Proton Therapy Adaptation of Perisinusoidal and Brain Areas in the Cyclotron Centre Bronowice in Krakow: A Dosimetric Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Adaptation Protocol
2.3. Plan Recalculation and Data Analysis
- The homogeneity index (HI) signifies the slope of the DVH, reflecting the uniformity of the dose distribution within the PTV. The HI is calculated as follows:
- The conformity index (CI) describes the coverage of the PTV with the prescribed dose. The CI is expressed by the following Formula (2):
- The conformation number (CN) simultaneously considers the irradiation of the target volume and healthy tissues and is defined as follows:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APT | adaptive proton therapy |
CCB | Cyclotron Centre Bronowice |
CT | computed tomography |
CTV | clinical target volume |
DVH | dose-volume histogram |
H&N | head and neck |
IMPT | intensity modulated proton therapy |
OAR | organ at risk |
PBS | pencil beam scanning |
PTV | planning target volume |
RBE | relative biological effectiveness |
RTT | radiation therapist |
Appendix A
Patient No. | Age | Tumour Location | Days after CT Reskan to Adapted Plan | Original PTV [cm3] | Adapted PTV [cm3] | No. of Fields | Fraction Dose [GyRBE] | No of Fractions with Original Plan/All Delivered Fractions | Replan Motivation | Radiotherapy Combined with: |
---|---|---|---|---|---|---|---|---|---|---|
1 | 38 | Sinus cavity | 4 | 31.66 | 31.29 | 3 | 1.8 | 19/30 (week 4) | tumor regression | recurrence |
2 | 76 | Nasal cavity | 7 | 211.11 | 211.55 | 6 | 2 | 24/35 (week 5) | dose increase in OARs | immunotherapy |
3 | 41 | Nasal cavity | 3 | 60.48 | 60.11 | 6 | 2 | 16/33 (week 4) | dose increase in OARs | surgery |
4 | 35 | H&N Nasal cavity +lymph nodes | 6 | 274.95 | 235.35 | 4 | 2 | 26/35 (week 6) | tumor regression | chemotherapy |
5 | 43 | Sinus cavity | the same CT | 305.45 | 370.88 | 6 | 2 | 14/35 (week 3) | tumor progression | chemotherapy |
6 | 69 | H&N Sinus cavity | 7 | 850.81 | 923.88 | 6 | 2 | 8/30 (week 2) | tumor progression | chemotherapy |
7 | 59 | Sinus cavity | 5 | 165.84 | 165.35 | 6 | 1.8 | 31/37 (week 7) | dose decrease in PTV | chemotherapy |
8 | 70 | H&N Sinus cavity +lymph nodes | 4 | 107.66 | 107.93 | 6 | 2 | 27/35 (week 6) | disturbance of dose distribution in PTV nad OARs | chemotherapy |
9 | 57 | H&N. Sinus cavity | the same CT | 453.15 | 453.15 | 4/5 * | 2 | 2/27 (week 1) | dhange of the dose constrains for OAR | surgery and chemotherapy |
10 | 45 | H&N Nasal cavity +lymph nodes | the same CT | 197.32 | 197.32 | 6 | 2 | 2/35 (week 1) | dhange of the dose constrains for OAR | chemotherapy |
Patient No. | Age | Tumour Location | Days after CT Reskan to Adapted Plan | Original PTV [cm3] | Adapted PTV [cm3] | No. of Fields | Fraction Dose [GyRBE] | No of Fractions with Original Plan/All Delivered Fractions | Replan Motivation | Radiotherapy Combined with: |
---|---|---|---|---|---|---|---|---|---|---|
1 | 37 | Brain | the same CT | 148.46 | 148.46 | 4 | 1.8 | 2/30 (week 1) | Dose increase in OARs | surgery |
2 | 21 | Brain | 6 | 588.55 | 589.21 | 6 | 1.8 | 2/33 (week 1) | weight gaining —disturbance of dose distribution in OARs | surgery |
3 | 60 | Brain | 6 | 352.13 | 350.17 | 3 | 1.8 | 24/30 (week 5) | tumor regression | surgery |
4 | 38 | Brain | 1 | 152.24 | 150.77 | 2 | 1.8 | 22/30 (week 5) | tumor regression | surgery |
5 | 30 | Brain | the same CT | 663.92 | 663.92 | 3 | 1.8 | 6/30 (week 2) | dhange of the dose constrains for OAR | surgery |
6 | 48 | Brain | 14 | 232.24 | 231.20 | 3 | 1.8 | 22/30 (week 5) | disturbance of dose distribution in OARs | surgery |
7 | 44 | Brain | 6 | 365.21 | 363.81 | 2 | 1.8 | 23/33 (week 5) | increased Dmax to Brainstem | - |
8 | 71 | Brain | 2 | 132.45 | 131.77 | 3 | 1.8 | 22/30 (week 5) | disturbance of dose distribution in CTV | - |
9 | 40 | Brain | 7 | 818.47 | 834.13 | 4 | 1.8 | 19/33 (week 4) | tumor progression | surgery |
10 | 34 | Brain | 6 | 539.8 | 537.31 | 3 | 1.8 | 22/30 (week 5) | increased Dmax to Brainstem | surgery |
11 | 19 | Brain | 3 | 673.84 | 671.51 | 3 | 1.8 | 22/30 (week 4) | increased Dmax to Brainstem and Chiasm | surgery |
OAR or PTV Parameter | No. of Patients | Wilcoxon Signed-Rank Test | ||||
---|---|---|---|---|---|---|
Improving | Worsening | No Significant Change | p-Value | Test Result * | ||
Brainstem | 9 | 6 | 6 | 0.179 | ✗ | |
10 | 5 | 6 | 0.038 | |||
Chiasm | 7 | 9 | 5 | 0.355 | ✗ | |
10 | 6 | 5 | 0.313 | |||
Optic Nerve L | 8 | 7 | 4 | 0.277 | ✗ | |
8 | 6 | 5 | 0.421 | |||
Optic Nerve R | 11 | 5 | 3 | 0.395 | ✗ | |
8 | 6 | 5 | 0.595 | |||
PTV | 15 | 1 | 5 | 0.003 | ✓ | |
17 | 4 | 0 | 0.007 | ✓ | ||
17 | 3 | 1 | 0.001 | ✓ | ||
CI | 16 | 2 | 3 | 0.001 | ✓ | |
CN | 15 | 2 | 4 | 0.002 | ✓ | |
HI | 18 | 3 | 0 | 0.001 | ✓ |
References
- Stützer, K.; Jakobi, A.; Bandurska-Luque, A.; Barczyk, S.; Arnsmeyer, C.; Löck, S.; Richter, C. Potential proton and photon dose degradation in advanced head and neck cancer patients by intratherapy changes. J. Appl. Clin. Med. Phys. 2017, 18, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Paganetti, H.; Botas, P.; Sharp, G.C.; Winey, B. Adaptive proton therapy. Phys. Med. Biol. 2021, 66, 22TR01. [Google Scholar] [CrossRef] [PubMed]
- Lomax, A.J. Myths and realities of range uncertainty. Br. J. Radiol. 2020, 93, 20190582. [Google Scholar] [CrossRef] [PubMed]
- Bobić, M.; Lalonde, A.; Nesteruk, K.P.; Lee, H.; Nenoff, L.; Gorissen, B.L.; Bertolet, A.; Busse, P.M.; Chan, A.W.; Winey, B.A.; et al. Large anatomical changes in head-and-neck cancers–A dosimetric comparison of online and offline adaptive proton therapy. Clin. Transl. Radiat. Oncol. 2023, 40, 100625. [Google Scholar] [CrossRef]
- Gambetta, V.; Fredriksson, A.; Menkel, S.; Richter, C.; Stützer, K. The partial adaptation strategy for online-adaptive proton therapy: A proof of concept study in head and neck cancer patients. Med. Phys. 2024, 51, 5572–5581. [Google Scholar] [CrossRef]
- ProtOnART—A New Consortium for Proton Online Adaptive Radiation Therapy. Available online: https://www.raysearchlabs.com/media/press-releases/2022/protonart–a-new-consortium-for-proton-online-adaptive-radiation-therapy/ (accessed on 24 August 2024).
- Real-Time Adaptive Particle Therapy of Cancer (RAPTOR). Available online: https://raptor-consortium.com/ (accessed on 24 August 2024).
- Galapon, A.V., Jr.; Thummerer, A.; Langendijk, J.A.; Wagenaar, D.; Both, S. Feasibility of Monte Carlo Dropout-Based Uncertainty Maps to Evaluate Deep Learning-Based Synthetic CTs for Adaptive Proton Therapy. Large anatomical changes in head-and-neck cancers–A dosimetric comparison of online and offline adaptive proton therapy. Med. Phys. 2024, 51, 2499–2509. [Google Scholar] [CrossRef]
- Smolders, A.; Lomax, A.; Weber, D.C.; Albertini, F. Deep Learning Based Uncertainty Prediction of Deformable Image Registration for Contour Propagation and Dose Accumulation in Online Adaptive Radiotherapy. Med. Phys. 2023, 68, 245027. [Google Scholar] [CrossRef]
- Smolders, A.; Hengeveld, A.C.; Both, S.; Wijsman, R.; Langendijk, J.A.; Weber, D.C.; Lomax, A.J.; Albertini, F.; Guterres Marmitt, G. Inter- and Intrafractional 4D Dose Accumulation for Evaluating ΔNTCP Robustness in Lung Cancer. Radiother. Oncol. 2023, 182, 109488. [Google Scholar] [CrossRef]
- Zhang, Y.; Alshaikhi, J.; Amos, R.A.; Lowe, M.; Tan, W.; Bär, E.; Royle, G. Improving workflow for adaptive proton therapy with predictive anatomical modelling: A proof of concept. Radiother. Oncol. 2022, 173, 93–101. [Google Scholar] [CrossRef]
- Kataria, T.; Sharma, K.; Subramani, V.; Karrthick, K.P.; Bisht, S.S. Homogeneity Index: An objective tool for assessment of conformal radiation treatments. J. Med. Phys. 2012, 37, 207–213. [Google Scholar] [CrossRef]
- Feuvret, L.; Noël, G.; Mazeron, J.J.; Bey, P. Conformity index: A review. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Noël, G.; Antoni, D. Organs at risk radiation dose constraints. Cancer/Radiothérapie 2022, 26, 59–75. [Google Scholar] [CrossRef]
- Lalonde, A.; Bobić, M.; Winey, B.; Verburg, J.; Sharp, G.C.; Paganetti, H. Anatomic changes in head and neck intensity-modulated proton therapy: Comparison between robust optimization and online adaptation. Radiother. Oncol. 2021, 159, 39–47. [Google Scholar] [CrossRef]
- Huiskes, M.; Astreinidou, E.; Kong, W.; Breedveld, S.; Heijmen, B.; Rasch, C. Dosimetric impact of adaptive proton therapy in head and neck cancer—A review. Clin. Transl. Radiat. Oncol. 2023, 39, 100598. [Google Scholar] [CrossRef]
- Bobić, M.; Lalonde, A.; Sharp, G.C.; Grassberger, C.; Verburg, J.M.; Winey, B.A.; Lomax, A.J.; Paganetti, H. Comparison of weekly and daily online adaptation for head and neck intensity-modulated proton therapy. Phys. Med. Biol. 2021, 66, 055023. [Google Scholar] [CrossRef] [PubMed]
- De Ornelas, M.; Xu, Y.; Padgett, K.; Schmidt, R.M.; Butkus, M.; Diwanji, T.; Luciani, G.; Lambiase, J.; Samuels, S.; Samuels, M.; et al. CBCT-based adaptive assessment workflow for intensity modulated proton therapy for head and neck cancer. Int. J. Part. Ther. 2021, 7, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Taku, N.; Wahid, K.A.; van Dijk, L.V.; Sahlsten, J.; Jaskari, J.; Kaski, K.; Fuller, C.D.; Naser, M.A. Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network. Clin. Transl. Radiat. Oncol. 2022, 36, 47–55. [Google Scholar] [CrossRef]
- Nikolov, S.; Blackwell, S.; Zverovitch, A.; Mendes, R.; Livne, M.; De Fauw, J.; Patel, Y.; Meyer, C.; Askham, H.; Romera-Paredes, B.; et al. Clinically applicable segmentation of head and neck anatomy for radiotherapy: Deep learning algorithm development and validation study. J. Med. Internet Res. 2021, 23, e26151. [Google Scholar] [CrossRef]
- Bernatowicz, K.; Geets, X.; Barragan, A.; Janssens, G.; Souris, K.; Sterpin, E. Feasibility of online IMPT adaptation using fast, automatic and robust dose restoration. Phys. Med. Biol. 2018, 63, 085018. [Google Scholar] [CrossRef]
- Ates, O.; Pirlepesov, F.; Zhao, L.; Hua, C.H.; Merchant, T.E. Development of a log file analysis tool for proton patient QA, system performance tracking, and delivered dose reconstruction. J. Appl. Clin. Med. Phys. 2023, 24, e13972. [Google Scholar] [CrossRef]
- Gajewski, J.; Garbacz, M.; Chang, C.W.; Czerska, K.; Durante, M.; Krah, N.; Krzempek, K.; Kopeć, R.; Lin, L.; Mojżeszek, N.; et al. Commissioning of GPU–accelerated Monte Carlo code FRED for clinical applications in proton therapy. Front. Phys. 2021, 8, 567300. [Google Scholar] [CrossRef]
Year | Number of Patients with APT | Total Number of Patients Treated in CCB | Fraction of APT Patients |
---|---|---|---|
2020 | 14 | 133 | 10.5% |
2021 | 8 | 171 | 4.7% |
2022 | 20 | 177 | 11.3% |
2023 | 38 | 312 | 12.2% |
mid.2024 | 36 | 200 | 18.0% |
sum: | 116 | 993 | 11.7% |
Parameter | Description | Evaluated for |
---|---|---|
, [Gy] | Maximal/mean dose within the organ structure | Brain, chiasm, optic nerves, brainstem, spinal cord, pituitary, cochleas and PTV |
[Gy] | Dose delivered to 0.1 of a structure volume | Brain, chiasm, optic nerves, brainstem, spinal cord, pituitary, cochleas |
[%] | Volume of organ receiving at least 95% of prescribed dose | PTV |
[Gy] | Dose received by 98% of the organ volume | PTV |
Tumor Location Group | No of Patients Started Irradiation of the Adapted Plan at: | Sum of Patients | Median | ||||||
---|---|---|---|---|---|---|---|---|---|
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | |||
Sinus/nasal cavity | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 10 | week 4 |
Brain | 2 | 1 | 0 | 2 | 6 | 0 | 0 | 11 | week 5 |
OAR or PTV Parameter | No. of Patients | Wilcoxon Signed-Rank Test | ||||
---|---|---|---|---|---|---|
Improving | Worsening | No Significant Change | p-Value | Test Result * | ||
Brain | 7 | 3 | 0 | 0.064 | ✗ | |
4 | 4 | 2 | 0.432 | |||
Brainstem | 4 | 5 | 1 | 1.000 | ✗ | |
5 | 3 | 2 | 1.000 | |||
Chiasm | 4 | 4 | 2 | 0.846 | ✗ | |
5 | 3 | 2 | 0.375 | |||
Optic Nerve L | 6 | 3 | 0 | 0.084 | ✗ | |
5 | 4 | 0 | 0.432 | |||
Optic Nerve R | 6 | 3 | 0 | 1.000 | ✗ | |
5 | 2 | 2 | 0.359 | |||
Spinal Cord | 6 | 2 | 1 | 0.301 | ✗ | |
4 | 4 | 1 | 0.820 | |||
PTV | 8 | 0 | 2 | 0.006 | ✓ | |
8 | 2 | 0 | 0.020 | ✓ | ||
8 | 2 | 0 | 0.014 | ✓ | ||
CI | 8 | 2 | 0 | 0.027 | ✓ | |
CN | 8 | 1 | 1 | 0.049 | ✓ | |
HI | 9 | 1 | 0 | 0.004 | ✓ |
OAR or PTV Parameter | No. of Patients | Wilcoxon Signed-Rank Test | ||||
---|---|---|---|---|---|---|
Improving | Worsening | No Significant Change | p-Value | Test Result * | ||
Brainstem | 5 | 1 | 5 | 0.054 | ✗ | |
5 | 2 | 4 | 0.320 | |||
Chiasm | 3 | 5 | 3 | 0.278 | ✗ | |
5 | 3 | 3 | 0.508 | |||
Optic Nerve L | 2 | 4 | 4 | 0.492 | ✗ | |
3 | 2 | 5 | 0.767 | |||
Optic Nerve R | 5 | 2 | 3 | 0.275 | ✗ | |
3 | 4 | 3 | 0.846 | |||
Pituitary | 5 | 4 | 0 | 0.496 | ✗ | |
6 | 3 | 0 | 0.164 | |||
Cochlea L | 4 | 3 | 2 | 0.250 | ✗ | |
6 | 0 | 3 | 0.012 | ✓ | ||
Cochlea R | 6 | 3 | 0 | 0.301 | ✗ | |
6 | 3 | 0 | 0.250 | |||
PTV | 7 | 1 | 3 | 0.365 | ✗ | |
9 | 2 | 0 | 0.275 | ✗ | ||
9 | 1 | 1 | 0.019 | ✓ | ||
CI | 8 | 0 | 3 | 0.007 | ✓ | |
CN | 7 | 1 | 3 | 0.017 | ✓ | |
HI | 9 | 2 | 0 | 0.175 | ✗ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydygier, M.; Skóra, T.; Kisielewicz, K.; Spaleniak, A.; Garbacz, M.; Lipa, M.; Foltyńska, G.; Góra, E.; Gajewski, J.; Krzempek, D.; et al. Proton Therapy Adaptation of Perisinusoidal and Brain Areas in the Cyclotron Centre Bronowice in Krakow: A Dosimetric Analysis. Cancers 2024, 16, 3128. https://doi.org/10.3390/cancers16183128
Rydygier M, Skóra T, Kisielewicz K, Spaleniak A, Garbacz M, Lipa M, Foltyńska G, Góra E, Gajewski J, Krzempek D, et al. Proton Therapy Adaptation of Perisinusoidal and Brain Areas in the Cyclotron Centre Bronowice in Krakow: A Dosimetric Analysis. Cancers. 2024; 16(18):3128. https://doi.org/10.3390/cancers16183128
Chicago/Turabian StyleRydygier, Marzena, Tomasz Skóra, Kamil Kisielewicz, Anna Spaleniak, Magdalena Garbacz, Monika Lipa, Gabriela Foltyńska, Eleonora Góra, Jan Gajewski, Dawid Krzempek, and et al. 2024. "Proton Therapy Adaptation of Perisinusoidal and Brain Areas in the Cyclotron Centre Bronowice in Krakow: A Dosimetric Analysis" Cancers 16, no. 18: 3128. https://doi.org/10.3390/cancers16183128
APA StyleRydygier, M., Skóra, T., Kisielewicz, K., Spaleniak, A., Garbacz, M., Lipa, M., Foltyńska, G., Góra, E., Gajewski, J., Krzempek, D., Kopeć, R., & Ruciński, A. (2024). Proton Therapy Adaptation of Perisinusoidal and Brain Areas in the Cyclotron Centre Bronowice in Krakow: A Dosimetric Analysis. Cancers, 16(18), 3128. https://doi.org/10.3390/cancers16183128