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Simple Summary: Much interest has arisen around adipose-derived stem cells (ASCs) due to
their multifunctional activities in the tumor microenvironment (TME). Mitochondrial dynamics and
mitochondrial transfer are critical processes that promote tumor progression through fission, fusion,
and transfer from stromal cells, such as ASCs. This perspective focuses on the connection between
ASCs and tumor cells, leveraging the idea that inhibiting their possible pro-tumorigenic effect can
interfere with these processes and limit the ability of tumor cells to survive. Unfortunately, the
use of ASC/MSCs in cancer therapy has some limitations, as many variables must be considered;
however, bridging the gap between preclinical studies and clinical applications could lead to new
therapeutic strategies.

Abstract: Adipose-derived stem cells (ASCs) significantly influence tumor progression within the
tumor microenvironment (TME). This review examines the pro-tumorigenic roles of ASCs, focusing
on paracrine signaling, direct cell–cell interactions, and immunomodulation. ASC-mediated mito-
chondrial transfer through tunneling nanotubes (TNTs) and gap junctions (GJs) plays a significant
role in enhancing cancer cell survival and metabolism. Cancer cells with dysfunctional mitochondria
acquire mitochondria from ASCs to meet their metabolic needs and thrive in the TME. Targeting
mitochondrial transfer, modulating ASC function, and influencing metabolic pathways are potential
therapeutic strategies. However, challenges like TME complexity, specificity, safety concerns, and
resistance mechanisms must be addressed. Disrupting the ASC–cancer cell–mitochondria axis offers
a promising approach to cancer therapy.

Keywords: ASCs; mitochondria; TME; CSCs; drug resistance; cancer therapy

1. Introduction

The interaction between tumors and surrounding adipose tissue has been a focus of
increasing interest. Tumors, whether localized or metastatic, can be directly associated with
adipose tissue. Specifically, mammary tumors engage with the adipose tissue in which the
mammary gland is embedded from the onset of cancer initiation. Furthermore, several
other cancers, such as those of the prostate, ovary, and lung, interact with subcutaneous
or visceral adipose tissue, or with adipocytes from bone marrow in distant metastases
(Figure 1) [1].
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Figure 1. General characteristics of adipose-derived stem cells (ASCs) and their influence in the
tumor microenvironment (TME) (Created by Biorender.com).

Adipose-derived stem cells (ASCs) are very important components of the adipose
tissue. They have recently attracted considerable attention because they participate in the
scaffolding of several tumor microenvironments (TME), playing an important role in tumor
development and regulating a variety of pathways involved in paracrine signaling, direct
cell–cell interactions, and immune regulation [2]. These cells show a typical immunopheno-
typic profile, including CD29+, CD34+, CD44+, CD90+, CD105+, CD19−, CD45−, CD324−,
and HLA-DR− (Figure 1) [3], with the secretion of several factors like TNF-α, IL-6, and
VEGF that enhance inflammation, tumor growth, and metastasis by creating a feedback
loop that promotes further cytokine release [2]. ASCs can directly interact with cancer
cells through different mechanisms such as mitochondrial transfer via tunneling nanotubes
and gap junctions, which can increase cancer cell survival and resistance to treatment [4].
Additionally, ASCs modulate the immune environment by inhibiting immune responses
and promoting immune evasion, thereby contributing to tumor progression and metastasis
(Figure 1) [5].

Interestingly, some studies have shown that ASCs are increased in obese mouse models
and that their number is positively correlated with the quantity of adipose tissue. Indeed,
the authors observed that obesity changes the composition, structure, and function of
adipose tissue, thereby contributing to inflammation, metabolic dysfunction, and tumor ag-
gressiveness. Consequently, the increase in obesity-associated ASCs is of crucial importance,
as they participate in the creation of the TME and promote cancer progression [2,3].

Of note, cancer cells acquire mitochondria from ASCs to meet their metabolic needs [4].
Metabolic reprogramming in cancer is the process of changing metabolic pathways to meet
the increasing energy and biosynthetic needs of rapidly multiplying tumor cells, allowing
them to thrive, escape apoptosis, and adapt to the shifting conditions of the TME. Mito-
chondrial dynamics and mitochondrial transfer (MT) in cancer are critical processes that
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promote tumor progression, with dynamics allowing for adaptive metabolic programming
via fission and fusion, and transfer from stromal cells, such as ASCs/MSCs, improving
cancer cell survival and resistance to therapy by increasing their metabolic capacity [6–8].

Inhibition of mitochondrial dynamics and MT can interfere with these processes,
limiting the metabolic plasticity of cancer cells and their ability to survive and resist therapy
in the TME. Hence, this review explores how strategies such as blocking MT, modulating
ASC function, and targeting metabolic pathways regulated by ASCs can significantly affect
cancer treatment. By obstructing these critical interactions, researchers may be able to
slow tumor development, increase the efficacy of current treatments, and improve overall
patient outcomes.

This review also discusses numerous challenges that must be addressed to take full
advantage of the therapeutic promise of targeting the ASC–cancer cell–mitochondria
axis. These challenges involve navigating the complexities of the TME, ensuring the
specificity and safety of interventions, deciphering resistance mechanisms, and overcoming
translational research barriers. Addressing these issues will be important in developing
medications that successfully disrupt the interactions between ASCs, cancer cells, and
mitochondria, resulting in better cancer therapy results.

2. Main Features of ASCs: Promoting Tumor Growth

This review focuses on the pro-tumorigenic effects of adipose-derived stem cells
(ASCs) within the tumor microenvironment (TME). These cells can infiltrate the TME and
carry out their functions in different ways (Figure 1).

2.1. Paracrine Signaling

ASCs from both subcutaneous and visceral fat tissue secrete a variety of cytokines,
chemokines, and growth factors. These secreted factors play roles in inflammation, angio-
genesis, and the migration and proliferation of cells. Notable among these are tumor necro-
sis factor (TNF)-α, interleukin (IL)-6, IL-8, C-X-C motif chemokine ligand (CXCL)1/2/3/5,
monocyte chemotactic and activating factor (CCL2), epidermal growth factor (EGF), insulin-
like growth factor 1 (IGF1), and vascular endothelial growth factor (VEGF) (Figure 1) [2].
In fact, elevated levels of TNF-α released by ASCs establish a positive feedback loop and
further stimulate ASCs to secrete multiple cytokines and chemokines that are significantly
associated with enhanced metastasis and tumor growth [9]. Additionally, IL-6 released
from ASCs promotes tumor progression by regulating gene expression involved in pro-
liferation, such as a marker of proliferation Kiel 67 (MKI67) and proliferating cell nuclear
antigen (PCNA) [10]. Furthermore, Kengelbach-Weigand et al. showed that ASCs secreted
IL-6 and IL-8 induced tumor invasion and metastasis in breast cancer cells [11]. Moreover,
Sharaf et al. observed that the ASC secretome promotes neo-angiogenesis in head and
neck squamous cell carcinoma (HNSCC), an effect that they attributed to increased VEGF
production [12]. Ribeiro et al. showed that adipose tissue and ASCs exposed to conditioned
media from PC3 cells (prostate cancer cell line) exhibited an altered adipokine expression
profile, including elevated TNF-α and IL-6 levels [13]. These factors have been linked to
prostate cancer tumorigenicity and metastasis [14]. Overall, the complex interplay between
ASCs and tumor cells underscores the importance of understanding how ASCs contribute
to tumor progression and metastasis.

2.2. Direct Cell–Cell Interactions

The interaction between ASCs and cancer cells is a pivotal factor in the progression of
cancer (Figure 2). ASCs engage in physical interactions with cancer cells, facilitating the
transfer of mitochondria and other cellular components via tunneling nanotubes (TNTs),
gap junctions (GJs), and extracellular vesicles (EVs), thereby enhancing the metabolic
activity and survival of the cancer cells. Del Vecchio et al. demonstrated that mitochondrial
transfer (MT) occurs through TNTs between ASCs and various breast cancer cell lines,
a process that leads to multidrug resistance due to metabolic alterations in the recipient
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cells [14]. Additionally, ASCs transfer their mitochondria to cancer cells through GJs, with
Yang et al. identifying connexin-43 (Cx-43) as a critical component in GJ-mediated MT [15].

Figure 2. Mechanisms of mitochondrial transfer. (A) Tunneling nanotubes (TNTs): TNTs are nanoscale
membranous channels between cells, with diameters ranging from 50 to 1500 nm, lengths of 5–200 µm,
and thicknesses up to 700 nm. (B) Gap junctions (GJs): GJs are made from the head-to-head docking
of hexameric assemblies (connexons) of tetraspan integral membrane proteins (connexins (Cx)).
(C) Extracellular vesicles (EVs): EVs are nanosized bilayer vesicles secreted by cells and are of three
types: microvesicles (MVs), exosomes, and apoptotic bodies. (Created using Biorender.com).

Burch et al. showed that ASCs can donate mitochondria via EVs to tumorigenic
HEK293 cells, resulting in an increased migratory capacity of these cells [16]. Furthermore,
ASCs can spontaneously fuse with breast cancer cells, resulting in a population enriched
with breast cancer stem cell (CSC) markers such as CD44+CD24−/lowEpCAM+. These
findings suggest that cell fusion constitutes a direct interaction between ASCs and cancer
cells [17]. Collectively, these insights into the mechanisms of ASC–cancer cell interactions
underscore the significant role of ASCs in promoting tumor growth and resistance, thereby
highlighting potential targets for therapeutic intervention.

2.3. ASC-Mediated Immunomodulation

ASCs are recognized for their remarkable ability to modulate immune responses in
the TME. They exhibit low levels of major histocompatibility complex (MHC) class I and
completely lack MHC class II molecules, allowing them to avoid detection by the immune
system [18]. Furthermore, ASCs can influence immune responses by inhibiting lymphocyte
proliferation, preventing the maturation of monocyte-derived dendritic cells (DCs), and
diminishing the cytotoxic effects of natural killer (NK) cells. These effects are mediated
through both direct cell–cell interactions and the secretion of various cytokines and soluble
factors [19]. Notably, cancer cells have been shown to exploit the immunomodulatory
properties of ASCs/MSCs to their advantage. Ramzkhah et al. observed that ASCs
obtained from the breast cancer TME produce more IL-4, IL-10, and transforming growth
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factor beta 1 (TGF-β1), leading to higher levels of CD4+CD25highFOXP3+ T regulatory
cells that contribute to the suppression of antitumor immunity [20]. Recently, Ramzkhak
et al. demonstrated that ASCs from the breast cancer TME have also been shown to
have strategic effects on peripheral blood lymphocytes (PBLs) that favor the development,
growth, and metastasis of breast cancer [21]. Bharami et al. showed that ASCs have an
immunosuppressive effect on NK cells by significantly reducing NK activating receptors
such as NKG2D and CD69 that favored tumor immune evasion in breast cancer [22]. These
studies underscore the significant role ASCs play in shaping the immune landscape of
tumors and highlight their potential impact on cancer progression.

3. Mitochondrial Dynamics in Cancer

Mitochondrial dynamics are closely associated with tumor incidence and metastasis.
Changes in the TME can also alter mitochondrial dynamics, providing a pathway for
cancer adaptation.

Many cancers have dysfunctional mitochondrial dynamics, which are dependent on
different ratios between mitochondrial fission-related proteins and mitochondrial fusion-
related proteins [7]. The Drp1/Mfn1 expression ratio was found to be increased in hepato-
cellular carcinoma (HCC) tissues and was associated with a poor prognosis. For instance,
Zhang et al. observed that mitochondrial fission regulator (MTFR)-2 and dynamin-1-like
(DNM1L) have been associated with HCC development using GO/KEGG analysis [23].
In another study, mitofusin (MFN)-1, a mitochondrial fusion protein, was identified as a
significantly downregulated candidate strongly linked with HCC metastasis. Promoting
mitochondrial fusion via treatment with the glycolytic inhibitor 2-deoxy-D-glucose (2-DG)
significantly suppresses the effects of MFN-1 depletion [24]. However, another study
showed that blocking mitochondrial fusion via knockdown of optic atrophy-1 (OPA-1) and
MFN-1 attenuated oxygen consumption and cellular ATP production in tumor cells [25].
These findings highlight that mitochondrial fission and fusion are extremely intricate
mechanisms that can vary significantly among different cancer types.

Apart from fission and fusion processes, dysfunctional mitophagy is also associated
with tumor initiation and progression in many types of cancers. Mitophagy in response
to stressors such as hypoxia and nutritional deficits aims to reduce the total number
of mitochondria in the cell, thus sparing vital nutrients and limiting excessive mtROS
production. Tumor cells in persistent drug tolerance (DTP) states, for example, have
an OXPHOS-dependent metabolism. During the DTP state, mitophagy is activated by
upregulation of PTEN-induced kinase (PINK)-1. This kinase supports DTP cells in carrying
out a metabolic switch and maintaining homeostasis. Inhibition of mitophagy, either by
PINK1 depletion or by the use of chloroquine, improved the initial efficacy of MAPK
inhibitors, providing a new therapeutic opportunity to eradicate persister cells and prolong
treatment efficacy [26].

Metabolic reprogramming is a common hallmark of cancer cells and is closely related
to mitochondrial dynamics. Lu et al. found that overexpression of MTFR-2 in breast
cancer cells changes glucose metabolism [27]. MTFR-2 converts oxidative phosphorylation
(OXPHOS) to glycolysis in a hypoxia-inducing factor (HIF)1α- and HIF2α-dependent
way. Furthermore, ROS levels are reduced during metabolic reprogramming. Anaerobic
glycolysis, in fact, produces lactate, which helps reduce ROS levels, as it uses metabolic
intermediates such as pyruvate. Since glycolytic enzymes are upregulated during hypoxia,
inhibition of these enzymes could be a promising way to eradicate residual cells and cancer
stem cells [6].

Overall, the interplay between mitochondrial fission, fusion, mitophagy, and metabolic
reprogramming is crucial in cancer progression and treatment resistance. Understanding
these dynamics offers potential therapeutic targets for improving cancer treatment outcomes.
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4. Mitochondrial Transfer and Metabolic Reprogramming

The mitochondria’s dynamic nature extends beyond cellular boundaries via the mech-
anism of MT, which enables intercellular communication between cancer cells and their
TME. Many studies have shown that cancer cells acquired mitochondria from noncancer
cells to compensate for their loss of mitochondrial function [8]. The mechanisms by which
cells with dysfunctional mitochondria acquire new mitochondria from other cells and
the signaling pathways regulating this process are still poorly understood. Cells likely
trigger this transfer in response to injury signals. TNTs are the primary cellular system for
transcellular mitochondrial transfer, with other modes including EVs, GJs, cell fusion, and
mitochondrial expulsion [15,28] (Figure 2). During tumorigenesis, an increase in mtDNA
mutations and a marked increase in reactive oxygen species (ROS) impair OXPHOS func-
tion and cause structural and functional abnormalities in mitochondria. The transferred
mitochondria can improve the bioenergetic capacity of tumor cells, promoting their survival
and proliferation under stress conditions such as hypoxia or nutrient deprivation [29]. The
ability of ASCs/MSCs to shelter malignant cells is clinically significant since the transfer
of mitochondria or mtDNA from ASC/MSCs has been shown to restore the respiratory
function of cancer cells [30,31].

Mitochondrial Transfer Drives Tumorigenesis and Chemoresistance

The horizontal transfer of mitochondria between cancer and noncancer cells via cell–
cell interactions and the production of soluble molecules and EVs are critical mechanisms
that cancer cells use to evade immune surveillance and develop chemoresistance [32–35].
Pinto et al. showed that TNT-mediated MT from glioblastoma (GBM) stem cells into patient-
derived tumor organoids assisted in the establishment of tumor networking with tumor
microtubes, hence contributing to cancer progression and therapy resistance [36]. Some
research teams have created a method called MitoCeption, which allows mitochondria from
stromal cells to be transferred to tumor cells, restoring respiratory function and enhancing
proliferation rates [37]. The direct transfer of mitochondria to breast cancer cells (BCCs) can
boost their proliferative and invasive properties, as well as their resistance to chemotherapy
treatments [4,38].

5. Targeting the ASC–Cancer Cell–Mitochondria Axis: Therapeutic Potential

Given the complex interactions between ASCs, cancer cells, and mitochondria, target-
ing this axis presents a novel and potentially effective therapeutic strategy. This therapeutic
potential can be considered through several avenues.

5.1. Inhibition of Mitochondrial Transfer

Preventing the transfer of mitochondria from ASCs to cancer cells could reduce the
metabolic adaptability and survival of cancer cells. This can be achieved by targeting
mechanisms such as the formation of TNTs, GJs, and EVs. Understanding and disrupting
these pathways may offer a new avenue for cancer treatment.

Since TNTs are the primary route of MT, inhibiting their formation could also be
viewed as an effective therapeutic strategy. The role of taxanes and vinca alkaloids in
partially obstructing MT by preventing microtubule polymerization becomes significant [5].
Additionally, inhibitors of actin polymerization, such as cytochalasin B (CytoB), cytocha-
lasin D (CytoD), metformin, and the mTOR inhibitor everolimus, block the formation of
TNTs, thereby reducing MT [39–41]. For instance, Del Vecchio et al. highlighted that CytoB
significantly blocked MT from ASCs to BCCs in a 2D coculture model. This finding con-
trasts with the hybrid 2D/3D coculture, where CytoB had no significant effect, suggesting
that MT is mediated by mechanisms beyond TNTs [4]. Further research is necessary to fully
understand the mechanisms of TNT-mediated transfer and develop effective inhibitors.

GJ intercellular inhibitors (GJICs), such as oleamide, have shown potential in reducing
metastatic foci in the liver and lungs, improving survival rates in mice injected with
BCCs [42]. From this perspective, the use of medications such as mefloquine, arsenic
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trioxide, and carbenoxolone, which were shown to inhibit Cx43-based GJs in breast cancer
bone metastasis [43], presents a promising therapeutic strategy. Notably, meclofenamate, a
drug that specifically targets GJs, is currently being tested in a clinical trial in patients with
recurrent or progressive brain metastasis (NCT02429570). These advancements highlight
the potential of GJICs in improving outcomes for cancer patients.

Recently, a study showed that the use of exosome inhibitors like GW4869 could reduce
BC chemoresistance by blocking the exosome-mediated transfer of mitochondria carrying
mutant mtDNA, potentially identifying new molecular targets for more effective cancer
treatment [44].

5.2. Modulation of ASC Function

Changing the functional state of ASCs using genetic alterations may transform their
role from tumor-promoting to tumor-inhibiting. For example, increasing the release of anti-
tumorigenic substances from ASCs may decrease tumor development. Some researchers
have modified human ASCs to boost TRAIL production under TGF-β signaling via a
SMAD4-controlled minimal promoter, taking advantage of the increased TGF-β expres-
sion in glioblastoma compared to normal brain tissue [45]. Lee et al. proposed a cancer
treatment using osteogenic differentiated human ASC exosomes to reprogram CSCs into
nontumorigenic cells, producing osteogenic-related genes and reducing drug-resistant
ABC transporters and BRCA1/2 gene expression in CSCs [46]. Similarly, Bcl-2 reduction
has been achieved by packing EVs with therapeutic biomolecules such as silencing RNA
(bcl-2 siRNA) and antisense oligonucleotides (ASOs), or by stripping EVs of cancer-causing
circular RNA (circRNA) [47–49]. The use of MSC-derived EVs and nanoparticles (NPs)
specifically targeting mitochondria or inducing mitochondrial damage to promote cell
death and reduce metastasis has also been explored [50,51]. For example, miR-126-enriched
EVs can suppress cell proliferation by regulating mitochondrial metabolism [52]. Similarly,
miRNA-loaded EVs can promote cell death via the intrinsic mitochondrial pathway by
suppressing antiapoptotic proteins of the Bcl-2 family [53,54].

5.3. Metabolic Reprogramming

Targeting the metabolic pathways in cancer cells that are influenced by MT from ASCs
could reduce the survival and proliferation of cancer cells. Many studies have shown that
many cancer cells can oxidize glucose via OXPHOS in their fully functioning mitochondria.
Furthermore, inhibiting glycolysis does not prevent tumor formation.

Suppression of the M2 isoform of pyruvate kinase in a breast cancer model led to
tumor development, as this specific isoform is responsible for the last phase of glycoly-
sis [55]. Furthermore, blocking the conversion of lactate to pyruvate for energy production,
for example, by inhibiting the enzyme lactate dehydrogenase A (LDHA), increases mito-
chondrial respiration in breast cancer cells, demonstrating that oxidative metabolism is still
functional [56]. Tumor cells may equally depend on OXPHOS for ATP production, except
for tumors with mutations in tricarboxylic acid (TCA) cycle enzyme genes. Although
these enzymes are critical for mitochondrial respiration, tumors with these abnormalities
continue to rely on mitochondrial activity and reprogram their metabolism to maximize
the production of ROS and TCA cycle intermediates necessary for cell proliferation [57,58].
Hence, inhibiting key enzymes involved in the TCA cycle, such as isocitrate dehydrogenase,
succinate dehydrogenase, and α-KG dehydrogenase, or inhibiting key players in OXPHOS,
like complex I–II–III–IV, could limit the metabolic flexibility of cancer cells [59,60].

6. Challenges and Future Directions

Despite the promising potential of targeting the ASC–cancer cell–mitochondria axis,
several challenges need to be addressed.
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6.1. Complexity of the TME

The TME is extremely complex and dynamic, making it difficult to target specific
components while preserving normal tissue function. The complexity stems from its
heterogeneous composition, which includes cancer cells, immune cells, stromal cells, and
signaling molecules that interact in a dynamic landscape. These interactions make it
challenging to create medicines that can precisely target cancer cells while preserving
the normal activities of surrounding tissues. Understanding how ASCs, cancer cells, and
other stromal components interact in the TME is critical to developing effective therapies,
especially because MSCs can both promote cancer cell proliferation and metastasis and
inhibit tumor growth under certain conditions [61].

Therefore, a comprehensive understanding of the TME and the precise activities of
ASCs is required to produce tailored medicines that can effectively combat cancer while
limiting adverse effects on normal tissue function. In this context, next-generation technolo-
gies, such as single-cell sequencing of human tumors and multiomics-based technology, can
play an indispensable role in providing novel insight into the ASC–cancer axis in different
cancer types.

6.2. Specificity and Safety

A significant challenge is identifying and selectively targeting the distinct markers
or pathways involved in MT without interfering with other critical cellular processes.
Many MT inhibitors are not able to specifically target the mechanisms involved in MT. For
instance, GJ inhibitors such as carbenoxolone are not selective for Cx43 and can inhibit
sites unrelated to GJs, potentially disrupting normal cellular communication and physi-
ological activities [62]. Moreover, the risk of long-term negative effects remains a major
issue. Chronic suppression of MT may impair not just cancer cell metabolism but also nor-
mal physiological functions, resulting in unexpected toxicities. Long-term investigations
and extensive clinical trials are required to determine the safety and effectiveness of the
ASC–cancer axis-based therapies, but they are laborious and expensive.

Addressing these issues necessitates a multidisciplinary strategy that integrates mod-
ern molecular biology, pharmacology, and nanotechnology to develop targeted, effective,
and safe medications.

6.3. Resistance Mechanisms

Tumor heterogeneity and the adaptive capacity of cancer cells can lead to resistance
mechanisms that limit the efficacy of MT inhibitors. Tumor cells may find other mechanisms
to acquire mitochondria or adjust their metabolism to live without MT, necessitating
the development of combination therapies or inhibitors that target multiple pathways
simultaneously. In this context, it will be crucial to identify other molecular mechanisms
contributing to the elevated OXPHOS state of cancer cells and how they influence resistance
to chemotherapies. Additionally, the roles of mitochondrial rebuilding, reshaping, and
recycling are highly context-dependent and poorly understood [63].

Further studies focused on accurately understanding dysfunctional mitochondrial
dynamics and tracking the bioenergetic and metabolic changes over time are crucial to
overcoming therapy resistance in cancer treatment.

6.4. Translational Research

The use of ASCs/MSCs in cancer therapy is complicated, as many variables must be
considered, such as the stage of the tumor and the comorbidities of the patient. Also, donor
characteristics (genetics, sex, age, and health status) could play a role. Bridging the gap
between preclinical studies and clinical applications remains a significant challenge, and
can depend on the tumor model used, epigenetic variability, and heterogeneity of isolated
ASCs/MSCs. The timing and dosage of ASC/MSC use, as well as variations in cell delivery
methods and culture conditions used, influence the interaction between ASCs/MSCs and
tumor cells, with implications for the therapeutic effect [64].
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Consequently, for ASC-based anticancer therapy to remain useful and applicable as
a mainstream cancer treatment, a more homogeneous form of ASC with specific tumor-
homing ability and more effective drug delivery strategies to tumor cells is needed.

7. Conclusions

In conclusion, the complex connection between ASCs and tumor cells highlights an
important field of research with far-reaching implications for cancer treatment. ASCs
actively contribute to tumor growth via paracrine signaling, direct cell–cell contacts, and
immunological regulation while also promoting mitochondrial transfer, which supports
tumor cell survival and resistance to treatment. This study focuses on the prospective
therapeutic potential of targeting the ASC–cancer cell–mitochondria axis, which has the
potential to transform cancer treatment by interrupting these crucial relationships. How-
ever, significant problems remain, including the intricacy of the tumor microenvironment,
selectivity and safety issues, resistance mechanisms, and the difficulty of converting pre-
clinical results into clinical applications. Addressing these problems through new research
and technology breakthroughs will be vital in generating successful therapies. As our un-
derstanding of these mechanisms grows, targeted techniques that disrupt the ASC–cancer
cell–mitochondria axis may open new possibilities for enhancing patient outcomes and
furthering cancer treatment.
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