Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Tumor Bulk Segmentation
2.3. Multiple-Instance Learning for LUAD Recurrence Prediction
2.4. Implementation Details
2.5. Experiment Approach
3. Results
3.1. Survival Analysis for 5-Year Recurrence
3.2. Binary Classification Performance for 5-Year Recurrence
3.3. Computational Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Helpap, B.; Ringli, D.; Tonhauser, J.; Poser, I.; Breul, J.; Gevensleben, H.; Seifert, H.H. The Significance of Accurate Determination of Gleason Score for Therapeutic Options and Prognosis of Prostate Cancer. Pathol. Oncol. Res. 2016, 22, 349–356. [Google Scholar] [CrossRef]
- Rabe, K.; Snir, O.L.; Bossuyt, V.; Harigopal, M.; Celli, R.; Reisenbichler, E.S. Interobserver variability in breast carcinoma grading results in prognostic stage differences. Hum. Pathol. 2019, 94, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J. Thorac. Oncol. 2015, 10, 1240–1242. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, A.; Motoi, N.; Riely, G.J.; Sima, C.S.; Gerald, W.L.; Kris, M.G.; Park, B.J.; Rusch, V.W.; Travis, W.D. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: Prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod. Pathol. 2011, 24, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Warth, A.; Muley, T.; Kossakowski, C.; Stenzinger, A.; Schirmacher, P.; Dienemann, H.; Weichert, W. Prognostic impact and clinicopathological correlations of the cribriform pattern in pulmonary adenocarcinoma. J. Thorac. Oncol. 2015, 10, 638–644. [Google Scholar] [CrossRef]
- Woo, T.; Okudela, K.; Mitsui, H.; Tajiri, M.; Yamamoto, T.; Rino, Y.; Ohashi, K.; Masuda, M. Prognostic value of the IASLC/ATS/ERS classification of lung adenocarcinoma in stage I disease of Japanese cases. Pathol. Int. 2012, 62, 785–791. [Google Scholar] [CrossRef]
- Moreira, A.L.; Ocampo, P.S.S.; Xia, Y.; Zhong, H.; Russell, P.A.; Minami, Y.; Cooper, W.A.; Yoshida, A.; Bubendorf, L.; Papotti, M.; et al. A Grading System for Invasive Pulmonary Adenocarcinoma: A Proposal from the International Association for the Study of Lung Cancer Pathology Committee. J. Thorac. Oncol. 2020, 15, 1599–1610. [Google Scholar] [CrossRef]
- Pessoa, L.S.; Heringer, M.; Ferrer, V.P. ctDNA as a cancer biomarker: A broad overview. Crit. Rev. Oncol./Hematol. 2020, 155, 103109. [Google Scholar] [CrossRef]
- Cohen, S.A.; Liu, M.C.; Aleshin, A. Practical recommendations for using ctDNA in clinical decision making. Nature 2023, 619, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Ricks-Santi, L.J.; McDonald, J.T. Low utility of Oncotype DX® in the clinic. Cancer Med. 2017, 6, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C.; Weinberger, M.; Dusetzina, S.B.; Dinan, M.A.; Reeder-Hayes, K.E.; Carey, L.A.; Troester, M.A.; Wheeler, S.B. Racial variation in the uptake of oncotype DX testing for early-stage breast cancer. J. Clin. Oncol. 2016, 34, 130. [Google Scholar] [CrossRef]
- Chen, R.J.; Lu, M.Y.; Williamson, D.F.; Chen, T.Y.; Lipkova, J.; Noor, Z.; Shaban, M.; Shady, M.; Williams, M.; Joo, B. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 2022, 40, 865–878.e6. [Google Scholar] [CrossRef]
- Su, Z.; Rosen, A.; Wesolowski, R.; Tozbikian, G.; Niazi, M.K.K.; Gurcan, M.N. Deep-ODX: An efficient deep learning tool to risk stratify breast cancer patients from histopathology images. In Medical Imaging 2024: Digital and Computational Pathology; SPIE: Bellingham, WA, USA, 2024; Volume 12933, pp. 34–39. [Google Scholar]
- Yao, J.; Zhu, X.; Jonnagaddala, J.; Hawkins, N.; Huang, J. Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 2020, 65, 101789. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef]
- Su, Z.; Rezapour, M.; Sajjad, U.; Gurcan, M.N.; Niazi, M.K.K. Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images. Comput. Biol. Med. 2023, 167, 107607. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, Y.; Eliceiri, K.W. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 21–25 June 2021; pp. 14318–14328. [Google Scholar]
- RChen, J.; Chen, C.; Li, Y.; Chen, T.Y.; Trister, A.D.; Krishnan, R.G.; Mahmood, F. Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16144–16155. [Google Scholar]
- Tang, W.; Huang, S.; Zhang, X.; Zhou, F.; Zhang, Y.; Liu, B. Multiple instance learning framework with masked hard instance mining for whole slide image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 4078–4087. [Google Scholar]
- Chen, R.J.; Lu, M.Y.; Weng, W.-H.; Chen, T.Y.; Williamson, D.F.; Manz, T.; Shady, M.; Mahmood, F. Multimodal co-attention transformer for survival prediction in gigapixel whole slide images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4015–4025. [Google Scholar]
- Liu, P.; Ji, L.; Ye, F.; Fu, B. Advmil: Adversarial multiple instance learning for the survival analysis on whole-slide images. Med. Image Anal. 2024, 91, 103020. [Google Scholar] [CrossRef]
- Tavolara, T.E.; Su, Z.; Gurcan, M.N.; Niazi, M.K.K. One label is all you need: Interpretable AI-enhanced histopathology for oncology. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Su, Z.; Niazi, M.K.K.; Tavolara, T.E.; Niu, S.; Tozbikian, G.H.; Wesolowski, R.; Gurcan, M.N. BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images. PLoS ONE 2023, 18, e0283562. [Google Scholar] [CrossRef]
- Howard, F.M.; Dolezal, J.; Kochanny, S.; Khramtsova, G.; Vickery, J.; Srisuwananukorn, A.; Woodard, A.; Chen, N.; Nanda, R.; Perou, C.M.; et al. Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence. npj Breast Cancer 2023, 9, 25. [Google Scholar] [CrossRef]
- Lu, M.Y.; Williamson, D.F.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 2021, 5, 555–570. [Google Scholar] [CrossRef]
- Mobadersany, P.; Yousefi, S.; Amgad, M.; Gutman, D.A.; Barnholtz-Sloan, J.S.; Vega, J.E.V.; Brat, D.J.; Cooper, L.A. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. USA 2018, 115, E2970–E2979. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Shaikh, N.; Shannon, G.; Nie, Y. Cross-modality Attention-based Multimodal Fusion for Non-small Cell Lung Cancer (NSCLC) Patient Survival Prediction. arXiv 2023, arXiv:2308.09831. [Google Scholar]
- Wang, X.; Yang, S.; Zhang, J.; Wang, M.; Zhang, J.; Yang, W.; Huang, J.; Han, X. Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. 2022, 81, 102559. [Google Scholar] [CrossRef] [PubMed]
- Alayrac, J.-B.; Donahue, J.; Luc, P.; Miech, A.; Barr, I.; Hasson, Y.; Lenc, K.; Mensch, A.; Millican, K.; Reynolds, M. Flamingo: A visual language model for few-shot learning. Adv. Neural Inf. Process. Syst. 2022, 35, 23716–23736. [Google Scholar]
- Hou, R.; Chang, H.; Ma, B.; Shan, S.; Chen, X. Cross attention network for few-shot classification. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2019; Volume 32. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; Volume 30. [Google Scholar]
- Ilse, M.; Tomczak, J.; Welling, M. Attention-based deep multiple instance learning. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2127–2136. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Chikontwe, P.; Luna, M.; Kang, M.; Hong, K.S.; Ahn, J.H.; Park, S.H. Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening. Med. Image Anal. 2021, 72, 102105. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, L.; Huang, J.; Han, L.; Zhang, D. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans. Med. Imaging 2021, 40, 2354–2366. [Google Scholar] [CrossRef]
- Xu, S.-L.; Zhang, F.; Wei, X.-S.; Wang, J. Dual attention networks for few-shot fine-grained recognition. Proc. AAAI Conf. Artif. Intell. 2022, 36, 2911–2919. [Google Scholar] [CrossRef]
All | Recurrence in 5-yr | No Recurrence in 5-yr | p-Value | |
---|---|---|---|---|
Age | 0.964 | |||
Median [Min, Max] | 63.5 [39, 88] | 66 [39, 84] | 63 [43, 88] | |
Sex | 0.0018 | |||
M | 77 | 39 | 38 | |
F | 107 | 30 | 77 | |
Race | 0.0008 | |||
White | 149 | 57 | 92 | |
African American | 23 | 7 | 16 | |
American Indian or Alaska Native | 6 | 3 | 3 | |
Hispanic | 3 | 1 | 2 | |
Native Hawaiian or Other Pacific Islander | 1 | 0 | 1 | |
Asian | 1 | 0 | 1 | |
Other | 1 | 1 | 0 | |
IASLC grade | <0.0001 | |||
G1 | 24 (12.7%) | 1 (1.4%) | 23 (19.5%) | |
G2 | 53 (28%) | 9 (12.7%) | 44 (37.3%) | |
G3 | 112 (59.3%) | 61 (85.9%) | 51 (43.2%) | |
AJCC stage | <0.0001 | |||
IA | 90 (47.6%) | 21 (29.6%) | 68 (58.1%) | |
IB | 41 (21.7%) | 15 (21.1%) | 26 (22.2%) | |
IIA | 4 (2.1%) | 3 (4.2%) | 1 (0.9%) | |
IIB | 37 (19.6%) | 20 (28.2%) | 17 (14.5%) | |
IIIA | 12 (6.3%) | 9 (12.7%) | 3 (2.6%) | |
IIIB | 3 (1.6%) | 3 (4.2%) | 0 | |
IVA | 2 (1.1%) | 0 | 2 (1.7%) |
RC (n of WSIs/Patients) | NRC (n of WSIs/Patients) | |
---|---|---|
Training | 127/51 | 179/75 |
Validation | 14/6 | 37/19 |
Testing | 29/14 | 59/24 |
Hazard Ratio | |
---|---|
CLAM [27] | 1.33 (95% CI: 0.89–2.00, p = 0.17) |
DeepODX [15] | 1.88 (95% CI: 1.39–2.55, p < 0.005) |
DAMIL | 2.29 (95% CI: 1.69–3.09, p < 0.005) |
AUROC | Accuracy | Specificity | Sensitivity | |
---|---|---|---|---|
CLAM [27] | 60.2 ± 10.6 | 60.7 ± 5.4 | 87.9 ± 11.7 | 16.9 ± 15.3 |
DeepODX [15] | 61.2 ± 6.2 | 62.3 ± 3.5 | 73.6 ± 6.1 | 44.0 ± 5.4 |
DAMIL | 64.9 ± 1.2 | 63.5 ± 3.1 | 69.3 ± 6.6 | 53.0 ± 7.9 |
Loss | |
---|---|
Training set | 0.466 ± 0.049 |
Validation set | 0.628 ± 0.050 |
Testing set | 0.674 ± 0.037 |
FLOPs | Param | |
---|---|---|
DeepODX [15] | 0.43G | 3.15M |
DAMIL | 0.31G | 2.10M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Afzaal, U.; Niu, S.; de Toro, M.M.; Xing, F.; Ruiz, J.; Gurcan, M.N.; Li, W.; Niazi, M.K.K. Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images. Cancers 2024, 16, 3097. https://doi.org/10.3390/cancers16173097
Su Z, Afzaal U, Niu S, de Toro MM, Xing F, Ruiz J, Gurcan MN, Li W, Niazi MKK. Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images. Cancers. 2024; 16(17):3097. https://doi.org/10.3390/cancers16173097
Chicago/Turabian StyleSu, Ziyu, Usman Afzaal, Shuo Niu, Margarita Munoz de Toro, Fei Xing, Jimmy Ruiz, Metin N. Gurcan, Wencheng Li, and M. Khalid Khan Niazi. 2024. "Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images" Cancers 16, no. 17: 3097. https://doi.org/10.3390/cancers16173097
APA StyleSu, Z., Afzaal, U., Niu, S., de Toro, M. M., Xing, F., Ruiz, J., Gurcan, M. N., Li, W., & Niazi, M. K. K. (2024). Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images. Cancers, 16(17), 3097. https://doi.org/10.3390/cancers16173097