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Simple Summary: The YAP/TAZ signaling pathways, which is involved in tumor development and
proliferation in a variety of solid tumors, inhibits hypoxia-induced cell death, increases and stabilizes
angiogenesis, and activates tumor proliferation, both independently and in conjunction with HIF
in hypoxic tumors. It also promotes tumor metastasis by regulating different TME environments.
Therefore, understanding the activity of YAP/TAZ as a mechanism of tumor development may lead
to the development of novel therapeutic strategies.

Abstract: In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important
mechanisms of cancer development that closely influences cancer development, survival, and metas-
tasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy
but continues to be constrained by limited response rates and the resistance and high costs required
for the development of new and innovative strategies. In particular, solid tumors, including HCC, a
multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis
and development, making it difficult to treat HCC, not only with immunotherapy but also with
drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors,
various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date,
tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal
pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly,
Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ,
which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly,
YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors,
are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing
the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex
hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF
and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
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1. Introduction

In many solid cancers, such as hepatocellular carcinoma (HCC), tumor survival and
development is maintained by multiple complex, dense, and overlapping signaling path-
ways that allow the cancer to proliferate, develop, and metastasize [1]. In addition, the
treatment of advanced solid tumors through immunosuppression, angiogenesis, etc., is
challenging due to this complex and diverse signaling system [2]. In particular, hypoxia
and hypoxia-inducible factor (HIF) signaling, which is known to act as a tumorigenic
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angiogenesis switch, promote cancer progression and treatment resistance [3] and have
been reported in solid cancers such as hepatocellular carcinoma (HCC) [4].

The Hippo pathway is a signaling pathway that plays a crucial role in regulating cell
proliferation, apoptosis, and organ size [5]. Dysregulation of the Hippo pathway has been
implicated in various cancers, including liver cancer [5]. Tumor hypoxia, on the other
hand, refers to the condition where the tumor microenvironment experiences low levels of
oxygen due to rapid tumor growth and insufficient blood supply [4].

In liver cancer, there is evidence to suggest a correlation between the Hippo pathway
and tumor hypoxia [6]. One of the key components of the Hippo pathway is Yes-associated
protein (YAP) and its corresponding transcriptional activator with a PDZ-binding motif
(TAZ) [7]. When the Hippo pathway is activated, YAP/TAZ activity are inhibited, resulting
in inhibition of cell proliferation and promotion of apoptosis [6]. However, when the Hippo
pathway is disrupted, YAP/TAZ become active and translocate to the nucleus, where they
interact with transcription factors to promote cell proliferation and survival [7,8].

Tumor hypoxia, on the other hand, triggers various cellular responses, including
activation of HIFs [9]. HIFs are transcription factors that regulate the expression of genes
involved in adaptation to low oxygen conditions, such as angiogenesis, glycolysis, and cell
survival [4,9,10].

Studies have shown the presence of crosstalk between the Hippo pathway and HIF
signaling under hypoxic conditions. For instance, YAP has been reported to interact with
HIF-1α, a subunit of HIF, and regulate its transcriptional activity [11]. Additionally, YAP
has been shown to promote the expression of HIF-1α target genes involved in glycolysis
and angiogenesis, thereby contributing to tumor growth and progression under hypoxic
conditions [11,12].

Therefore, the dysregulation of the Hippo pathway, leading to increased YAP/TAZ
activity, can promote tumor growth and survival under hypoxic conditions in liver cancer.
Understanding the interplay between the Hippo pathway and tumor hypoxia may provide
insights into the development of novel therapeutic strategies for liver cancer.

2. The Protection of DNA Damage by YAP/TAZ under Hypoxia

The protection of DNA damage by YAP/TAZ under hypoxia is an intriguing aspect
of cellular adaptation to low oxygen conditions, particularly in the context of cancer
progression [11]. YAP/TAZ, regulatory transcriptional co-activators of the DNA repair
pathway, promote the transcription of genes involved in DNA repair mechanisms under
tumor hypoxic conditions. [13,14], such as nucleotide excision repair (NER), base excision
repair (BER), and homologous recombination (HR). By upregulating these DNA repair
pathways, YAP/TAZ help maintain genomic stability and protect cells from accumulating
DNA damage [14,15].

(1) Inhibition of apoptosis
YAP/TAZ activation under hypoxia can also suppress apoptosis, allowing cells to
survive despite DNA damage [14]. HIFs, which are activated under low oxygen
conditions, can interact with YAP/TAZ to regulate the expression of anti-apoptotic
genes [6]. By inhibiting apoptosis, YAP/TAZ contribute to cell survival, even in the
presence of DNA damage, thereby protecting cells from undergoing programmed cell
death [6,13,15]. For example, YAP can trigger apoptosis by binding p73 instead of
TEAD, thereby upregulating the anti-apoptotic gene [16]. In addition, inhibition of
YAP signaling can promote apoptosis in multiple pathways. Knockdown of YAP and
TAZ can enhance apoptosis under hypoxic condition [17].

(2) Promotion of cell cycle progression
YAP/TAZ activation under hypoxia can promote cell cycle progression, facilitating
the proliferation of damaged cells [17]. This effect is mediated through the tran-
scriptional regulation of cell cycle-related genes by YAP/TAZ [18]. By promoting
cell cycle progression, YAP/TAZ contribute to the proliferation of cells with DNA
damage, potentially leading to tumor progression and expansion despite the presence
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of hypoxia-induced genotoxic stress [14,17]. YAP activation was increased, and this
facilitated cell cycle progression through RhoA and cytoskeletal dynamics. Increased
YAP and TEAD activity lead to marked expansion of the neural progenitor population
by facilitating cell cycle progression through induction of cyclin and cyclin dependent
kinase [19,20].

(3) Development of tumor angiogenesis
Tumor angiogenesis is activated by endothelial proliferation, collective cell migration,
and cellular rearrangements under tumor hypoxia [21]. Angiogenic stimuli, such as
VEGF and FGF, activate endothelial cells (ECs) to promote the formation of endothelial
tip cells that migrate toward the proliferating tumor [22]. During development,
the formation of new blood vessels is accompanied by a decrease in angiogenic
growth factor levels, and the vessels mature through stabilized cell–cell junctions
and recruiting endothelial cells to the walls of the vessels. In mature vessels, the
induction of ECs is arrested and YAP/TAZ are inactivated in the ECs [22,23]. During
wound healing, YAP/TAZ are activated as needed to induce angiogenesis in various
inflammatory and wound conditions [7]. However, in the tumor microenvironment,
the angiogenic process is to some extent similar to that of inflamed wound tissue, and,
especially in the hypoxic phase [23], YAP/TAZ remain activated in the endothelial
cells and the vasculature does not develop to a mature state; instead, immature and
incomplete vessels are formed [24]. This cycle is repeated every time the tumor
proliferates, and YAP/TAZ activity in the ECs is also maintained in an active phase
without an inactive phase [7,21,22]. The resulting immature vessels repeatedly induce
tumor proliferation and metastasis to other organs or tissues [25]. The development of
these vessels is prominent in multivessel tumors such as liver cancer, and the activity
of YAP/TAZ in the ECs is also affected by the hypoxic tumor microenvironment.

(4) Interaction with other signaling pathways
YAP/TAZ can interact with various signaling pathways involved in DNA damage
response and repair, such as the p53 pathway and the ATM/ATR kinase pathway [26].
Under hypoxic conditions, YAP/TAZ may modulate the activity of these pathways to
promote cell survival and DNA repair [27]. Additionally, YAP/TAZ can crosstalk with
other hypoxia-responsive transcription factors, such as HIFs, to coordinate cellular
responses to low oxygen levels and genotoxic stress [26,27]. And in phosphorylation-
independent pathways, such as the Wnt and hormone signaling pathways, mechanical
signals are transmitted to the nucleus via stress fibers and actin remodeling. Unphos-
phorylated YAP/TAZ can undergo nuclear translocation via Rho or beta-catenin [28].

Overall, the protection of DNA damage by YAP/TAZ under hypoxia involves the
regulation of DNA repair pathways, inhibition of apoptosis, promotion of cell cycle progres-
sion, angiogenesis, and crosstalk with other signaling pathways, such as p53, ATM, Wnt,
etc. [13,27]. Understanding these mechanisms may provide insights into the development
of novel therapeutic strategies targeting YAP/TAZ signaling in cancer cells exposed to
hypoxic microenvironments (Table 1).

Table 1. YAP/TAZ induce diverse tumor microenvironment functions.

Function Gene Major Pathway References

Anti-apoptosis

Survivin YAP promotes sorafenib resistance through
upregulation of Survivin expression. [29]

CTGF

CTGF acts as a direct target gene for YAP, promoting
cell proliferation and anchorage for independent

growth. It also functions as a transcriptional
co-repressor to promote cell survival by repressing

DNA damage.

[30]
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Table 1. Cont.

Function Gene Major Pathway References

Anti-apoptosis

AXL

AXL is a tyrosine kinase receptor that acts as the main
downstream effector responsible for sustaining
YAP-driven resistance. In addition, YAP and its

downstream target AXL play a crucial role in
resistance to EGFR TKIs.

[31]

Bcl

Overexpression of TAZ may upregulate its target
genes, including connective tissue growth factor

(CTGF) and B-cell lymphoma-2 (Bcl-2) and decrease
expression of Bcl-2 associated X protein (Bax).

[32]

Proliferation
(Cell cycle and growth)

Cyclin and CDK

YAP, as well as mutant p53 and the transcription factor
NF-Y, bind onto the regulatory regions of mutant p53
pro-proliferative transcriptional activity genes, such as

cyclin A, cyclin B, and CDK1.

[33]

MCMs

Hyperactivated YAP in gastric cancer (GC) induces
MCM transcription via binding to its promoter. The

YAP–MCM axis facilitates GC progression by inducing
PI3K/Akt signaling.

[34]

CDC25

CDC25 is a member of the phosphatase family and is a
protein phosphatase that plays an important role in

the regulation of the cell cycle. Activation of
YAP/TAZ/YKI may lead to the upregulation of

CDC25/string.

[35]

SMAD
SMADs activated by TGF-β translocate into the

nucleus and bind to YAP, thus promoting the
expression of the target gene and cell proliferation.

[13]

TERT

The Hippo pathway effector Yes-associated protein
(YAP) promotes the expression of human telomerase
reverse transcriptase (hTERT). YAP transcriptionally

activates the hTERT promoter through interaction
with TEAD.

[36]

Angiogenesis

VEGF
YAP/TAZ activity is controlled by VEGF during

angiogenesis. VEGF induces a YAP/TAZ-dependent
transcriptome linked to cytoskeleton remodeling.

[37]

Axl

YAP/TAZ promote angiogenesis by fueling
nutrient-dependent mTORC1 signaling. The

upregulated genes observed were prototypical
YAP/TAZ targets, such as CTGF, AXL, CYR61, as well
as numerous genes linked to mechanistic targeting of

mTORC1 signaling.

[38]

CTGF
YAP/TAZ are activated by blood circulation in the

endothelial cells. This leads to induction of CTGF and
actin polymerization.

[39]

Ang2

Overexpression of an active form of YAP promotes
hypersprouting via angiogenic growth factor

angiopoietin-2 (Ang2) signaling. Hypoxia stabilizes
hypoxia inducible transcription factor 1α (HIF1α) in
tumor cells, initiating the transcription and secretion
of pro-angiogenic factors such as VEGF and Ang2.

[23,37]

MMPs YAP/TAZ-mediated tumor angiogenesis occurs
through MMP-mediated ECM remodeling. [23]

MCMs YAP/TAZ promote EC proliferation in a
MCM-dependent manner. [40]
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Table 1. Cont.

Function Gene Major Pathway References

Immune Suppression

CXCL5

YAP, in complex with TEAD in cancer cells, stimulates
the recruitment of MDSCs within the TME by

transcriptionally inducing the production of cytokines,
including CSF and CXCL5.

[41]

CCL2
YAP and TAZ bind to the Ccl2 promoter. Increased

TAZ expression was correlated with increased
expression of the inflammatory cytokine CCL2.

[41,42]

TGF-beta
The expression of YAP is increased in Tregs, and
signaling through YAP increases SMAD/TGFβ

signaling and promotes Treg differentiation.
[43]

IL-10

Activation of the YAP/TAZ–TEAD pathway increases
the proportion of MDSCs and enhances the expression
of the immunosuppressive cytokines IL-10 and INF-r,

which promote Treg cell proliferation.

[44]

PD-L1

TAZ promotes immune evasion in human cancer
through PD-L1; TAZ/YAP/TEAD increase PD-L1

promoter activity. TAZ-induced PD-L1 upregulation
in human cancer cells is sufficient to inhibit T-cell

function

[45,46]

IL-35
Tregs in YAP-induced TME secrete the cytokines
TGF-β, interleukin-10 (IL-10), and interleukin-35

(IL-35) to maintain their immunosuppressive effects.
[47]

ICOS

When YAP-induced, high expression of TEAD4
regulates immune checkpoint genes (PDCD1, IDO1,

ICOS), cytokines (IL-10, CXCL11), cytokine receptors
(CCR2, CXCR3, CXCR6, IL2RA), and some other

mediators of immune function.

[48]

3. HIF-1α Interacts with YAP and Promotes Nuclear Translocation

HIP-1alpha (HIF-1α) is a key transcription factor that plays a central role in cellular
responses to low oxygen levels [4]. It regulates the expression of genes involved in various
biological processes, including angiogenesis, glycolysis, cell survival, and metastasis [4,10].
YAP is a transcriptional coactivator that is a central component of the Hippo signaling
pathway, which regulates organ size, tissue homeostasis, and tumorigenesis [6].

Under hypoxic conditions, HIF-1α protein stability increases due to reduced oxygen
availability [10]. This stabilization prevents the degradation of HIF-1α, allowing it to
translocate to the nucleus [49]. Once in the nucleus, HIF-1α forms a heterodimer with
HIF-1β (also known as ARNT), and this complex binds to hypoxia-responsive elements
(HREs) in the promoters of target genes, thereby activating their transcription [10,49].

Recent studies have indicated that HIF-1α can interact with YAP, forming a protein
complex that promotes nuclear translocation [11]. This interaction between HIF-1α and
YAP can occur through direct physical binding or through indirect mechanisms involving
other proteins or signaling pathways.

Once formed, the HIF-1α/YAP complex translocates to the nucleus, where it can
modulate the transcriptional activity of target genes [11,50]. In some cases, this complex
may cooperate with other transcription factors or coactivators to enhance gene expression
synergistically [51].

The nuclear translocation of the HIF-1α/YAP complex facilitates the activation of genes
involved in promoting cell survival, adaptation to hypoxic stress, and tumorigenesis [5,26].
These genes include those encoding for glycolytic enzymes, angiogenic factors, and anti-
apoptotic proteins, among others [18].
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Overall, the interaction between HIF-1α and YAP, and their subsequent nuclear translo-
cation, represent a mechanism by which cells respond to hypoxic stress and regulate gene
expression to promote survival and adaptation to low oxygen environments [18]. This
crosstalk between HIF-1α and YAP underscores the complexity of cellular responses to
hypoxia and suggests potential targets for therapeutic intervention in diseases such as
cancer, where hypoxia and dysregulated Hippo signaling contribute to tumor progression.

4. Differential Regulation of YAP and TAZ under Hypoxia

The regulation of YAP and its analogue, the transcriptional activator TAZ, under
hypoxic conditions involves complex interactions with a variety of signaling pathways and
transcription factors. [14,52]. Here are some key differences in the regulation of YAP and
TAZ under hypoxia:

(1) Regulatory Mechanisms:
Under hypoxia, YAP can be regulated through both transcriptional and post-translational
mechanisms. HIF-1α can directly interact with YAP, promoting its nuclear translo-
cation and activation of target genes [11]. Additionally, hypoxia may affect the
expression of upstream regulators of YAP, such as the Hippo pathway components
MST1/2 and LATS1/2, leading to altered YAP activity [53,54]. On the other hand, TAZ
regulation under hypoxia appears to involve similar mechanisms as YAP, including di-
rect interaction with HIF-1α [55]. However, the specific regulatory pathways and the
extent of TAZ activation under hypoxia may differ from YAP [55]. Additionally, TAZ
may have distinct binding partners or post-translational modifications that influence
its activity in response to hypoxic stress [56,57].

(2) Transcriptional Targets:
YAP can activate the expression of genes involved in promoting cell survival, pro-
liferation, and angiogenesis, contributing to tumor growth and progression under
hypoxia [7,17,52]. These target genes may include those encoding for angiogenic fac-
tors, glycolytic enzymes, and anti-apoptotic proteins [17]. TAZ shares many transcrip-
tional targets with YAP and can similarly regulate genes involved in cell proliferation,
survival, and tissue growth under hypoxic conditions [58]. However, TAZ may also
have unique target genes or regulate gene expression in a context-dependent manner,
leading to distinct cellular outcomes compared to YAP [59].

(3) Cellular Localization:
Under normoxic conditions, YAP is predominantly localized in the cytoplasm, where
it undergoes phosphorylation-mediated inhibition by Hippo pathway kinases [59].
However, under hypoxia, YAP can translocate to the nucleus, where it interacts
with transcription factors such as HIF-1α to regulate gene expression [11]. Similar
to YAP, TAZ is regulated by phosphorylation and predominantly localized in the
cytoplasm under normoxia conditions [56]. Upon hypoxic stimulation, TAZ can also
translocate to the nucleus and participate in transcriptional regulation, potentially
through interaction with HIF-1α or other nuclear factors [55].

(4) Functional Roles:
Not only YAP activation under hypoxia is associated with increased cell proliferation,
survival, and angiogenesis, contributing to tumor growth and metastasis, but also
TAZ activation under hypoxia likely plays a similar role in promoting cell survival,
proliferation, and angiogenesis [52,55,56]. Although, its specific functions may vary
depending on the cellular context and the repertoire of target genes regulated by
TAZ [55,57,59].

Therefore, while both YAP and TAZ are regulated by hypoxic signaling pathways
and contribute to cellular responses to low oxygen conditions [50], they may differ in their
regulatory mechanisms, transcriptional target, cellular localization, and functional roles
(Figure 1) [28,60]. Understanding these differences is crucial to unravelling the complex
interplay between hypoxia signaling and the Hippo pathway in various physiological and
pathological contexts.
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Figure 1. YAP/TAZ mechanisms in solid tumors, particularly HCCs, in hypoxic environments. In
early tumor development, YAP/TAZ act as important cell signals, not only for tumor apoptosis,
but also for tumor proliferation. However, when tumor growth develops excessively and a hypoxic
environment is created, YAP separates from TAZ and enters blood vessels through HIF1a. By
generating and activating EMT, it maintains the microenvironment around the tumor so that the
tumor can develop better, and it also develops an environment for the tumor to metastasize to
other organs or tissues. In early-stage tumors, YAP/TAZ bind to TEAD and act as a transcriptional
activator through the Hippo off signaling pathway, following the G protein-coupled receptor (GPCR)
or glucagon receptor (Gcgr) signaling system to induce the development of early-stage tumors.
When a tumor grows beyond a certain size and is unable to obtain the oxygen and nutrients it
needs to proliferate, the angiogenic switch is triggered and through the hypoxia signaling system,
overexpressed HIF and YAP/TAZ combine with TEAD to activate the expression of various genes
to overcome hypoxia. Specifically, when localized to the nucleus, YAP is recruited together with
hypoxia-inducible factor 1α (HIF-1α) for PKM2 transcription at the pyruvate kinase M2 (PKM2) gene
promoter, contributing to tumor formation and metastasis.

5. YAP or TAZ Is Functionally Involved in Other Cancer Cells

TAZ is a transcriptional co-activator that plays a crucial role in various cellular pro-
cesses, including cell proliferation, differentiation, migration, and stemness [61]. It is a key
component of the Hippo signaling pathway, which regulates organ size, tissue homeostasis,
and tumorigenesis [62,63]. Dysregulation of TAZ has been implicated in numerous types
of cancer, making it a potential therapeutic target [63]. Here, is a detailed description of
TAZ’s functional involvement in different types of cancer (Figure 2):
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Figure 2. Tumor development through YAP/TAZ under hypoxic environment in various cancers.
Changes in YAP/TAZ under hypoxia conditions are not unique to HCC. In various cancers, tumors
develop through mechanisms that increase tumor proliferation and evade tumor cell death through
YAP/TAZ. When a certain size is reached, the hypoxic stimulation and angiogenesis switch are
activated in the tumor, and changes occur in the tumor microenvironment. YAP/TAZ also avoid cell
death due to hypoxia through different phosphorylation mechanisms, leading to the development of
metastasis and proliferation through increased EMT and resistance to chemotherapy. This is one of
the main mechanisms of development in intractable tumors such as liver cancer, breast cancer, lung
cancer, colon cancer, and ovarian cancer.

TAZ is overexpressed in triple-negative breast cancer (TNBC) and is associated with a
poor prognosis. It promotes cancer cell proliferation, invasion, and metastasis by activating
genes involved in epithelial–mesenchymal transition (EMT), such as Snail and Slug. TAZ
also enhances cancer stem cell properties, contributing to tumor initiation and resistance
to therapy. [64]. On the other hand, high YAP activity correlates with a high histological
grade, enrichment of stem cell signatures, metastasis proclivity, and a poor outcome [65].
However, in TNBC, the effect of TAZ on tumor development is more significant than that
of YAP.

In lung cancer, TAZ promotes tumor growth and metastasis by regulating genes in-
volved in cell proliferation, apoptosis evasion, and EMT [66]. It interacts with various signal-
ing pathways, including the Wnt/β-catenin pathway, to drive oncogenic processes [64,66].
TAZ expression correlates with advanced stages of lung cancer and is associated with
reduced patient survival [66]. In the case of YAP, ectopic YAP expression can promote the
progression of small adenomas to high-grade lung adenocarcinoma. In addition, overex-
pression of YAP can confer the ability to metastasize from benign breast tumors to the
lungs [67,68].
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TAZ is upregulated in prostate cancer (PC) and correlates with aggressive disease and
poor prognosis [59,69]. It promotes cancer cell proliferation, invasion, and resistance to
apoptosis by activating target genes involved in cell cycle progression and survival [56,59].
TAZ also enhances cancer stemness in prostate cancer, contributing to tumor recurrence
and therapeutic resistance [63,69,70], whereas ectopic YAP expression triggers malignant
transformation and increases tumor cell proliferation [71]. YAP induces PCa formation in an
androgen independent manner, via promoting AKT and MEK–ERK pathway signaling [72].
YAP has a positive effect on the acquisition of an aggressive PCa cell phenotype and
promotes cell motility and invasion [73].

In ovarian cancer, TAZ overexpression is associated with aggressive tumor behavior,
chemotherapy resistance, and poor patient outcomes [74,75]. TAZ promotes cancer cell
proliferation, migration, and invasion by activating genes involved in EMT, stemness,
and drug resistance [64]. Targeting TAZ signaling has emerged as a potential therapeutic
strategy to improve the outcomes of ovarian cancer patients [75,76]. Moreover, overexpres-
sion and activation of YAP induces increased proliferation, resistance to cisplatin-induced
apoptosis, loss of contact inhibition, promotion of metastasis through increased cell motility,
and anchorage-independent growth of ovarian cancer cells [77]. This promotion of ovarian
cancer growth by YAP has been shown to be an indicator of poor prognosis in ovarian
cancer patients [78].

TAZ is upregulated in colorectal cancer and is associated with advanced tumor stage,
metastasis, and poor prognosis [79]. It enhances cancer cell proliferation, invasion, and
metastasis by activating genes involved in EMT, stemness, and angiogenesis [64,80]. TAZ
also crosstalks with other signaling pathways, such as the Notch and Wnt pathways, to
promote colorectal cancer progression [74,80,81]. High expression levels of a gene signature
for YAP activity have been shown to predict poor prognosis and correlate with resistance
to cetuximab, one of the treatment strategies for colorectal cancer [82]. Thus, nuclear YAPs
can interact with other transcription factors to promote cancer cell proliferation, apoptosis,
metastasis, and stem cell maintenance [83].

Finally, in HCC, TAZ is frequently overexpressed and correlates with tumor progres-
sion and poor patient survival [84]. TAZ promotes HCC cell proliferation, migration, and
invasion by activating genes involved in cell cycle regulation, EMT, and angiogenesis [61].
It also interacts with YAP (Yes-associated protein), another Hippo pathway effector, to
synergistically drive HCC development and progression [61,74,84]. In addition, YAP is
correlated with the stemness of liver cancer stem cells, and liver cancer stem cells are closely
associated with YAP-induced tumor initiation and progression [85].

Overall, YAP and/or TAZ play a multifaceted role in different types of cancer, pro-
moting tumor growth, metastasis, and therapeutic resistance [63]. Targeting YPA/TAZ
signaling pathways holds promise for the development of novel cancer therapies aimed at
inhibiting tumor progression and improving patient outcomes [58,62–64].

6. Hypoxic Conditions Had Opposing Roles in the Level of p-YAP and p-TAZ

Under hypoxic conditions, cells experience low oxygen levels, which can profoundly
influence cellular signaling pathways and gene expression patterns [9]. The role of hypoxia
in regulating the phosphorylation status of YAP and TAZ, two key effectors of the Hippo
pathway, can vary depending on the context and cell type. [86]. Hypoxic conditions and
their effects on the phosphorylation of YAP and TAZ were examined (Figure 3):
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Figure 3. Phosphorylation of YAP/TAZ under hypoxic conditions. Under normoxia environments,
phosphorylation of YAP/TAZ increases the expression of genes related to tumor growth through
the combination of transcription activators; YAP/TAZ bind to TEAD and acts as a transcriptional
activator through the Hippo-Off signaling pathway, mediating the translocation of the YAP/TEZ
complex into the nucleus by inducing phosphorylation of Rho, MST1/2, and LAST1/2, in sequence,
depending on the GPCR or GCGR signaling system. Once translocated into the nucleus, YAP/TAZ
bind to TEAD and activate cell proliferation and the cell cycle, and changes in cellular structure,
including hypertrophy of heterogeneous cells, leading to tumor development. However, under
hypoxic environments, YAP and TAZ bind to HIF differently through a variant phosphorylation
process. Hypoxia-mediated HIF-1a translocates from the cytosol to the nucleus, where it binds to
unphosphorylated YAP and binds to TEAD. YAP/HIF binds to DNA, inhibits DNA damage and
apoptosis, and induces the expression of a variety of genes involved in cell proliferation, angiogenesis,
and metastasis. In addition, interaction of HIF-1α with TAZ also stimulates TAZ/TEAD transcrip-
tional activity. TAZ and HIF-1α interact and function as mutual transcriptional cofactors. HIF-1α
acts as a cofactor of the TAZ/TEADs complex for the transcription of target genes, and TAZ acts
as a cofactor of HIF-1α for the transcription of target genes such as PAI1, BIRC5, CTGF, PDK1, and
LDHA in the hypoxic tumor microenvironment. Moreover, TAZ also regulates the mechanism by
which HIF binds to and regulates TAZ expression. These different hypoxic mechanisms of YAP/TAZ
affect tumor formation and patient mortality and are involved in sensitivity to anticancer drugs and
development of tumor metastasis.

(1) YAP Phosphorylation: Hypoxia can lead to the stabilization and nuclear accumulation
of YAP in some cellular contexts [87]. This is often mediated through the inactivation
of the Hippo pathway, which normally phosphorylates YAP, leading to its cytoplasmic
retention and degradation [7,88]. Under hypoxic conditions, decreased activity of the
Hippo pathway kinases, such as LATS1/2 (Large Tumor Suppressor 1/2), may occur,
resulting in reduced phosphorylation of YAP [89]. As a consequence, YAP is less likely
to undergo degradation and more likely to translocate to the nucleus, where it acts
as a transcriptional co-activator [90]. In certain cancer cells, hypoxia-induced YAP
activation can promote cell survival, proliferation, and metastasis by regulating the
expression of target genes involved in these processes [86,88,90]. YAP activation under
hypoxia may thus contribute to tumor aggressiveness and therapy resistance [16,59].
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(2) TAZ Phosphorylation: Contrary to YAP, hypoxic conditions may lead to increased
phosphorylation and cytoplasmic retention of TAZ in some cellular components [60].
This can occur through various mechanisms, including activation of the Hippo path-
way or other signaling pathways that modulate TAZ phosphorylation. Hypoxia-
induced TAZ phosphorylation may involve the activation of LATS1/2 or other kinases
that directly phosphorylate TAZ, promoting its interaction with 14-3-3 proteins and se-
questering it in the cytoplasm [91,92]. Cytoplasmic retention of phosphorylated TAZ
under hypoxia prevents its nuclear translocation and transcriptional co-activation
activity [44,93]. Consequently, the expression of TAZ target genes involved in cell
proliferation, survival, and EMT may be downregulated [94]. In certain cellular con-
texts, hypoxia-induced inhibition of TAZ activity [19,95,96] may contribute to the
suppression of tumorigenic processes, such as cell proliferation, invasion, and metas-
tasis [94,97]. Therefore, the hypoxia phenomenon that occurs during tumor growth
can itself affect tumor proliferation and metastasis through the HIF pathway but has
a synergistic effect on the stabilization of tumor development and amplification of
proliferation and metastasis by YAP pathway.

To summarize, hypoxic conditions can exert opposing effects on the phosphorylation
levels and activities of YAP and TAZ, depending on the cellular components and the
specific regulatory mechanisms involved [20,98]. While hypoxia-induced YAP activation
may promote tumorigenesis and metastasis in certain components [99], hypoxia-induced
TAZ inhibition may have tumor-suppressive effects by limiting the transcriptional activity
of TAZ and its oncogenic functions [93,100]. Understanding the complex interplay between
hypoxia and the Hippo pathway effectors YAP and TAZ is essential for elucidating their
roles in cancer progression and identifying potential therapeutic targets.

7. Conclusions

Under hypoxic conditions, cells experience low levels of oxygen, which can profoundly
affect cellular signaling pathways and gene expression patterns. YAP/TAZ are involved in
tumor development and metastasis through several pathways under hypoxic conditions.
YAP acts as a transcriptional activator by binding to HIF, and TAZ inhibits the process
involved in tumor growth through phosphorylation; however, reducing the binding affinity
with YAP promotes the binding of YAP to HIF, thereby promoting tumor growth. It can be
seen that it affects development. Although many more studies still need to be conducted,
the development of the YAP/TAZ signals, which happens through the HIPPO pathway,
is greatly involved in tumor growth before activation of the HIF pathway, and when
an HIF pathway component such as the angiogenic switch is activated, tumor growth
caused by YAP/HIF is significantly involved. It can be said to affect both growth and
metastasis. Therefore, if the activated/deactivated signaling pathway is utilized for the
development of anticancer drugs or diagnostic agents, a better anticancer treatment strategy
can be established.
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