; Penninger, J.M.; et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 2008, 29, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Shitara, S.; Hara, T.; Liang, B.; Wagatsuma, K.; Zuklys, S.; Hollander, G.A.; Nakase, H.; Chiba, T.; Tani-ichi, S.; Ikuta, K. IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRgammadelta+ intraepithelial lymphocytes. J. Immunol. 2013, 190, 6173–6179. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Park, H.K.; Na, Y.J.; Kim, C.D.; Lee, J.H.; Kim, B.S.; Kim, J.B.; Lee, C.W.; Moon, J.O.; Yoon, S. RANKL stimulates proliferation, adhesion and IL-7 expression of thymic epithelial cells. Exp. Mol. Med. 2008, 40, 59–70. [Google Scholar] [CrossRef]
- Heinonen, K.M.; Vanegas, J.R.; Lew, D.; Krosl, J.; Perreault, C. Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway. PLoS ONE 2011, 6, e19279. [Google Scholar] [CrossRef]
- Jaime-Rodriguez, M.; Cadena-Hernandez, A.L.; Rosales-Valencia, L.D.; Padilla-Sanchez, J.M.; Chavez-Santoscoy, R.A. Are genetic drift and stem cell adherence in laboratory culture issues for cultivated meat production? Front. Nutr. 2023, 10, 1189664. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Kumar, C.; Bohl, S.; Klingmueller, U.; Mann, M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol. Cell Proteomics 2009, 8, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Yu, S.K.; Sawafuji, M.; Kawamura, M.; Horinouchi, H.; Mukai, M.; Kobayashi, K. Enhanced expression of telomerase activity in thymoma and thymic carcinoma tissues: A clinicopathologic study. Cancer 2002, 94, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Agrafiotis, A.C.; Siozopoulou, V.; Hendriks, J.M.H.; Pauwels, P.; Koljenovic, S.; Van Schil, P.E. Prognostic factors and genetic markers in thymic epithelial tumors: A narrative review. Thorac. Cancer 2022, 13, 3242–3249. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.M.; Ma, L.; He, K.; Guo, W.Q.; Ding, C.; Hoffman, R.D.; He, B.Q.; Zheng, H.B.; Gao, J.L. Identification and functional study of immortalized mouse thymic epithelial cells. Biochem. Biophys. Res. Commun. 2020, 525, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Iwamori, M.; Iwamori, Y. Establishment of cells exhibiting mutated glycolipid synthesis from mouse thymus by immortalization with SV-40 virus. Glycoconj. J. 2005, 22, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Chen, R.; Tu, C.; Gong, X.; Liu, Z.; Mei, L.; Ren, X.; Li, Z. 3D Models of Sarcomas: The Next-generation Tool for Personalized Medicine. Phenomics 2024, 4, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Wensink, G.E.; Elias, S.G.; Mullenders, J.; Koopman, M.; Boj, S.F.; Kranenburg, O.W.; Roodhart, J.M.L. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 2021, 5, 30. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernandez-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef]
- Ren, X.; Chen, W.; Yang, Q.; Li, X.; Xu, L. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J. Gastroenterol. Hepatol. 2022, 37, 1446–1454. [Google Scholar] [CrossRef]
- Ramos, S.A.; Armitage, L.H.; Morton, J.J.; Alzofon, N.; Handler, D.; Kelly, G.; Homann, D.; Jimeno, A.; Russ, H.A. Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Reports 2023, 18, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; van Son, G.J.F.; Wisma Eka Yanti, N.L.; Andersson-Rolf, A.; Willemsen, S.; Korving, J.; Lee, H.G.; Begthel, H.; Clevers, H. Derivation of functional thymic epithelial organoid lines from adult murine thymus. Cell Rep. 2024, 43, 114019. [Google Scholar] [CrossRef] [PubMed]
- Boehnke, K.; Iversen, P.W.; Schumacher, D.; Lallena, M.J.; Haro, R.; Amat, J.; Haybaeck, J.; Liebs, S.; Lange, M.; Schafer, R.; et al. Assay Establishment and Validation of a High-Throughput Screening Platform for Three-Dimensional Patient-Derived Colon Cancer Organoid Cultures. J. Biomol. Screen. 2016, 21, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Stark, H.J.; Martin, I.; Boukamp, P.; Kyewski, B. 3D Organotypic Co-culture Model Supporting Medullary Thymic Epithelial Cell Proliferation, Differentiation and Promiscuous Gene Expression. J. Vis. Exp. 2015, 101, e52614. [Google Scholar] [CrossRef]
- Asnaghi, M.A.; Barthlott, T.; Gullotta, F.; Strusi, V.; Amovilli, A.; Hafen, K.; Srivastava, G.; Oertle, P.; Toni, R.; Wendt, D.; et al. Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells. Adv. Funct. Mater. 2021, 31, 2010747. [Google Scholar] [CrossRef]
- Selever, J.; Kong, J.Q.; Arenkiel, B.R. A rapid approach to high-resolution fluorescence imaging in semi-thick brain slices. J. Vis. Exp. 2011, 26, e2807. [Google Scholar] [CrossRef]
- Zhou, T.A.; Hsu, C.L.; Dzhagalov, I.L. Testing the Efficiency and Kinetics of Negative Selection Using Thymic Slices. Methods Mol. Biol. 2020, 2111, 205–219. [Google Scholar] [CrossRef]
- Arjonen, A.; Makela, R.; Harma, V.; Rintanen, N.; Kuopio, T.; Kononen, J.; Rantala, J.K. Image-based ex vivo drug screen to assess targeted therapies in recurrent thymoma. Lung Cancer 2020, 145, 27–32. [Google Scholar] [CrossRef]
Molecule | TEC-Related Function | Reference |
---|---|---|
BMP4 |
| [43] |
CD40L |
| [58] |
EGF |
| [49] |
FGF7/KGF |
| [47,51] |
FGF10 |
| [48] |
HGF |
| [52,53] |
IGF1 |
| [50] |
IL1 |
| [55] |
IL6 |
| [54] |
IL7 |
| [59] |
IL22 |
| [51] |
RANKL |
| [46,51,58,60] |
TGFb |
| [56,57] |
WNT4 |
| [41,42,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, D.; Loskutov, J.; Küffer, S.; Marx, A.; Regenbrecht, C.R.A.; Ströbel, P.; Regenbrecht, M.J. Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives. Cancers 2024, 16, 2762. https://doi.org/10.3390/cancers16152762
Müller D, Loskutov J, Küffer S, Marx A, Regenbrecht CRA, Ströbel P, Regenbrecht MJ. Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives. Cancers. 2024; 16(15):2762. https://doi.org/10.3390/cancers16152762
Chicago/Turabian StyleMüller, Denise, Jürgen Loskutov, Stefan Küffer, Alexander Marx, Christian R. A. Regenbrecht, Philipp Ströbel, and Manuela J. Regenbrecht. 2024. "Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives" Cancers 16, no. 15: 2762. https://doi.org/10.3390/cancers16152762
APA StyleMüller, D., Loskutov, J., Küffer, S., Marx, A., Regenbrecht, C. R. A., Ströbel, P., & Regenbrecht, M. J. (2024). Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives. Cancers, 16(15), 2762. https://doi.org/10.3390/cancers16152762