Investigating the Obesity Paradox in Colorectal Cancer: An Analysis of Prospectively Collected Data in a Diverse Cohort
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outcome and Exposures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
CRC | Colorectal Cancer |
GBTM | Group-Based Trajectory Modeling |
HR | Hazard Ratio |
IQR | Interquartile Range |
MEC | Multiethnic Cohort Study |
NCI | National Cancer Institute |
NCDB | National Cancer Database |
PH | Proportional Hazard |
SEER | Surveillance, Epidemiology, and End Results |
References
- Liu, P.H.; Wu, K.; Ng, K.; Zauber, A.G.; Nguyen, L.H.; Song, M.; He, X.; Fuchs, C.S.; Ogino, S.; Willett, W.C.; et al. Association of Obesity with Risk of Early-Onset Colorectal Cancer Among Women. JAMA Oncol. 2019, 5, 37–44. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Kurt Straif, M.P.H.; for the International Agency for Research on Cancer Handbook Working Group. Body Fatness and Cancer--Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed]
- CDC. Adult Obesity Facts. Available online: https://www.cdc.gov/obesity/php/data-research/adult-obesity-facts.html (accessed on 26 July 2020).
- Gastrointestinal Cancers: An Urgent Need. Available online: https://www.gicancersalliance.org/resources/gastrointestinal-cancers-an-urgent-need/ (accessed on 26 July 2020).
- Gonzalez, M.C.; Pastore, C.A.; Orlandi, S.P.; Heymsfield, S.B. Obesity paradox in cancer: New insights provided by body composition. Am. J. Clin. Nutr. 2014, 99, 999–1005. [Google Scholar] [CrossRef]
- Hainer, V.; Aldhoon-Hainerova, I. Obesity paradox does exist. Diabetes Care 2013, 36 (Suppl. S2), S276–S281. [Google Scholar] [CrossRef] [PubMed]
- Lennon, H.; Sperrin, M.; Badrick, E.; Renehan, A.G. The Obesity Paradox in Cancer: A Review. Curr. Oncol. Rep. 2016, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Strulov Shachar, S.; Williams, G.R. The Obesity Paradox in Cancer—Moving Beyond BMI. Cancer Epidemiol. Biomark. Prev. 2017, 26, 13–16. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Wang, X.; Li, M.; Gan, Y.; Tang, Y. Association of obesity and overweight with overall survival in colorectal cancer patients: A meta-analysis of 29 studies. Cancer Causes Control 2014, 25, 1489–1502. [Google Scholar] [CrossRef]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity with Survival Outcomes in Patients with Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef]
- Kroenke, C.H.; Neugebauer, R.; Meyerhardt, J.; Prado, C.M.; Weltzien, E.; Kwan, M.L.; Xiao, J.; Caan, B.J. Analysis of Body Mass Index and Mortality in Patients with Colorectal Cancer Using Causal Diagrams. JAMA Oncol. 2016, 2, 1137–1145. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Wu, G.; Yang, W.; Wang, X.; Duan, L.; Niu, L.; Chen, J.; Zhang, Y.; Zhou, W.; et al. The obesity paradox in patients with colorectal cancer: A systematic review and meta-analysis. Nutr. Rev. 2022, 80, 1755–1768. [Google Scholar] [CrossRef]
- Cespedes Feliciano, E.M.; Kroenke, C.H.; Caan, B.J. The Obesity Paradox in Cancer: How Important Is Muscle? Annu. Rev. Nutr. 2018, 38, 357–379. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Kroenke, C.H. Next Steps in Understanding the Obesity Paradox in Cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 12. [Google Scholar] [CrossRef]
- Park, Y.; Peterson, L.L.; Colditz, G.A. The Plausibility of Obesity Paradox in Cancer-Point. Cancer Res. 2018, 78, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mahmud, N.; Goldberg, D.S.; Datta, J.; Kaplan, D.E. Disentangling the obesity paradox in upper gastrointestinal cancers: Weight loss matters more than body mass index. Cancer Epidemiol. 2021, 72, 101912. [Google Scholar] [CrossRef] [PubMed]
- Carethers, J.M.; Doubeni, C.A. Causes of Socioeconomic Disparities in Colorectal Cancer and Intervention Framework and Strategies. Gastroenterology 2020, 158, 354–367. [Google Scholar] [CrossRef]
- Society, A.C. Cancer Facts & Figures for African American/Black People. Available online: https://www.cancer.org/research/cancer-facts-statistics/cancer-facts-figures-for-african-americans.html (accessed on 27 June 2022).
- Stierman, B.; Afful, J.; Carroll, M.D.; Chen, T.-C.; Davy, O.; Fink, S.; Fryar, C.; Gu, Q.; Hales, C.M.; Hughes, J.P.; et al. NHSR 158. National Health and Nutrition Examination Survey 2017–March 2020 Pre-pandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. Centers for Disease Control and Prevention. NCHS Natl. Health Stat. Rep. 2021, 158, 1–21. [Google Scholar] [CrossRef]
- Kolonel, L.N.; Henderson, B.E.; Hankin, J.H.; Nomura, A.M.; Wilkens, L.R.; Pike, M.C.; Stram, D.O.; Monroe, K.R.; Earle, M.E.; Nagamine, F.S. A multiethnic cohort in Hawaii and Los Angeles: Baseline characteristics. Am. J. Epidemiol. 2000, 151, 346–357. [Google Scholar] [CrossRef]
- Cheng, I.; Tseng, C.; Wu, J.; Yang, J.; Conroy, S.M.; Shariff-Marco, S.; Li, L.; Hertz, A.; Gomez, S.L.; Le Marchand, L.; et al. Association between ambient air pollution and breast cancer risk: The multiethnic cohort study. Int. J. Cancer 2020, 146, 699–711. [Google Scholar] [CrossRef]
- Butt, J.; Varga, M.G.; Blot, W.J.; Teras, L.; Visvanathan, K.; Le Marchand, L.; Haiman, C.; Chen, Y.; Bao, Y.; Sesso, H.D.; et al. Serologic Response to Helicobacter pylori Proteins Associated with Risk of Colorectal Cancer among Diverse Populations in the United States. Gastroenterology 2019, 156, 175–186.e172. [Google Scholar] [CrossRef]
- Park, S.Y.; Wilkens, L.R.; Haiman, C.A.; Le Marchand, L. Physical Activity and Colorectal Cancer Risk by Sex, Race/Ethnicity, and Subsite: The Multiethnic Cohort Study. Cancer Prev. Res. 2019, 12, 315–326. [Google Scholar] [CrossRef]
- Amshoff, Y.; Maskarinec, G.; Shvetsov, Y.B.; Raquinio, P.H.; Grandinetti, A.; Setiawan, V.W.; Haiman, C.A.; Le Marchand, L. Type 2 diabetes and colorectal cancer survival: The multiethnic cohort. Int. J. Cancer 2018, 143, 263–268. [Google Scholar] [CrossRef]
- Epplein, M.; Nomura, A.M.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. Nonsteroidal antiinflammatory drugs and risk of gastric adenocarcinoma: The multiethnic cohort study. Am. J. Epidemiol. 2009, 170, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Nomura, A.M.; Wilkens, L.R.; Henderson, B.E.; Epplein, M.; Kolonel, L.N. The association of cigarette smoking with gastric cancer: The multiethnic cohort study. Cancer Causes Control 2012, 23, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.D.; Hamilton, W.; O’Sullivan, J.; Aveyard, P.; Hobbs, F.R. Weight loss as a predictor of cancer in primary care: A systematic review and meta-analysis. Br. J. Gen. Pract. 2018, 68, e311–e322. [Google Scholar] [CrossRef]
- Nagin, D.S. Group-based trajectory modeling: An overview. Ann. Nutr. Metab. 2014, 65, 205–210. [Google Scholar] [CrossRef]
- Song, M. Trajectory analysis in obesity epidemiology: A promising life course approach. Curr. Opin. Endocr. Metab. Res. 2019, 4, 37–41. [Google Scholar] [CrossRef]
- Nagin, D.S.; Jones, B.L.; Passos, V.L.; Tremblay, R.E. Group-based multi-trajectory modeling. Stat. Methods Med. Res. 2018, 27, 2015–2023. [Google Scholar] [CrossRef]
- Mori, M.; Krumholz, H.M.; Allore, H.G. Using Latent Class Analysis to Identify Hidden Clinical Phenotypes. JAMA 2020, 324, 700–701. [Google Scholar] [CrossRef]
- Patel, R.B.; Colangelo, L.A.; Reis, J.P.; Lima, J.A.C.; Shah, S.J.; Lloyd-Jones, D.M. Association of Longitudinal Trajectory of Albuminuria in Young Adulthood with Myocardial Structure and Function in Later Life: Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Cardiol. 2020, 5, 184–192. [Google Scholar] [CrossRef]
- Rozier, M.D.; Ghaferi, A.A.; Rose, A.; Simon, N.J.; Birkmeyer, N.; Prosser, L.A. Patient Preferences for Bariatric Surgery: Findings From a Survey Using Discrete Choice Experiment Methodology. JAMA Surg. 2019, 154, e184375. [Google Scholar] [CrossRef] [PubMed]
- Lennon, H.; Kelly, S.; Sperrin, M.; Buchan, I.; Cross, A.J.; Leitzmann, M.; Cook, M.B.; Renehan, A.G. Framework to construct and interpret latent class trajectory modelling. BMJ Open 2018, 8, e020683. [Google Scholar] [CrossRef]
- Peto, J. That the effects of smoking should be measured in pack-years: Misconceptions 4. Br. J. Cancer 2012, 107, 406–407. [Google Scholar] [CrossRef]
- Wang, K.; Ma, W.; Wu, K.; Ogino, S.; Chan, A.T.; Giovannucci, E.L.; Song, M. Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: A nationwide cohort study. PLoS Med. 2021, 18, e1003522. [Google Scholar] [CrossRef] [PubMed]
- Le Marchand, L.; Wilkens, L.R.; Kolonel, L.N.; Hankin, J.H.; Lyu, L.C. Associations of sedentary lifestyle, obesity, smoking, alcohol use, and diabetes with the risk of colorectal cancer. Cancer Res. 1997, 57, 4787–4794. [Google Scholar] [PubMed]
- Henrikson, N.B.; Webber, E.M.; Goddard, K.A.; Scrol, A.; Piper, M.; Williams, M.S.; Zallen, D.T.; Calonge, N.; Ganiats, T.G.; Janssens, A.C.; et al. Family history and the natural history of colorectal cancer: Systematic review. Genet. Med. 2015, 17, 702–712. [Google Scholar] [CrossRef]
- Proust-Lima, C.; Sene, M.; Taylor, J.M.; Jacqmin-Gadda, H. Joint latent class models for longitudinal and time-to-event data: A review. Stat. Methods Med. Res. 2014, 23, 74–90. [Google Scholar] [CrossRef]
- Hawkins, D.S.; Allen, D.M.; Stromberg, A.J. Determining the number of components in mixtures of linear models. Comput. Stat. Data Anal. 2001, 38, 15–48. [Google Scholar] [CrossRef]
- Dhana, K.; van Rosmalen, J.; Vistisen, D.; Ikram, M.A.; Hofman, A.; Franco, O.H.; Kavousi, M. Trajectories of body mass index before the diagnosis of cardiovascular disease: A latent class trajectory analysis. Eur. J. Epidemiol. 2016, 31, 583–592. [Google Scholar] [CrossRef]
- Proust-Lima, C.; Letenneur, L.; Jacqmin-Gadda, H. A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome. Stat. Med. 2007, 26, 2229–2245. [Google Scholar] [CrossRef]
- Beunckens, C.; Molenberghs, G.; Verbeke, G.; Mallinckrodt, C. A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 2008, 64, 96–105. [Google Scholar] [CrossRef]
- Proust-Lima, C.; Taylor, J.M. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 2009, 10, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Loughran, T.; Nagin, D.S. Finite Sample Effects in Group-Based Trajectory Models. Sociol. Methods Res. 2016, 35, 250–278. [Google Scholar] [CrossRef]
- Society, A.C. Key Statistics for Colorectal Cancer. Available online: https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics (accessed on 20 June 2022).
- PASS 2022 Power Analysis and Sample Size Software; NCSS, LLC: Kaysville, UT, USA, 2022. Available online: https://www.ncss.com/software/pass/ (accessed on 20 June 2022).
- Drame, M.; Godaert, L. The Obesity Paradox and Mortality in Older Adults: A Systematic Review. Nutrients 2023, 15, 1780. [Google Scholar] [CrossRef] [PubMed]
- Gibson, T.M.; Park, Y.; Robien, K.; Shiels, M.S.; Black, A.; Sampson, J.N.; Purdue, M.P.; Freeman, L.E.; Andreotti, G.; Weinstein, S.J.; et al. Body mass index and risk of second obesity-associated cancers after colorectal cancer: A pooled analysis of prospective cohort studies. J. Clin. Oncol. 2014, 32, 4004–4011. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.T.; Newton, C.C.; Dehal, A.N.; Jacobs, E.J.; Patel, A.V.; Gapstur, S.M. Impact of body mass index on survival after colorectal cancer diagnosis: The Cancer Prevention Study-II Nutrition Cohort. J. Clin. Oncol. 2012, 30, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Fedirko, V.; Romieu, I.; Aleksandrova, K.; Pischon, T.; Trichopoulos, D.; Peeters, P.H.; Romaguera-Bosch, D.; Bueno-de-Mesquita, H.B.; Dahm, C.C.; Overvad, K.; et al. Pre-diagnostic anthropometry and survival after colorectal cancer diagnosis in Western European populations. Int. J. Cancer 2014, 135, 1949–1960. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Brockton, N.T.; Mitrou, P.; Kahle, L.L.; Reedy, J. The 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Score and All-Cause, Cancer, and Cardiovascular Disease Mortality Risk: A Longitudinal Analysis in the NIH-AARP Diet and Health Study. Curr. Dev. Nutr. 2022, 6, nzac096. [Google Scholar] [CrossRef]
- Benjamins, M.R.; Silva, A.; Saiyed, N.S.; De Maio, F.G. Comparison of All-Cause Mortality Rates and Inequities Between Black and White Populations Across the 30 Most Populous US Cities. JAMA Netw. Open 2021, 4, e2032086. [Google Scholar] [CrossRef]
- Sharma, I.; Kim, S.; Sridhar, S.; Basha, R. Colorectal Cancer: An Emphasis on Factors Influencing Racial/Ethnic Disparities. Crit. Rev. Oncog. 2020, 25, 151–160. [Google Scholar] [CrossRef]
- Tramontano, A.C.; Chen, Y.; Watson, T.R.; Eckel, A.; Hur, C.; Kong, C.Y. Racial/ethnic disparities in colorectal cancer treatment utilization and phase-specific costs, 2000–2014. PLoS ONE 2020, 15, e0231599. [Google Scholar] [CrossRef] [PubMed]
- Sineshaw, H.M.; Ng, K.; Flanders, W.D.; Brawley, O.W.; Jemal, A. Factors That Contribute to Differences in Survival of Black vs White Patients With Colorectal Cancer. Gastroenterology 2018, 154, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, L.M.; May, F.P.; Yabroff, K.R.; Siegel, R.L. Racial Disparities in Receipt of Guideline-Concordant Care for Early-Onset Colorectal Cancer in the United States. J. Clin. Oncol. 2023, 42, 1368–1377. [Google Scholar] [CrossRef]
- Taparra, K.; Qu, V.; Pollom, E. Disparities in Survival and Comorbidity Burden Between Asian and Native Hawaiian and Other Pacific Islander Patients With Cancer. JAMA Netw. Open 2022, 5, e2226327. [Google Scholar] [CrossRef]
- Maskarinec, G.; Harmon, B.E.; Little, M.A.; Ollberding, N.J.; Kolonel, L.N.; Henderson, B.E.; Le Marchand, L.; Wilkens, L.R. Excess body weight and colorectal cancer survival: The multiethnic cohort. Cancer Causes Control 2015, 26, 1709–1718. [Google Scholar] [CrossRef]
- Ashktorab, H.; Kupfer, S.S.; Brim, H.; Carethers, J.M. Racial Disparity in Gastrointestinal Cancer Risk. Gastroenterology 2017, 153, 910–923. [Google Scholar] [CrossRef]
- Bliton, J.N.; Parides, M.; Muscarella, P.; Papalezova, K.T.; In, H. Understanding Racial Disparities in Gastrointestinal Cancer Outcomes: Lack of Surgery Contributes to Lower Survival in African American Patients. Cancer Epidemiol. Biomark. Prev. 2020, 30, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Nimptsch, K.; Konigorski, S.; Pischon, T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism 2019, 92, 61–70. [Google Scholar] [CrossRef]
- Jih, J.; Mukherjea, A.; Vittinghoff, E.; Nguyen, T.T.; Tsoh, J.Y.; Fukuoka, Y.; Bender, M.S.; Tseng, W.; Kanaya, A.M. Using appropriate body mass index cut points for overweight and obesity among Asian Americans. Prev. Med. 2014, 65, 1–6. [Google Scholar] [CrossRef]
- Razak, F.; Anand, S.S.; Shannon, H.; Vuksan, V.; Davis, B.; Jacobs, R.; Teo, K.K.; McQueen, M.; Yusuf, S. Defining obesity cut points in a multiethnic population. Circulation 2007, 115, 2111–2118. [Google Scholar] [CrossRef]
- Caan, B.J.; Meyerhardt, J.A.; Kroenke, C.H.; Alexeeff, S.; Xiao, J.; Weltzien, E.; Feliciano, E.C.; Castillo, A.L.; Quesenberry, C.P.; Kwan, M.L.; et al. Explaining the Obesity Paradox: The Association between Body Composition and Colorectal Cancer Survival (C-SCANS Study). Cancer Epidemiol. Biomark. Prev. 2017, 26, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Cowling, T.E.; Bellot, A.; Boyle, J.; Walker, K.; Kuryba, A.; Galbraith, S.; Aggarwal, A.; Braun, M.; Sharples, L.D.; van der Meulen, J. One-year mortality of colorectal cancer patients: Development and validation of a prediction model using linked national electronic data. Br. J. Cancer 2020, 123, 1474–1480. [Google Scholar] [CrossRef] [PubMed]
Variable | All-Cause Mortality N = 394 | No Mortality N = 530 | p-Value |
---|---|---|---|
Age (years), Median (Q1, Q3) | 64.0 (58.0, 69.0) | 57.0 (51.0, 63.0) | <0.001 |
Age of CRC Diagnosis (years) | 81.5 (75.0, 86.0) | 75.0 (69.0, 82.0) | <0.001 |
Body Mass Index (kg/m2) at cohort entry | 25.8 (23.1, 28.8) | 25.8 (23.1, 28.6) | 0.992 |
BMI Class at cohort entry | |||
Underweight | 7 (1.8%) | 8 (1.5%) | 0.637 |
Normal weight | 149 (37.8%) | 206 (38.9%) | |
Overweight | 162 (41.1%) | 220 (41.5%) | |
Class 1 Obesity | 46 (11.7%) | 70 (13.2%) | |
Class 2 Obesity | 20 (5.1%) | 18 (3.4%) | |
Class 3 Obesity | 10 (2.5%) | 8 (1.5%) | |
Change in BMI (kg/m2) | −0.7 (−2.3, 0.9) | 0.0 (−1.5, 1.6) | <0.001 |
Change in BMI (%) | −2.7 (−8.6, 3.6) | 0.0 (−5.8, 6.2) | <0.001 |
Variance of BMI | 1.5 (0.5, 3.6) | 1.2 (0.4, 3.0) | 0.127 |
Female | 202 (51.3%) | 294 (55.5%) | 0.206 |
Ethnicity * | |||
African American | 54 (13.7%) | 49 (9.2%) | 0.017 |
Hawaiian | 29 (7.4%) | 29 (5.5%) | |
Hispanic or Latino | 74 (18.8%) | 94 (17.7%) | |
Japanese | 161 (40.9%) | 212 (40.0%) | |
White | 76 (19.3%) | 146 (27.5%) | |
Diabetes | 45 (11.4%) | 38 (7.2%) | 0.027 |
Smoking at Cohort Entry | |||
Current | 62 (15.7%) | 78 (14.7%) | 0.308 |
Past | 153 (38.8%) | 184 (34.7%) | |
Never | 174 (44.2%) | 260 (49.1%) | |
Missing | 5 (1.3%) | 8 (1.5%) | |
Family History of CRC | 50 (12.7%) | 54 (10.2%) | 0.248 |
CRC Type | |||
Colon | 304 (77.2%) | 410 (77.4%) | 0.126 |
Rectal | 82 (20.8%) | 117 (22.1%) | |
Overlapping | 8 (2.0%) | 3 (0.6%) | |
CRC Stage | |||
Localized | 97 (24.6%) | 286 (54.0%) | <0.001 |
Regional | 136 (34.5%) | 209 (39.4%) | |
Distant | 108 (27.4%) | 23 (4.3%) | |
Unknown | 53 (13.5%) | 12 (2.3%) | |
BMI Follow-Up Duration (years) | 16.0 (11.0, 17.0) | 17.0 (16.0, 17.8) | <0.001 |
Follow-Up after CRC diagnosis (years) | 1.0 (0.0, 3.0) | 5.0 (2.0, 8.0) | <0.001 |
Variable | Subset | All-Cause Mortality HR (95% CI, p-Value) | CA Mortality HR (95% CI, p-Value) |
---|---|---|---|
BMI Trajectory | Group 2 | - | - |
Group 1 | 1.09 (0.82–1.44, p = 0.539) | 0.91 (0.64–1.27, p = 0.566) | |
Group 3 | 0.81 (0.61–1.08, p = 0.147) | 0.80 (0.56–1.13, p = 0.200) | |
Group 4 | 1.24 (0.90–1.71, p = 0.185) | 1.06 (0.71–1.58, p = 0.760) | |
Sex | Female | - | - |
Male | 1.09 (0.87–1.37, p = 0.466) | 0.79 (0.60–1.06, p = 0.112) | |
Ethnicity | White | - | - |
African American | 1.58 (1.09–2.29, p = 0.016) | 1.08 (0.69–1.68, p = 0.749) | |
Hawaiian | 1.18 (0.75–1.88, p = 0.472) | 0.48 (0.27–0.87, p = 0.015) | |
Hispanic or Latino | 1.10 (0.78–1.55, p = 0.577) | 0.91 (0.60–1.37, p = 0.650) | |
Japanese | 1.04 (0.78–1.39, p = 0.781) | 0.68 (0.48–0.96, p = 0.029) | |
Diabetes | No | - | - |
Yes | 1.29 (0.92–1.83, p = 0.144) | 0.79 (0.50–1.24, p = 0.300) | |
Smoking at Cohort Entry | Never | - | - |
Past | 1.28 (1.01–1.63, p = 0.044) | 1.00 (0.74–1.36, p = 0.979) | |
Current | 1.66 (1.21–2.29, p = 0.002) | 1.33 (0.90–1.97, p = 0.147) | |
Age of CRC Dx | Mean (SD) | - | - |
(Cubic Spline) | 1 | 0.32 (0.03–3.28, p = 0.337) | 0.31 (0.03–3.59, p = 0.345) |
2 | 7.86 (2.77–22.32, p < 0.001) | 0.41 (0.12–1.43, p = 0.161) | |
3 | 6.45 (1.25–33.41, p = 0.027) | 3.62 (0.62–21.16, p = 0.151) |
Variable | Subset | CA Mortality HR (95% CI, p-Value) | Competing Risk All-Cause Mortality HR (95% CI, p-Value) |
---|---|---|---|
BMI Trajectory | Group 2 | - | - |
Group 1 | 1.09 (0.79–1.51, p = 0.598) | 0.99 (0.60–1.63, p = 0.968) | |
Group 3 | 0.72 (0.50–1.02, p = 0.066) | 0.96 (0.61–1.53, p = 0.878) | |
Group 4 | 1.15 (0.77–1.73, p = 0.492) | 1.45 (0.80–2.63, p = 0.223) | |
Sex | Female | - | - |
Male | 0.92 (0.70–1.23, p = 0.583) | 1.52 (0.99–2.33, p = 0.053) | |
Ethnicity | White | - | - |
African American | 1.56 (1.00–2.43, p = 0.048) | 1.53 (0.75–3.15, p = 0.244) | |
Hawaiian | 0.78 (0.45–1.36, p = 0.384) | 2.85 (1.31–6.21, p = 0.009) | |
Hispanic or Latino | 1.06 (0.70–1.61, p = 0.791) | 1.29 (0.69–2.42, p = 0.422) | |
Japanese | 0.90 (0.64–1.26, p = 0.535) | 1.41 (0.84–2.36, p = 0.189) | |
Diabetes | No | - | - |
Yes | 0.96 (0.58–1.57, p = 0.861) | 1.83 (1.08–3.10, p = 0.026) | |
Smoking at Cohort Entry | Never | - | - |
Past | 1.21 (0.90–1.63, p = 0.199) | 1.34 (0.88–2.04, p = 0.170) | |
Current | 1.59 (1.10–2.32, p = 0.015) | 1.56 (0.87–2.81, p = 0.138) | |
Age of CRC Dx | Mean (SD) | - | - |
(Cubic Spline) | 1 | 0.16 (0.01–2.25, p = 0.172) | 11.50 (0.06–2106.96, p = 0.357) |
2 | 2.95 (0.87–10.01, p = 0.082) | 98.04 (12.08–795.78, p < 0.001) | |
3 | 2.92 (0.44–19.40, p = 0.265) | 109.61 (3.47–3463.77, p = 0.008) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Blandon, C.; Sikorskii, A.; Kaplan, D.E.; Mehta, S.J.; Su, G.L.; Goldberg, D.S.; Crane, T.E. Investigating the Obesity Paradox in Colorectal Cancer: An Analysis of Prospectively Collected Data in a Diverse Cohort. Cancers 2024, 16, 2950. https://doi.org/10.3390/cancers16172950
Kumar S, Blandon C, Sikorskii A, Kaplan DE, Mehta SJ, Su GL, Goldberg DS, Crane TE. Investigating the Obesity Paradox in Colorectal Cancer: An Analysis of Prospectively Collected Data in a Diverse Cohort. Cancers. 2024; 16(17):2950. https://doi.org/10.3390/cancers16172950
Chicago/Turabian StyleKumar, Shria, Catherine Blandon, Alla Sikorskii, David E. Kaplan, Shivan J. Mehta, Grace L. Su, David S. Goldberg, and Tracy E. Crane. 2024. "Investigating the Obesity Paradox in Colorectal Cancer: An Analysis of Prospectively Collected Data in a Diverse Cohort" Cancers 16, no. 17: 2950. https://doi.org/10.3390/cancers16172950
APA StyleKumar, S., Blandon, C., Sikorskii, A., Kaplan, D. E., Mehta, S. J., Su, G. L., Goldberg, D. S., & Crane, T. E. (2024). Investigating the Obesity Paradox in Colorectal Cancer: An Analysis of Prospectively Collected Data in a Diverse Cohort. Cancers, 16(17), 2950. https://doi.org/10.3390/cancers16172950