Developmental Therapeutics in Metastatic Prostate Cancer: New Targets and New Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
2. PSMA, STEAP1, KLK2, PSCA and DLL3
2.1. PSMA
2.1.1. PSMA Target Radioligand Therapy (TRT)
2.1.2. PSMA BiTEs
Target | Approach | Testing Agent and Study Design | Status | NCT# |
---|---|---|---|---|
PSMA | TRT * | Escalating dose of 225Ac-PSMA-617 IV q8wk for up to 6 doses A: post-chemo post Lu177; B: post-chemo prior to Lu177, C: post Lu177, prior chemo or ARSI is not required | Ph I, recruiting | 04597411 |
177Lu-rhPSMA-10.1 Ph I: 7.4–7.7 GBq IV for up to 6 doses; Ph II: post-chemo and pre-chemo | Ph I/II, recruiting [16] | 05413850 | ||
177Lu-DOTA-TLX591 at 45 mCi/m2 × 2 doses 14 days apart plus SOC vs. SOC in post-ARSI PSMA + mCRPC; 2:1 randomization, primary endpoint rPFS | Ph III, not yet recruiting [18] | 04876651 | ||
BiTE | JANX007/anti-PSMAxCD3 activated by tumor protease 8 cohorts of IV qwk step dose escalation followed by 3 cohorts of q2wk or q3wk | Ph I, recruiting | 05519449 | |
REGN4336/anti-PSMAxCD3, REGN4336 + Cemiplimab, REGN4336 + REGN5678/anti-PSMAxCD28 | Ph I/II, recruiting | 05125016 | ||
LAVA1207/anti-PSMAxγδT cells, LAVA1207 + low-dose SC IL-2, LAVA1207 + pembrolizymab | Ph I/II, recruiting [22] | 05369000 | ||
Tri-specific | CB307/anti-PSMAxCD137xAlbumin, CB307 + pembrolizumab in PSMA + mCRPC or solid tumors | Ph I, recruiting | 04839991 | |
CAR T | CART-PSMA-TGFβRDN, DLTs at 1–3 × 108 cells | Ph I, not recruiting [26] | 03089203 | |
ADC | ARX517/J591-AS269, dose escalation up to cohort 8 at 2.88 mg/kg IV q3wk with no DLTs. Additional cohorts with IV q3wk and q4 wk dosing is planned | Ph I, recruiting | 04662580 | |
STEAP 1 | BiTE | Xaluritamig/STEAP1 XmAb 2 + 1 IV or SC, part 1 MTD or RP2D, part 2 post taxanes, part 3 pre taxanes, part 4 combine with abi or enza, part 5, outpatient monotherapy | Ph I, recruiting | 04221542 |
CAR T | STEAP1-BBζ CAR T + enzalutamide | Ph I/II, not yet recruiting | 06236139 | |
STEAP 2 | CAR T | AZD0754/STEAP2-dnTGFβRII | Ph I/II, recruiting [27] | 06267729 |
KLK2 | BiTE | JNJ-78278343/anti-KLK2xCD3 IV or SC dose escalation—dose expansion | Ph I, recruiting | 04898634 |
JNJ-78278343/Anti-KLK2xCD3 + JNJ-87189401/Anti-KLK2xCD28 | Ph I, recruiting | 06095089 | ||
JNJ-78278343/Anti-KLK2xCD3 + Cetrelimab | Ph I, recruiting | 5818683 | ||
CAR T | JNJ-75229414, dose escalation | Ph I, not recruiting | 05022849 | |
TRT | Actinium-225-DOTA-h11B6/JNJ-69086420 dose escalation—dose expansion Dose escalation started at 50 μCi/2 mg IV q8wk | Ph I, recruiting | 04644770 | |
PSCA | CAR T | Anti-PSCA-CAR-4-1BB/TCRzeta-CD19t-expressing, no DLTs at 1 × 108 cells | Ph I, not recruiting | 03873805 |
MSGV1-PSCA-8T28Z γδ CAR T + zoledronic acid, dose escalation—dose expansion | Ph I, recruiting | 06193486 | ||
DLL3 in mNEPC | BiTE | Tarlatamab/AMG757, IV, dose escalation—dose expansion | Ph I, not recruiting | 04702737 |
BI764532, cohort for NEC or small cell carcinoma of any other origin | Ph I, recruiting [28] | 04429087 | ||
Tri-specific | HPN328/anti-DLL3 × CD3 × Albumin, IV qwk, q2wk, q3wk monotherapy cohort for DLL3 expressing cancers other than SCLC | Ph I/II, recruiting | 04471727 |
2.1.3. PSMA CAR T
2.1.4. PSMA ADC
2.2. STEAP1
2.2.1. STEAP1 ADC
2.2.2. STEAP1 BiTEs
2.2.3. STEAP1 CAR T
2.3. KLK2
2.3.1. KLK2 BiTEs
2.3.2. KLK2 CAR T
2.3.3. KLK2 TRT
2.4. PSCA and PSCA CAR T
2.5. DLL3
2.5.1. DLL3 ADCs
2.5.2. DLL3 BiTE
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taplin, M.E.; Antonarakis, E.S.; Ferrante, K.J.; Horgan, K.; Blumenstein, B.; Saad, F.; Luo, J.; de Bono, J.S. Androgen Receptor Modulation Optimized for Response—Splice Variant: A Phase 3, Randomized Trial of Galeterone Versus Enzalutamide in Androgen Receptor Splice Variant-7–expressing Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2019, 76, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Taplin, M.-E.; Hussain, A.; Shah, S.; Shore, N.D.; Agrawal, M.; Clark, W.; Edenfield, W.J.; Nordquist, L.T.; A Sartor, O.; Butrynski, J.E.; et al. ProSTAR: A phase Ib/II study of CPI-1205, a small molecule inhibitor of EZH2, combined with enzalutamide (E) or abiraterone/prednisone (A/P) in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2019, 37 (Suppl. 7), TPS335. [Google Scholar] [CrossRef]
- Chen, Q.-H.; Munoz, E.; Ashong, D. Insight into Recent Advances in Degrading Androgen Receptor for Castration-Resistant Prostate Cancer. Cancers 2024, 16, 663. [Google Scholar] [CrossRef]
- Petrylak, D.P.; McKean, M.; Lang, J.M.; Gao, X.; Dreicer, R.; Geynisman, D.M.; Tyler, S.; Mitul, G.; Leonard, A.; Tanya, D.; et al. ARV-766, a proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC): Initial results of a phase 1/2 study. J. Clin. Oncol. 2024, 42 (Suppl. 16), 5011. [Google Scholar] [CrossRef]
- Yang, Y.C.; Banuelos, C.A.; Mawji, N.R.; Wang, J.; Kato, M.; Haile, S.; McEwan, I.J.; Plymate, S.; Sadar, M.D. Targeting androgen receptor activation function-1 with EPI to overcome resistance mechanisms in castration-resistant prostate cancer. Clin. Cancer Res. 2016, 22, 4466–4477. [Google Scholar] [CrossRef] [PubMed]
- Laccetti, A.L.; Chatta, G.S.; Iannotti, N.; Kyriakopoulos, C.; Villaluna, K.; Le Moigne, R.; Cesano, A. Phase 1/2 study of EPI-7386 in combi-nation with enzalutamide (enz) compared with enz alone in subjects with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2023, 41 (Suppl. 6), 179. [Google Scholar] [CrossRef]
- Meng, L.; Yang, Y.; Mortazavi, A.; Zhang, J. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 14347. [Google Scholar] [CrossRef]
- Lisney, A.R.; Leitsmann, C.; Strauß, A.; Meller, B.; Bucerius, J.A.; Sahlmann, C.-O. The Role of PSMA PET/CT in the Primary Diagnosis and Follow-Up of Prostate Cancer—A Practical Clinical Review. Cancers 2022, 14, 3638. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177–PSMA-617 for Metastatic Castra-tion-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Weineisen, M.; Simecek, J.; Schottelius, M.; Schwaiger, M.; Wester, H.-J. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res. 2014, 4, 63. [Google Scholar] [CrossRef]
- De Wit, R.; de Bono, J.; Sternberg, C.N.; Fizazi, K.; Tombal, B.; Wülfing, C.; Kramer, G.; Eymard, J.-C.; Bamias, A.; Carles, J.; et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N. Engl. J. Med. 2019, 381, 2506–2518. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; Gauna, D.C.; Herrmann, K.; de Bono, J.; Shore, N.; Chi, K.; Crosby, M.; Rodriguez, J.P.; Flechon, A.; Wei, X.; et al. LBA13 Phase III trial of [177Lu]Lu-PSMA-617 in taxane-naive patients with metastatic castration-resistant prostate cancer (PSMAfore). Ann. Oncol. 2023, 34, S1324–S1325. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Sun, M.P.; Nauseef, J.T.; Thomas, C.; Castellanos, S.H.; Thomas, J.E.; Davidson, Z.; Stangl-Kremser, J.; Bissassar, M.; Palmer, J.; et al. Phase I dose-escalation results of prostate-specific membrane antigen-targeted radionuclide therapy (PSMA-TRT) with alpha-radiolabeled antibody 225Ac-J591 and beta-radioligand 177Lu-PSMA I&T. J. Clin. Oncol. 2023, 41, 5018. [Google Scholar] [CrossRef]
- Kostos, L.K.; Buteau, J.P.; Kong, G.; Yeung, T.; Di Iulio, J.; Fahey, M.T.; Fettke, H.; Furic, L.; Hofman, M.S.; Azad, A. LuCAB: A phase I/II trial evaluating cabazitaxel in com-bination with [177 Lu]Lu-PSMA-617 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2023, 41 (Suppl. 6), TPS278. [Google Scholar] [CrossRef]
- Rinscheid, A.; Gäble, A.; Wienand, G.; Pfob, C.; Dierks, A.; Kircher, M.; Trepel, M.; Weckermann, D.; Lapa, C.; Bundschuh, R.A. An Intrapatient Dosimetry Comparison of 177Lu-rhPSMA-10.1 and 177Lu-PSMA-I&T in Patients with Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2023, 64, 1918–1924. [Google Scholar]
- Dierks, A.; Gäble, A.; Rinscheid, A.; Wienand, G.; Pfob, C.H.; Kircher, M.; Enke, J.S.; Janzen, T.; Patt, M.; Trepel, M.; et al. First Safety and Efficacy Data with the Radiohybrid 177Lu-rhPSMA-10.1 for the Treatment of Metastatic Prostate Cancer. J. Nucl. Med. 2024, 65, 432–437. [Google Scholar] [CrossRef]
- Nauseef, J.T.; Sun, M.P.; Thomas, C.; Bissassar, M.; Patel, A.; Tan, A.; Fernandez, E.; Davidson, Z.; Chamberlain, T.; Earle, K.; et al. A phase I/II dose-escalation study of fractionated 225Ac-J591 for progressive metastatic castration-resistant prostate cancer (mCRPC) in patients with prior treatment with 177Lu-PSMA. J. Clin. Oncol. 2023, 41, TPS288. [Google Scholar] [CrossRef]
- Hawkins, C.; Lenzo, N.; Gibson, J.; Brown, T.; Patel, N.; Martina, S.; Hayward, C. ProstACT GLOBAL: A phase 3 study of best standard of care with and without 177Lu-DOTA-rosopatamab (TLX591) for patients with PSMA expressing metastatic castration-resistant prostate cancer progressing despite prior treatment with a novel androgen axis drug. J. Clin. Oncol. 2024, 42, TPS256. [Google Scholar] [CrossRef]
- Buelow, B.; Dalvi, P.; Dang, K.; Patel, A.; Johal, K.; Pham, D.; Panchal, S.; Liu, Y.; Fong, L.; Sartor, A.O.; et al. TNB585.001: A multicenter, phase 1, open-label, dose-escalation and expansion study of tnb-585, a bispecific T-cell engager targeting PSMA in subjects with metastatic castrate resistant prostate cancer. J. Clin. Oncol. 2021, 39, TPS5092. [Google Scholar] [CrossRef]
- Kelly, W.K.; Thanigaimani, P.; Sun, F.; Seebach, F.A.; Lowy, I.; Sandigursky, S.; Miller, E. A phase 1/2 study of REGN4336, a PSMAxCD3 bispecific antibody, alone and in combination with cemiplimab in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2022, 40, TPS5105. [Google Scholar] [CrossRef]
- Stein, M.N.; Zhang, J.; Kelly, W.K.; Wise, D.R.; Tsao, K.; Carneiro, B.A.; Gerald, F.; Furong, S.; Shilpa, G.; Jennifer, S.; et al. Preliminary results from a phase 1/2 study of co-stimulatory bispecific PSMAxCD28 antibody REGN5678 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2023, 41 (Suppl. 6), 154. [Google Scholar] [CrossRef]
- Niven, M.; Debbie, R.; Jens, V.; Paul, P.; Sonia, M.; Jorden, V.; Sanjana, U.; Benjamin, W.; Hans, V.; David, W. Early dose escalation of LAVA-1207, a novel bispecific gamma-delta T-cell engager (Gammabody), in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2023, 41 (Suppl. 6), 153. [Google Scholar]
- De Bono, J.S.; Fong, L.; Beer, T.M.; Gao, X.; Geynisman, D.M.; Burris, H.A., III; Strauss, J.F.; Courtney, K.D.; Quinn, D.I.; VanderWeele, D.J.; et al. Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021, 39 (Suppl. 15), 5013. [Google Scholar] [CrossRef]
- Lim, E.A.; Schweizer, M.T.; Chi, K.N.; Aggarwal, R.; Agarwal, N.; Gulley, J.; Attiyeh, E.; Greger, J.; Wu, S.; Jaiprasart, P.; et al. Phase 1 Study of Safety and Preliminary Clinical Activity of JNJ-63898081, a PSMA and CD3 Bispecific Antibody, for Metastatic Castration-Resistant Prostate Cancer. Clin. Genitourin. Cancer 2023, 21, 366–375. [Google Scholar] [CrossRef]
- Dorff, T.; Horvath, L.G.; Autio, K.; Bernard-Tessier, A.; Rettig, M.B.; Machiels, J.-P.; Bilen, M.A.; Lolkema, M.P.; Adra, N.; Rottey, S.; et al. A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T-cell Engager for Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2024, 30, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Narayan, V.; Barber-Rotenberg, J.; Fraietta, J.; Hwang, W.-T.; Lacey, S.F.; Plesa, G.; Carpenter, E.L.; Maude, S.L.; Lal, P.; Vapiwala, N.; et al. A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2021, 39, 125. [Google Scholar] [CrossRef]
- Zanvit, P.; van Dyk, D.; Fazenbaker, C.; McGlinchey, K.; Luo, W.; Pezold, J.M.; Meekin, J.; Chang, C.-Y.; Carrasco, R.A.; Breen, S.; et al. Antitumor activity of AZD0754, a dnTGFβRII-armored, STEAP2-targeted CAR-T cell therapy, in prostate cancer. J. Clin. Investig. 2023, 133, e169655. [Google Scholar] [CrossRef] [PubMed]
- Wermke, M.; Felip, E.; Gambardella, V.; Kuboki, Y.; Morgensztern, D.; Hamed, Z.O.; Liu, M.; Studeny, M.; Owonikoko, T.K. Phase i trial of the DLL3/CD3 bispecific T-cell engager BI 764532 in DLL3-positive small-cell lung cancer and neuroendocrine carcinomas. Future Oncol. 2022, 18, 2639–2649. [Google Scholar] [CrossRef]
- DiRaimondo, T.R.; Budimir, N.; Ma, L.; Shenhav, S.; Cicchini, V.; Wu, H.; Jocic, R.; Roup, F.; Campbell, C.; Caffaro, C.; et al. Abstract B04: Preclinical activity and safety profile or JANX008, a novel EGFR-targeting tumor-activated T cell engager for treatment of solid tumors. Cancer Immunol. Res. 2022, 10, B04. [Google Scholar] [CrossRef]
- Gorchakov, A.A.; Kulemzin, S.V.; Kochneva, G.V.; Taranin, A.V. Challenges and Prospects of Chimeric Antigen Receptor T-cell Therapy for Metastatic Prostate Cancer. Eur. Urol. 2020, 77, 299–308. [Google Scholar] [CrossRef]
- Slovin, S.F.; Wang, X.; Hullings, M.; Arauz, G.; Bartido, S.; Lewis, J.S.; Schöder, H.; Zanzonico, P.; Scher, H.I.; Riviere, I. Chimeric antigen receptor (CAR +) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate metastatic prostate cancer (CMPC). J. Clin. Oncol. 2013, 31 (Suppl. 6), 72. [Google Scholar] [CrossRef]
- Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation and Augments Prostate Cancer Eradication. Mol. Ther. 2018, 26, 1855–1866. [Google Scholar] [CrossRef]
- Narayan, V.; Barber-Rotenberg, J.S.; Jung, I.-Y.; Lacey, S.F.; Rech, A.J.; Davis, M.M.; Hwang, W.-T.; Lal, P.; Carpenter, E.L.; Maude, S.L.; et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat. Med. 2022, 28, 724–734. [Google Scholar] [CrossRef]
- McKean, M.; Carabasi, M.H.; Stein, M.N.; Schweizer, M.T.; Luke, J.J.; Narayan, V.; Parikh, R.A.; Pachynski, R.K.; Zhang, J.; Peddareddigari, V.G.R.; et al. Safety and early efficacy results from a phase 1, multicenter trial of PSMA-targeted armored CAR T cells in patients with advanced mCRPC. J. Clin. Oncol. 2022, 40, 94. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Vogelzang, N.J.; Chatta, K.; Fleming, M.T.; Smith, D.C.; Appleman, L.J.; Hussain, A.; Modiano, M.; Singh, P.; Tagawa, S.T.; et al. PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: Efficacy and safety in open-label single-arm phase 2 study. Prostate 2019, 80, 99–108. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Galsky, M.D.; Morris, M.J.; Crona, D.J.; George, D.J.; Dreicer, R.; Tse, K.; Petruck, J.; Webb, I.J.; Bander, N.H.; et al. Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol. Oncol. 2016, 34, e15–e530. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; Fleming, M.T.; Wang, J.S.; Cathomas, R.; Miralles, M.S.; Bothos, J.; Hinrichs, M.J.; Zhang, Q.; He, P.; Williams, M.; et al. Phase I study of MEDI3726: A prostate-specific membrane antigen-targeted antibody–drug conjugate, in patients with mCRPC after failure of abiraterone or enzalutamide. Clin. Cancer Res. 2021, 27, 3602–3609. [Google Scholar] [CrossRef]
- Shen, J.; Pachynski, R.; Nordquist, L.; Adra, N.; Bilen, M.; Aggarwal, R.; Reichert, Z.; Schweizer, M.; Iravani, A.; Aung, S.; et al. 1804P APEX-01: First-in-human phase I/II study of ARX517 an anti- prostate-specific membrane antigen (PSMA) antibody-drug conjugate (ADC) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 2023, 34, S974–S975. [Google Scholar] [CrossRef]
- Hubert, R.S.; Vivanco, I.; Chen, E.; Rastegar, S.; Leong, K.; Mitchell, S.C.; Madraswala, R.; Zhou, Y.; Kuo, J.; Raitano, A.B.; et al. STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc. Natl. Acad. Sci. USA 1999, 96, 14523–14528. [Google Scholar] [CrossRef]
- Gomes, I.M.; Rocha, S.M.; Gaspar, C.; Alvelos, M.I.; Santos, C.R.; Socorro, S.; Maia, C.J. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens. Med. Oncol. 2018, 35, 40. [Google Scholar] [CrossRef]
- Rocha, S.M.; Santos, F.M.; Socorro, S.; Passarinha, L.A.; Maia, C.J. Proteomic analysis of STEAP1 knockdown in human LNCaP prostate cancer cells. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2023, 1870, 119522. [Google Scholar] [CrossRef]
- Huo, S.F.; Shang, W.L.; Yu, M.; Ren, X.P.; Wen, H.X.; Chai, C.Y.; Sun, L.; Hui, K.; Liu, L.H.; Wei, S.H.; et al. STEAP1 facilitates metastasis and epithelial-mesenchymal tran-sition of lung adenocarcinoma via the JAK2/STAT3 signaling pathway. Biosci. Rep. 2020, 40, BSR20193169. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.M.; Arinto, P.; Lopes, C.; Santos, C.R.; Maia, C.J. STEAP1 is overexpressed in prostate cancer and prostatic intraepithelial neoplasia lesions, and it is positively associated with Gleason score. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 53.e23–53.e29. [Google Scholar] [CrossRef] [PubMed]
- Nolan-Stevaux, O.; Li, C.; Liang, L.; Zhan, J.; Estrada, J.; Osgood, T.; Li, F.; Zhang, H.; Case, R.; Murawsky, C.M.; et al. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov. 2023, 14, 90–103. [Google Scholar] [CrossRef]
- Carrasquillo, J.A.; Fine, B.M.; Pandit-Taskar, N.; Larson, S.M.; Fleming, S.E.; Fox, J.J.; Cheal, S.M.; O’Donoghue, J.A.; Ruan, S.; Ragupathi, G.; et al. Imaging patients with metastatic castra-tion-resistant prostate cancer using 89Zr-DFO-MSTP2109A anti-STEAP1 antibody. J. Nucl. Med. 2019, 60, 1517–1523. [Google Scholar] [CrossRef]
- Danila, D.C.; Szmulewitz, R.Z.; Vaishampayan, U.; Higano, C.S.; Baron, A.D.; Gilbert, H.N.; Brunstein, F.; Milojic-Blair, M.; Wang, B.; Kabbarah, O.; et al. Phase I Study of DSTP3086S, an Antibody-Drug Conjugate Targeting Six-Transmembrane Epithelial Antigen of Prostate 1, in Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019, 37, 3518–3527. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.K.; Danila, D.C.; Lin, C.-C.; Lee, J.-L.; Matsubara, N.; Ward, P.J.; Armstrong, A.J.; Pook, D.; Kim, M.; Dorff, T.B.; et al. Xaluritamig, a STEAP1 × CD3 XmAb 2+1 Immune Therapy for Metastatic Castration-Resistant Prostate Cancer: Results from Dose Exploration in a First-in-Human Study. Cancer Discov. 2023, 14, 76–89. [Google Scholar] [CrossRef]
- Bhatia, V.; Kamat, N.V.; Pariva, T.E.; Wu, L.-T.; Tsao, A.; Sasaki, K.; Sun, H.; Javier, G.; Nutt, S.; Coleman, I.; et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat. Commun. 2023, 14, 2041. [Google Scholar] [CrossRef]
- Hong, S.K. Kallikreins as Biomarkers for Prostate Cancer. BioMed Res. Int. 2014, 2014, 526341. [Google Scholar] [CrossRef]
- Bonk, S.; Kluth, M.; Jansen, K.; Hube-Magg, C.; Makrypidi-Fraune, G.; Höflmayer, D.; Weidemann, S.; Möller, K.; Uhlig, R.; Büscheck, F.; et al. Reduced KLK2 expression is a strong and independent predictor of poor prognosis in ERG-negative prostate cancer. Prostate 2020, 80, 1097–1107. [Google Scholar] [CrossRef]
- Lehto, T.K.; Kovanen, R.; Lintula, S.; Malén, A.; Stürenberg, C.; Erickson, A.; Pulkka, O.; Stenman, U.; Diamandis, E.P.; Rannikko, A.; et al. Prognostic impact of kallikrein-related peptidase transcript levels in prostate cancer. Int. J. Cancer 2023, 153, 867–881. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Niu, Y.; Cai, Q.; Chen, J.; Tian, J.; Yeh, S.; Lai, K.-P.; Chang, C. Human kallikrein 2 (KLK2) promotes prostate cancer cell growth via function as a modulator to promote the ARA70-enhanced androgen receptor transactivation. Tumor Biol. 2013, 35, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman-Luck, R.A.; Loessner, D.; Clements, J.A. Kallikrein-Related Peptidases in Prostate Cancer: From Molecular Function to Clinical Application. EJIFCC 2014, 25, 269–281. [Google Scholar] [PubMed]
- Timmermand, O.V.; Elgqvist, J.; Beattie, K.A.; Örbom, A.; Larsson, E.; Eriksson, S.E.; Thorek, D.L.; Beattie, B.J.; Tran, T.A.; Ulmert, D.; et al. Preclinical efficacy of hK2 targeted [177Lu]hu11B6 for prostate cancer theranostics. Theranostics 2019, 9, 2129–2142. [Google Scholar] [CrossRef] [PubMed]
- Bicak, M.; Lückerath, K.; Kalidindi, T.; Phelps, M.E.; Strand, S.-E.; Morris, M.J.; Radu, C.G.; Damoiseaux, R.; Peltola, M.T.; Peekhaus, N.; et al. Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy. Proc. Natl. Acad. Sci. USA 2020, 117, 15172–15181. [Google Scholar] [CrossRef]
- Morris, M.J.; Wong, J.Y.; Nordquist, L.; Szmulewitz, R.Z.; Agarwal, N.; Attiyeh, E.F.; Max, S.I.; Divgi, C.R.; Patricia, D.; Cao, Y.; et al. Phase 1 study of JNJ-69086420, an actin-ium-225-labeled antibody targeting human kallikrein-2 (hK2), for metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2024, 42 (Suppl. 16), 5010. [Google Scholar] [CrossRef]
- Abate-Daga, D.; Lagisetty, K.H.; Tran, E.; Zheng, Z.; Gattinoni, L.; Yu, Z.; Burns, W.R.; Miermont, A.M.; Teper, Y.; Rudloff, U.; et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum. Gene Ther. 2014, 25, 1003–1012. [Google Scholar] [CrossRef]
- Gu, Z.; Thomas, G.; Yamashiro, J.; Shintaku, I.P.; Dorey, F.; Raitano, A.; Witte, O.; Said, J.; Loda, M.; Reiter, R. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 2000, 19, 1288–1296. [Google Scholar] [CrossRef]
- Dorff, T.B.; Blanchard, M.S.; Adkins, L.N.; Luebbert, L.; Leggett, N.; Shishido, S.N.; Macias, A.; Del Real, M.M.; Dhapola, G.; Egelston, C.; et al. PSCA-CAR T cell therapy in metastatic cas-tration-resistant prostate cancer: A phase 1 trial. Nat. Med. 2024, 30, 1636–1644. [Google Scholar] [CrossRef]
- Pauza, C.D.; Liou, M.-L.; Lahusen, T.; Xiao, L.; Lapidus, R.G.; Cairo, C.; Li, H. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front. Immunol. 2018, 9, 1305. [Google Scholar] [CrossRef]
- Benzaïd, I.; Mönkkönen, H.; Stresing, V.; Bonnelye, E.; Green, J.; Mönkkönen, J.; Touraine, J.L.; Clézardin, P. High phosphoantigen levels in bisphospho-nate-treated human breast tumors promote Vγ9Vδ2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Res. 2011, 71, 4562–4572. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Feng, Y.; Zhou, Z. A close look at current γδ T-cell immunotherapy. Front. Immunol. 2023, 14, 1140623. [Google Scholar] [CrossRef] [PubMed]
- Frieling, J.S.; Tordesillas, L.; Bustos, X.E.; Ramello, M.C.; Bishop, R.T.; Cianne, J.E.; Snedal, S.A.; Li, T.; Lo, C.H.; de la Iglesia, J.; et al. γδ-Enriched CAR-T cell therapy for bone meta-static castrate-resistant prostate cancer. Sci. Adv. 2023, 9, eadf0108. [Google Scholar] [CrossRef]
- Puca, L.; Gavyert, K.; Sailer, V.; Conteduca, V.; Dardenne, E.; Sigouros, M.; Isse, K.; Kearney, M.; Vosoughi, A.; Fernandez, L.; et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci. Transl. Med. 2019, 11, eaav0891. [Google Scholar] [CrossRef]
- Mansfield, A.S.; Hong, D.S.; Hann, C.L.; Farago, A.F.; Beltran, H.; Waqar, S.N.; Hendifar, A.E.; Anthony, L.B.; Taylor, M.H.; Bryce, A.H.; et al. A phase I/II study of rovalpituzumab tesirine in delta-like 3—Expressing advanced solid tumors. NPJ Precis. Oncol. 2021, 5, 74. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A., III; Robert, F.; et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017, 18, 42–51. [Google Scholar] [CrossRef]
- Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci. Transl. Med. 2015, 7, 302ra136. [Google Scholar] [CrossRef]
- Blackhall, F.; Jao, K.; Greillier, L.; Cho, B.C.; Penkov, K.; Reguart, N.; Majem, M.; Nackaerts, K.; Syrigos, K.; Hansen, K.; et al. Efficacy and Safety of Rovalpituzumab Tesirine Compared with Topotecan as Second-Line Therapy in DLL3-High SCLC: Results from the Phase 3 TAHOE Study. J. Thorac. Oncol. 2021, 16, 1547–1558. [Google Scholar] [CrossRef]
- Johnson, M.L.; Zvirbule, Z.; Laktionov, K.; Helland, A.; Cho, B.C.; Gutierrez, V.; Colinet, B.; Lena, H.; Wolf, M.; Gottfried, M.; et al. Rovalpituzumab Tesirine as a Maintenance Therapy After First-Line Platinum-Based Chemotherapy in Patients with Extensive-Stage–SCLC: Results from the Phase 3 MERU Study. J. Thorac. Oncol. 2021, 16, 1570–1581. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Cho, B.C.; Felip, E.; Korantzis, I.; Ohashi, K.; Majem, M.; Juan-Vidal, O.; Handzhiev, S.; Izumi, H.; Lee, J.-S.; et al. Tarlatamab for Patients with Previously Treated Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 2063–2075. [Google Scholar] [CrossRef]
- Aggarwal, R.R.; Rottey, S.; Bernard-Tessier, A.; Mellado-Gonzalez, B.; Kosaka, T.; Stadler, W.M.; Sandhu, S.; Yu, B.; Shaw, C.; Ju, C.-H.; et al. Phase 1b study of tarlatamab in de novo or treatment-emergent neuroendocrine prostate cancer (NEPC). J. Clin. Oncol. 2024, 42, 5012. [Google Scholar] [CrossRef]
- Beltran, H.; Dowlati, A.; Jain, P.; Johnson, M.L.; Sanborn, R.E.; Thompson, J.R.; Mamdani, H.; Schenk, E.L.; Aggarwal, R.R.; Sankar, K.; et al. Interim results from a phase 1/2 study of HPN328, a tri-specific, half-life (T1/2) extended DLL3-targeting T-cell engager, in patients (pts) with neuroendocrine prostate cancer (NEPC) and other neuroendocrine neoplasms (NEN). J. Clin. Oncol. 2024, 42, 121. [Google Scholar] [CrossRef]
- Wermke, M.; Felip, E.; Kuboki, Y.; Morgensztern, D.; Sayehli, C.; Sanmamed, M.F.; Arriola, E.; Oum’Hamed, Z.; Song, E.; Studeny, M.; et al. First-in-human dose-escalation trial of BI 764532, a delta-like ligand 3 (DLL3)/CD3 IgG-like T-cell engager in patients (pts) with DLL3-positive (DLL3+) small-cell lung cancer (SCLC) and neuroendocrine carcinoma (NEC). J. Clin. Oncol. 2023, 41 (Suppl. 16), 8502. [Google Scholar] [CrossRef]
Intervention | Phase/ Accrual Goal | NCT# | Primary Endpoint |
---|---|---|---|
Lu177 1 + Ipi 2 3 mg/kg Q 6 wk × 4 Nivo 3 1 mg/kg Q 3 wk × 4 → Nivo Q 4 wk × 18 | II/100 | 05150236 | 12 Month PSA-PFS 4 |
Lu177 × 1→Pembro 5 + Lu177 × 1 at PSA progression→ repeat Lu177 + Pembro at the next post treatment PSA progression | II/48 | 05766371 | 12 Month rPFS |
177Lu-PSMA-I&T 6.8 GBq Q 8 wk + escalating dose of 225Ac-J591 | I/II/48 | 04886986 | DLT 6, MTD 7, PSA 50 RR 8 [13] |
177Lu-PSMA-I&T + Radium-223 | II/36 | 05383079 | DLT, MTD, 50% PSA RR |
Lu177 + Olaparib | I/52 | 03874884 | DLT, MTD, RP2D 9 |
Lu177 + escalating dose of Cabazitaxel | I/II/44 | 05340374 | DLT, MTD, RP2D [14] |
Lu177 + escalating dose of Cabozantinib | I/33 | 05613894 | MTD, PFS at 24 weeks |
Lu177 + Enzalutamide vs. Enzalutamide | II/162 | 04419402 | PSA-PFS |
Drug | Antibody | Payload | Dosing | Patient # | PSA 50 Response | Best Imaging Response |
---|---|---|---|---|---|---|
PSMA-MMAE | IgG1 | MMAE | 2.3 or 2.5 mg/kg IV once q 21 d | 119 | 14% | 2% PR, 63% SD [35] |
MLN2704 | J591 | DM1 | 330 mg/m2 q 2–6 wk | 62 | 8% | No Data [36] |
MEDI3726 | J591 | PBD dimer | 0.2–0.3 mg/kg IV once q 21 d | 33 | 3% | 3% PR, 36% SD [37] |
ARX517 | J591 | AS269 | 2.88 mg/kg IV once q 21 d | 23 * | 52% | 2/9 ** PR, 4/9 SD [38] |
Pros | Cons | |
---|---|---|
ADC | Improved efficacy and safety compared to traditional chemotherapy. Potential bystander effect to mCRPC with no or low levels of antigen expression. | Cross-resistance between taxanes and anti-microtubule payloads. Limited potential for treatment combinations. |
BiTEs | Documented efficacy in early phase trials. Early onset of CRS. CRS and ICAN can be mitigated with stepwise dosing. No bone marrow suppression. Potential to be combined with another BiTE, ICI, and ARSI. | Frequent IV or SC dosing. Side effects such as CRS often require inpatient overnight observation at the initial dosing. |
CAR T | Potential for a deep and durable response after one infusion. | Requirement for conditioning chemo prior to CAR T infusion. Potentially life-threatening CRS, ICANS, and HLH, require inpatient observations and management. |
TRT | Radiotracers can be added to the same chemical backbone for diagnosis, treatment selection, and treatment. Easy to administer. More manageable toxicities. Potential to be combined with ARSI, PARPi, and ICI. | Fixed dosing regardless of disease burden. Limited activities for metastatic lesions with low levels of surface antigen expression. Bone marrow suppression, which is more notable with alpha particles and TRT with long half-life. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chadha, J.S. Developmental Therapeutics in Metastatic Prostate Cancer: New Targets and New Strategies. Cancers 2024, 16, 3098. https://doi.org/10.3390/cancers16173098
Zhang J, Chadha JS. Developmental Therapeutics in Metastatic Prostate Cancer: New Targets and New Strategies. Cancers. 2024; 16(17):3098. https://doi.org/10.3390/cancers16173098
Chicago/Turabian StyleZhang, Jingsong, and Juskaran S. Chadha. 2024. "Developmental Therapeutics in Metastatic Prostate Cancer: New Targets and New Strategies" Cancers 16, no. 17: 3098. https://doi.org/10.3390/cancers16173098
APA StyleZhang, J., & Chadha, J. S. (2024). Developmental Therapeutics in Metastatic Prostate Cancer: New Targets and New Strategies. Cancers, 16(17), 3098. https://doi.org/10.3390/cancers16173098