A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classical Application and Mechanism of Action of Metformin
3. Novel Applications for Metformin
3.1. Metformin’s Efficacy on the Cardiovascular System and Kidneys
3.2. Metformin’s Efficacy on Polycystic Ovary Syndrome (PCOS)
3.3. Metformin’s Efficacy on Cancer Treatment
4. The Therapy for Oral Cancer
4.1. Vitamin D
4.2. Target Drugs
4.3. Photothermal Therapy
5. Relations between Metformin and Oral Cancer
6. How Metformin Inhibits Oral Squamous Cell Carcinoma
Study | Study Design | Sample Size | Key Findings | Limitations |
---|---|---|---|---|
Mekala et al. [11] | Retrospective Study | 500 oral cancer patients, 500 controls | Metformin use is associated with a lower risk of oral cancer in diabetic patients | Potential for selection bias due to retrospective nature |
Hammad et al. [44] | Review Article | Multiple studies reviewed | Explores metformin’s applications in dentistry, particularly its potential to prevent oral cancer | Dependent on the quality and consistency of reviewed studies |
Wei et al. [91] | In vitro Study | OSCC cell lines | Metformin inhibits OSCC cell proliferation by interfering with NGFR-N and p53 pathways | In vitro findings need further validation in clinical settings |
Yin et al. [93] | Experimental Study | OSCC cell lines | Metformin inhibits EMT in OSCC via the mTOR/HIF-1α/PKM2/STAT3 pathway | Study limited to cell lines; clinical relevance requires more studies |
Chen et al. [99] | Experimental Study | In vitro and in vivo | LIN28 inhibitor combined with metformin reduces OSCC cell proliferation and migration | Preclinical study; human trials needed for confirmation |
Tseng [87] | Cohort Study | Large cohort of diabetic patients | Metformin significantly reduces the risk of oral cancer in patients with T2DM | Observational study design limits causal inferences |
Hu et al. [100] | Cohort Study | T2DM patients with OSCC | Metformin lowers EGFR expression and reduces the risk of OSCC recurrence | Observational nature limits the ability to establish causality |
Gupta et al. [105] | Case-Control Study | Oral cancer patients | Elevated vitamin B12 levels were observed in oral cancer patients; metformin might affect this interaction | Small sample size and observational design limit generalizability |
Broadfield et al. [16] | Experimental Study | In vivo and in vitro | Metformin modulates gut microbiome diversity, reducing tumor growth in colorectal cancer models | The direct applicability to oral cancer needs further exploration |
He et al. [104] | In vitro and in vivo | OSCC models | Metformin combined with 4SC-202 promotes apoptosis in OSCC cells | Preclinical study; further research needed to confirm in human trials |
7. The Challenge of Metformin in Oral Cancer
8. Risk of Bias Assessment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chuchueva, N.; Carta, F.; Nguyen, H.N.; Luevano, J.; Lewis, I.A.; Rios-Castillo, I.; Fanos, V.; King, E.; Swistushkin, V.; Reshetov, I.; et al. Metabolomics of head and neck cancer in biofluids: An integrative systematic review. Metabolomics 2023, 19, 77. [Google Scholar] [CrossRef]
- Vincent-Chong, V.K. Editorial of special issue “Oral cancer: From pathophysiology to novel therapeutic approaches”. Biomedicines 2023, 11, 2748. [Google Scholar] [CrossRef] [PubMed]
- Saikia, P.J.; Pathak, L.; Mitra, S.; Das, B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front. Immunol. 2023, 14, 1198269. [Google Scholar] [CrossRef]
- Remschmidt, B.; Pau, M.; Gaessler, J.; Zemann, W.; Jakse, N.; Payer, M.; Végh, D. Diabetes mellitus and oral cancer: A retrospective study from Austria. Anticancer Res. 2022, 42, 1899–1903. [Google Scholar] [CrossRef] [PubMed]
- Galal, M.A.; Al-Rimawi, M.; Hajeer, A.; Dahman, H.; Alouch, S.; Aljada, A. Metformin: A dual-role player in cancer treatment and prevention. Int. J. Mol. Sci. 2024, 25, 4083. [Google Scholar] [CrossRef]
- Najafi, F.; Rajati, F.; Sarokhani, D.; Bavandpour, M.; Moradinazar, M. The relationship between metformin consumption and cancer risk: An updated umbrella review of systematic reviews and meta-analyses. Int. J. Prev. Med. 2023, 14, 90. [Google Scholar] [PubMed]
- Li, H.; Chen, Y.; Hu, L.; Yang, W.; Gao, Z.; Liu, M.; Tao, H.; Li, J. Will metformin use lead to a decreased risk of thyroid cancer? A systematic review and meta-analyses. Eur. J. Med. Res. 2023, 28, 392. [Google Scholar] [CrossRef] [PubMed]
- Amengual-Cladera, E.; Morla-Barcelo, P.M.; Morán-Costoya, A.; Sastre-Serra, J.; Pons, D.G.; Valle, A.; Roca, P.; Nadal-Serrano, M. Metformin: From diabetes to cancer-unveiling molecular mechanisms and therapeutic strategies. Biology 2024, 13, 302. [Google Scholar] [CrossRef]
- Almeida-Nunes, D.L.; Silvestre, R.; Dinis-Oliveira, R.J.; Ricardo, S. Enhancing immunotherapy in ovarian cancer: The emerging role of metformin and statins. Int. J. Mol. Sci. 2023, 25, 323. [Google Scholar] [CrossRef]
- Hua, Y.; Zheng, Y.; Yao, Y.; Jia, R.; Ge, S.; Zhuang, A. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403. [Google Scholar] [CrossRef]
- Mekala, M.R.; Bangi, B.B.; Jayalatha, N.; Lebaka, R.R.; Nadendla, L.K.; Ginjupally, U. Association of diabetes with oral cancer—An enigmatic correlation. Asian Pac. J. Cancer Prev. 2020, 21, 809–814. [Google Scholar] [CrossRef]
- Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: An update. Nat. Rev. Cancer 2012, 12, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, W.W.; Weinberg, S.E.; Hamanaka, R.B.; Soberanes, S.; Sullivan, L.B.; Anso, E.; Glasauer, A.; Dufour, E.; Mutlu, G.M.; Budigner, G.S.; et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 2014, 3, e02242. [Google Scholar] [CrossRef]
- Dowling, R.J.; Goodwin, P.J.; Stambolic, V. Understanding the benefit of metformin use in cancer treatment. BMC Med. 2011, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA 2015, 112, 1809–1814. [Google Scholar] [CrossRef]
- Broadfield, L.A.; Saigal, A.; Szamosi, J.C.; Hammill, J.A.; Bezverbnaya, K.; Wang, D.; Gautam, J.; Tsakiridis, E.E.; Di Pastena, F.; McNicol, J.; et al. Metformin-induced reductions in tumor growth involves modulation of the gut microbiome. Mol. Metab. 2022, 61, 101498. [Google Scholar] [CrossRef]
- Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014, 510, 542–546. [Google Scholar] [CrossRef]
- Sadeghi, N.; Abbruzzese, J.L.; Yeung, S.C.; Hassan, M.; Li, D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin. Cancer Res. 2012, 18, 2905–2912. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J. Metformin: Historical overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Orang, A.; Marri, S.; McKinnon, R.A.; Petersen, J.; Michael, M.Z. Restricting colorectal cancer cell metabolism with metformin: An integrated transcriptomics study. Cancers 2024, 16, 2055. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108, 1167–1174. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, C.; Wojeck, B.S. Role of metformin in the management of type 2 diabetes: Recent advances. Pol. Arch. Intern. Med. 2023, 133, 16511. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Drug therapies for diabetes. Int. J. Mol. Sci. 2023, 24, 17147. [Google Scholar] [CrossRef]
- Garza-Lombó, C.; Schroder, A.; Reyes-Reyes, E.M.; Franco, R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. Curr. Opin. Toxicol. 2018, 8, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.J.; Lamia, K.A.; Vasquez, D.; Koo, S.H.; Bardeesy, N.; Depinho, R.A.; Montminy, M.; Cantley, L.C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005, 310, 1642–1646. [Google Scholar] [CrossRef]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, Z.; Xiang, B.; Liu, J.; Geng, L.; Xu, D.; Zhan, M.; Xu, Y.; Zhang, B. Metformin is a potential therapeutic for COVID-19/LUAD by regulating glucose metabolism. Sci. Rep. 2024, 14, 12406. [Google Scholar] [CrossRef] [PubMed]
- Olawore, O.; Turner, L.E.; Evans, M.D.; Johnson, S.G.; Huling, J.D.; Bramante, C.T.; Buse, J.B.; Stürmer, T.; N3C Consortium. Risk of post-acute sequelae of SARS-CoV-2 infection (PASC) among patients with type 2 diabetes mellitus on anti-hyperglycemic medications. Clin. Epidemiol. 2024, 16, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Noh, J.Y.; Song, J.Y.; Cheong, H.J.; Kim, W.J. Metformin reduces the risk of developing influenza A virus related cardiovascular disease. Heliyon 2023, 9, e20284. [Google Scholar] [CrossRef]
- Cheng, L.; Deepak, R.N.V.K.; Wang, G.; Meng, Z.; Tao, L.; Xie, M.; Chi, W.; Zhang, Y.; Yang, M.; Liao, Y.; et al. Hepatic mitochondrial NAD + transporter SLC25A47 activates AMPKα mediating lipid metabolism and tumorigenesis. Hepatology 2023, 78, 1828–1842. [Google Scholar] [CrossRef]
- Sabbar, R.; Kadhim, S.A.A.; Fawzi, H.A.; Flayih, A.; Mohammad, B.; Swadi, A. Metformin effects on cardiac parameters in non-diabetic Iraqi patients with heart failure and mid-range ejection fraction-a comparative two-arm parallel clinical study. J. Med. Life 2023, 16, 1400–1406. [Google Scholar]
- Dutta, S.; Shah, R.B.; Singhal, S.; Dutta, S.B.; Bansal, S.; Sinha, S.; Haque, M. Metformin: A review of potential mechanism and therapeutic utility beyond diabetes. Drug Des. Dev. Ther. 2023, 17, 1907–1932. [Google Scholar] [CrossRef]
- Kleibert, M.; Zygmunciak, P.; Łakomska, K.; Mila, K.; Zgliczyński, W.; Mrozikiewicz-Rakowska, B. Insight into the molecular mechanism of diabetic kidney disease and the role of metformin in its pathogenesis. Int. J. Mol. Sci. 2023, 24, 13038. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.M.; Rashed, L.A.; Soliman, S.A.; Sayed, S.M.; Kamel, O.; Kamar, S.S.; Hussien, R.E.S. SGLT-2 inhibitors enhance the effect of metformin to ameliorate hormonal changes and inflammatory markers in a rat PCOS model. Physiol. Rep. 2023, 11, e15858. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Qiao, J.; Pang, Y. Central regulation of PCOS: Abnormal neuronal-reproductive-metabolic circuits in PCOS pathophysiology. Front. Endocrinol. 2021, 12, 667422. [Google Scholar] [CrossRef]
- Legro, R.S.; Arslanian, S.A.; Ehrmann, D.A.; Hoeger, K.M.; Murad, M.H.; Pasquali, R.; Welt, C.K.; Endocrine Society. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2013, 98, 4565–4592. [Google Scholar]
- Scheen, A.J. SGLT2 inhibitors: Benefit/risk balance. Curr. Diab. Rep. 2016, 16, 92. [Google Scholar] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Ruderman, N.B.; Xu, X.J.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 2010, 298, E751–E760. [Google Scholar]
- Goldman, J.D. Combination of empagliflozin and metformin therapy: A consideration of its place in type 2 diabetes therapy. Clin. Med. Insights Endocrinol. Diabetes 2018, 11, 1179551418786258. [Google Scholar] [CrossRef]
- Torunoglu, S.T.; Zajda, A.; Tampio, J.; Markowicz-Piasecka, M.; Huttunen, K.M. Metformin derivatives-Researchers’ friends or foes? Biochem. Pharmacol. 2023, 215, 115743. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, G.; Ehteshaminia, Y.; Kokhaei, P.; Jalali, S.F.; Jadidi-Niaragh, F.; Pagheh, A.S.; Enderami, S.E.; Kenari, S.A.; Hassannia, H. Enhancement of targeted therapy in combination with metformin on human breast cancer cell lines. Cell Commun. Signal. 2024, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xie, C.; Wang, G.; Wu, Y.; Wu, Q.; Wang, X.; Liu, J.; Deng, Y.; Xia, J.; Chen, B.; et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018, 24, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Hammad Uddin, M.K.; Khan Sadiq, M.S.; Ahmed, A.; Khan, M.; Maniar, T.; Mateen, S.M.; Saba, B.; Kashif, S.M.; Usman, S.; Najeeb, S.; et al. Applications of metformin in dentistry-A review. J. Taibah Univ. Med. Sci. 2023, 18, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Gutkind, J.S.; Molinolo, A.A.; Wu, X.; Wang, Z.; Nachmanson, D.; Harismendy, O.; Alexandrov, L.B.; Wuertz, B.R.; Ondrey, F.G.; Laronde, D.; et al. Inhibition of mTOR signaling and clinical activity of metformin in oral premalignant lesions. JCI Insight 2021, 6, e147096. [Google Scholar] [CrossRef]
- Curry, J.M.; Johnson, J.; Mollaee, M.; Tassone, P.; Amin, D.; Knops, A.; Whitaker-Menezes, D.; Mahoney, M.G.; South, A.; Rodeck, U.; et al. Metformin clinical trial in HPV+ and HPV− head and neck squamous cell carcinoma: Impact on cancer cell apoptosis and immune infiltrate. Front. Oncol. 2018, 8, 436. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Huang, M.; Huang, Z.; Wang, Q.; Qing, L.; Li, L.; Xu, S.; Jia, B. Current status, opportunities, and challenges of exosomes in oral cancer diagnosis and treatment. Int. J. Nanomed. 2022, 17, 2679–2705. [Google Scholar] [CrossRef]
- Baskar, G.; Palaniyandi, T.; Viswanathan, S.; Wahab, M.R.A.; Surendran, H.; Ravi, M.; Sivaji, A.; Rajendran, B.K.; Natarajan, S.; Govindasamy, G. Recent and advanced therapy for oral cancer. Biotechnol. Bioeng. 2023, 120, 3105–3115. [Google Scholar] [CrossRef]
- Cao, L.; Wu, Y.; Shan, Y.; Tan, B.; Liao, J. A review: Potential application and outlook of photothermal therapy in oral cancer treatment. Biomed. Mater. 2022, 17, 022008. [Google Scholar] [CrossRef]
- Hung, M.; Almpani, K.; Thao, B.; Sudweeks, K.; Lipsky, M.S. Vitamin D in the prevention and treatment of oral cancer: A scoping review. Nutrients 2023, 15, 2346. [Google Scholar] [CrossRef]
- Umapathy, V.R.; Natarajan, P.M.; Swamikannu, B. Review of the role of nanotechnology in overcoming the challenges faced in oral cancer diagnosis and treatment. Molecules 2023, 28, 5395. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, B.S.; Krishnan Namboori, P.K.; Akey, K.S.; Sankaran, S.; Raman, R.K.; Natarajan, J.; Selvaraj, J. Vitamin D analog calcitriol for breast cancer therapy; an integrated drug discovery approach. J. Biomol. Struct. Dyn. 2023, 41, 11017–11043. [Google Scholar]
- Chen, Y.C.; Chiang, Y.F.; Lin, Y.J.; Huang, K.C.; Chen, H.Y.; Hamdy, N.M.; Huang, T.C.; Chang, H.Y.; Shieh, T.M.; Huang, Y.J.; et al. Effect of vitamin D supplementation on primary dysmenorrhea: A systematic review and meta-analysis of randomized clinical trials. Nutrients 2023, 15, 2830. [Google Scholar] [CrossRef] [PubMed]
- Kanno, K.; Akutsu, T.; Ohdaira, H.; Suzuki, Y.; Urashima, M. Effect of vitamin D supplements on relapse or death in a p53-immunoreactive subgroup with digestive tract cancer: Post hoc analysis of the AMATERASU randomized clinical trial. JAMA Netw. Open 2023, 6, e2328886. [Google Scholar] [CrossRef] [PubMed]
- Patini, R.; Favetti Giaquinto, E.; Gioco, G.; Castagnola, R.; Perrotti, V.; Rupe, C.; Di Gennaro, L.; Nocca, G.; Lajolo, C. Malnutrition as a risk factor in the development of oral cancer: A systematic literature review and meta-analyses. Nutrients 2024, 16, 360. [Google Scholar] [CrossRef]
- Krishnan, A.V.; Feldman, D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 311–336. [Google Scholar] [CrossRef]
- Choi, S.; Iriarte, C. High-dose oral vitamin D: An emerging therapeutic for skin toxicities associated with cancer treatment. J. Am. Acad. Dermatol. 2024, 91, 596–597. [Google Scholar] [CrossRef]
- Giovannucci, E. Vitamin D and cancer incidence in the Harvard cohorts. Ann. Epidemiol. 2009, 19, 84–88. [Google Scholar] [CrossRef]
- Giovannucci, E. The epidemiology of vitamin D and cancer incidence and mortality: A review (United States). Cancer Causes Control 2005, 16, 83–95. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Trump, D.L.; Deeb, K.K.; Johnson, C.S. Vitamin D: Considerations in the continued development as an agent for cancer prevention and therapy. Cancer J. 2010, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Garland, C.F. A critical review of studies on vitamin D in relation to colorectal cancer. Nutr. Cancer 2004, 48, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Bhattacharya, K.; Blaker, J.J.; Singha, N.K.; Mandal, M. Beyond traditional therapy: Mucoadhesive polymers as a new frontier in oral cancer management. Biopolymers 2023, 114, e23556. [Google Scholar] [CrossRef] [PubMed]
- Sutar, K.P.; Shirkoli, N.S.; Sutar, P.S.; Kurangi, B.K.; Dandagi, P.M.; Masareddy, R. Current novel drug deliveries for oral cancer: A chronotherapeutic approach. Curr. Drug Deliv. 2023, 20, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and cancer. Cell 2016, 166, 555–566. [Google Scholar] [CrossRef]
- Olmedo, I.; Martínez, D.; Carrasco-Rojas, J.; Jara, J.A. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci. 2023, 331, 122065. [Google Scholar] [CrossRef]
- Zoughaib, M.; Pashirova, T.N.; Nikolaeva, V.; Kamalov, M.; Nakhmetova, F.; Salakhieva, D.V.; Abdullin, T.I. Anticancer and chemosensitizing effects of menadione-containing peptide-targeted solid lipid nanoparticles. J. Pharm. Sci. 2024, 113, 2258–2267. [Google Scholar] [CrossRef]
- Dattilo, R.; Mottini, C.; Camera, E.; Lamolinara, A.; Auslander, N.; Doglioni, G.; Muscolini, M.; Tang, W.; Planque, M.; Ercolani, C.; et al. Pyrvinium pamoate induces death of triple-negative breast cancer stem-like cells and reduces metastases through effects on lipid anabolism. Cancer Res. 2020, 80, 4087–4102. [Google Scholar] [CrossRef]
- García-Heredia, J.M.; Carnero, A. Role of mitochondria in cancer stem cell resistance. Cells 2020, 9, 1693. [Google Scholar] [CrossRef]
- Dickerman, B.A.; García-Albéniz, X.; Logan, R.W.; Denaxas, S.; Hernán, M.A. Evaluating metformin strategies for cancer prevention: A target trial emulation using electronic health eecords. Epidemiology 2023, 34, 690–699. [Google Scholar] [CrossRef]
- Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 2004, 56, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Sledge, G.W., Jr.; Miller, K.D. Exploiting the hallmarks of cancer: The future conquest of breast cancer. Eur. J. Cancer 2003, 39, 1668–1675. [Google Scholar] [CrossRef]
- Liao, W.T.; Chang, D.M.; Lin, M.X.; Lee, J.W.; Tung, Y.C.; Hsiao, J.K. Indocyanine-green-loaded liposomes for photodynamic and photothermal therapies: Inducing apoptosis and ferroptosis in cancer cells with implications beyond oral cancer. Pharmaceutics 2024, 16, 224. [Google Scholar] [CrossRef]
- Men, C.; Zhang, Y.; Shi, P.; Tang, Z.; Cheng, X. ανβ3 integrin-targeted ICG-derived probes for imaging-guided surgery and photothermal therapy of oral cancer. Analyst 2023, 148, 6334–6340. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922–928. [Google Scholar] [CrossRef]
- Robinson, J.T.; Tabakman, S.M.; Liang, Y.; Wang, H.; Casalongue, H.S.; Vinh, D.; Dai, H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831. [Google Scholar] [CrossRef]
- Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef]
- Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019, 7, 167. [Google Scholar] [CrossRef]
- Yang, K.; Feng, L.; Hong, H.; Cai, W.; Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc. 2013, 8, 2392–2403. [Google Scholar] [CrossRef]
- Qi, K.; Sun, B.; Liu, S.Y.; Zhang, M. Research progress on carbon materials in tumor photothermal therapy. Biomed. Pharmacother. 2023, 165, 115070. [Google Scholar] [CrossRef]
- Xu, M.; Han, X.; Xiong, H.; Gao, Y.; Xu, B.; Zhu, G.; Li, J. Cancer nanomedicine: Emerging strategies and therapeutic potentials. Molecules 2023, 28, 5145. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Hu, C.; Ran, W.; Meng, J.; Yin, Q.; Li, Y. Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 2016, 6, 948–968. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, J.; Qiao, X. Research progress of metformin in the treatment of oral squamous cell carcinoma. Endocrinology 2023, 164, bqad139. [Google Scholar] [CrossRef]
- Tseng, C.H. Metformin may reduce oral cancer risk in patients with type 2 diabetes. Oncotarget 2016, 7, 2000–2008. [Google Scholar] [CrossRef] [PubMed]
- Bouland, C.; Vanden Eynden, X.; Lalmand, M.; Buset, T.; Yanni, A.; Javadian, R.; Rodriguez, A.; Loeb, I.; Lechien, J.R.; Journe, F.; et al. Preventive and therapeutic effect of metformin in head and neck cancer: A concise review. J. Clin. Med. 2023, 12, 6195. [Google Scholar] [CrossRef]
- Rêgo, D.F.; Pavan, L.M.; Elias, S.T.; De Luca Canto, G.; Guerra, E.N. Effects of metformin on head and neck cancer: A systematic review. Oral Oncol. 2015, 51, 416–422. [Google Scholar] [CrossRef]
- Ji, M.; Lv, Y.; Chen, C.; Xing, D.; Zhou, C.; Zhao, J.; Qi, Y.; Zhang, J.; Wang, Y.; Ma, X.; et al. Metformin inhibits oral squamous cell carcinoma progression through regulating RNA alternative splicing. Life Sci. 2023, 315, 121274. [Google Scholar] [CrossRef]
- Wei, J.; Huang, J.; Kuang, Y.; Li, Y.; Zhong, D.; Song, J. Metformin inhibits proliferation of oral squamous cell carcinoma cells by suppressing proteolysis of nerve growth factor receptor. Arch. Oral Biol. 2021, 121, 104971. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hao, Q.; Liao, P.; Luo, S.; Zhang, M.; Hu, G.; Liu, H.; Zhang, Y.; Cao, B.; Baddoo, M.; et al. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. eLife 2016, 5, e15099. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Liu, Y.; Liu, X.; Ma, X.; Sun, B.; Yu, Z. Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway. Oncol. Lett. 2021, 21, 31. [Google Scholar] [PubMed]
- Huang, Y.; Hong, W.; Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 2022, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, C.; Zhou, J.; Chen, X.; Cai, K.; Shen, M.; Chen, X.; Jiang, L.; Wang, G. Inhibition of autophagy promotes the anti-tumor effect of metformin in oral squamous cell carcinoma. Cancers 2022, 14, 4185. [Google Scholar] [CrossRef]
- Gewalt, T.; Noh, K.W.; Meder, L. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol. Res. 2023, 31, 101–115. [Google Scholar] [CrossRef]
- Lekka, E.; Kokanovic, A.; Mosole, S.; Civenni, G.; Schmidli, S.; Laski, A.; Ghidini, A.; Iyer, P.; Berk, C.; Behera, A.; et al. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat. Commun. 2022, 13, 7940. [Google Scholar] [CrossRef]
- Chen, H.; Sa, G.; Li, L.; He, S.; Wu, T. In vitro and in vivo synergistic anti-tumor effect of LIN28 inhibitor and metformin in oral squamous cell carcinoma. Eur. J. Pharmacol. 2021, 891, 173757. [Google Scholar] [CrossRef]
- Alimoradi, N.; Firouzabadi, N.; Fatehi, R. How metformin affects various malignancies by means of microRNAs: A brief review. Cancer Cell Int. 2021, 21, 207. [Google Scholar] [CrossRef]
- Hu, X.; Xiong, H.; Chen, W.; Huang, L.; Mao, T.; Yang, L.; Wang, C.; Huang, D.; Wang, Z.; Yu, J.; et al. Metformin reduces the increased risk of oral squamous cell carcinoma recurrence in patients with type 2 diabetes mellitus: A cohort study with propensity score analyses. Surg. Oncol. 2020, 35, 453–459. [Google Scholar] [CrossRef]
- Wang, W.M.; Yang, S.S.; Shao, S.H.; Nie, H.Q.; Zhang, J.; Su, T. Metformin downregulates the expression of epidermal growth factor receptor independent of lowering blood glucose in oral squamous cell carcinoma. Front. Endocrinol. 2022, 13, 828608. [Google Scholar] [CrossRef] [PubMed]
- Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.; Colosetti, P.; Auberger, P.; Tanti, J.F.; Le Marchand-Brustel, Y.; Bost, F. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008, 27, 3576–3586. [Google Scholar] [CrossRef] [PubMed]
- Aljofan, M.; Riethmacher, D. Anticancer activity of metformin: A systematic review of the literature. Future Sci. OA 2019, 5, FSO410. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tai, S.; Deng, M.; Fan, Z.; Ping, F.; He, L.; Zhang, C.; Huang, Y.; Cheng, B.; Xia, J. Metformin and 4SC-202 synergistically promote intrinsic cell apoptosis by accelerating ΔNp63 ubiquitination and degradation in oral squamous cell carcinoma. Cancer Med. 2019, 8, 3479–3490. [Google Scholar] [CrossRef]
- Gupta, P.; Chandra, S.; Jha, A.K.; Khaitan, T.; Shukla, A.K.; Naik, S.R. Increased vitamin B12 levels in patients with oral cancer. Indian J. Dent. Res. 2023, 34, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Kumar Singh, R.; Satone, P.D.; Meshram, R.J. Metformin-induced vitamin B12 deficiency in patients with type-2 diabetes mellitus. Cureus 2023, 15, e47771. [Google Scholar] [CrossRef] [PubMed]
- Thewjitcharoen, Y.; Chongvoranond, P.; Nakasatien, S.; Krittiyawong, S.; Himathongkam, T. Metformin-associated vitamin B12 deficiency: An underrecognized complication. JCEM Case Rep. 2024, 2, luae029. [Google Scholar] [CrossRef]
- Hans, M.; Malik, P.K.; Hans, V.M.; Chug, A.; Kumar, M. Serum levels of various vitamins in periodontal health and disease—A cross sectional study. J. Oral Biol. Craniofac. Res. 2023, 13, 471–475. [Google Scholar] [CrossRef]
- Xie, W.; Li, J.; Kong, C.; Luo, W.; Zheng, J.; Zhou, Y. Metformin-cimetidine drug interaction and risk of lactic acidosis in renal failure: A pharmacovigilance-pharmacokinetic appraisal. Diabetes Care 2024, 47, 144–150. [Google Scholar] [CrossRef]
- Kuno, H.; Fujimaru, T.; Kadota, N.; Konishi, K.; Sekiguchi, M.; Watanabe, K.; Ito, Y.; Nagahama, M.; Taki, F.; Hifumi, T.; et al. Severe lactic acidosis with euglycemic diabetic ketoacidosis due to metformin overdose. CEN Case Rep. 2023, 12, 408–412. [Google Scholar] [CrossRef]
Study | Study Design | Selection Bias | Information Bias | Reporting Bias | Other Biases | Overall Risk of Bias |
---|---|---|---|---|---|---|
Mekala et al. [11] | Retrospective Study | High | Moderate | Low | N/A | High |
Hammad et al. [44] | Review Article | Low | High | High | Dependent on included studies | High |
Wei et al. [91] | In vitro Study | N/A | Low | Moderate | Laboratory conditions | Moderate |
Yin et al. [93] | Experimental Study | N/A | Moderate | Low | Limited to cell lines | Moderate |
Chen et al. [99] | Experimental Study | N/A | Moderate | Low | Preclinical study design | Moderate |
Tseng [87] | Cohort Study | Moderate | Low | Low | Observational design | Moderate |
Hu et al. [100] | Cohort Study | Moderate | Low | Moderate | Observational design | Moderate |
Gupta et al. [105] | Case-Control Study | High | Moderate | High | Small sample size | High |
Broadfield et al. [16] | Experimental Study | N/A | Moderate | Low | Relevance to oral cancer | Moderate |
He et al. [104] | In vitro and in vivo | N/A | Moderate | Low | Preclinical relevance | Moderate |
Item | Content |
---|---|
Applications of Metformin | Treatment of T2DM [19], oral cancer (especially OSCC) [11], cardiovascular and renal protection [23,31,33], PCOS [34], and other cancers (breast cancer [42], colorectal cancer [16], etc.) |
Main Mechanisms of Action | |
Advantages | |
Challenges |
|
Clinical Studies and Evidence |
|
Future Research Directions |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.-H.; Hsin, P.-Y.; Hsiao, Y.-C.; Chen, B.-J.; Zhuang, Z.-Y.; Lee, C.-W.; Lee, W.-J.; Vo, T.T.T.; Tseng, C.-F.; Tseng, S.-F.; et al. A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer. Cancers 2024, 16, 3017. https://doi.org/10.3390/cancers16173017
Li J-H, Hsin P-Y, Hsiao Y-C, Chen B-J, Zhuang Z-Y, Lee C-W, Lee W-J, Vo TTT, Tseng C-F, Tseng S-F, et al. A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer. Cancers. 2024; 16(17):3017. https://doi.org/10.3390/cancers16173017
Chicago/Turabian StyleLi, Jui-Hsiang, Pei-Yi Hsin, Yung-Chia Hsiao, Bo-Jun Chen, Zhi-Yun Zhuang, Chiang-Wen Lee, Wei-Ju Lee, Thi Thuy Tien Vo, Chien-Fu Tseng, Shih-Fen Tseng, and et al. 2024. "A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer" Cancers 16, no. 17: 3017. https://doi.org/10.3390/cancers16173017
APA StyleLi, J. -H., Hsin, P. -Y., Hsiao, Y. -C., Chen, B. -J., Zhuang, Z. -Y., Lee, C. -W., Lee, W. -J., Vo, T. T. T., Tseng, C. -F., Tseng, S. -F., & Lee, I. -T. (2024). A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer. Cancers, 16(17), 3017. https://doi.org/10.3390/cancers16173017