Evaluating Real World Health System Resource Utilization and Costs for a Risk-Based Breast Cancer Screening Approach in the Canadian PERSPECTIVE Integration and Implementation Project
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Breast Cancer Risk Estimation
2.3. Statistical and Costing Analysis
3. Results
3.1. Socio–Demographic and Health Characteristics
3.2. Breast Cancer Risk Assessment and Screening Frequency
3.3. Costs
3.3.1. Risk-Stratified Screening-Related Costs
3.3.2. Healthcare Utilization Resource Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Supplementary Methods
Databases | Data Variables |
---|---|
Demographics/Population | |
Local Health Integration Network (LHIN) | 14 LHINs, operating as Home and Community Care Support Services across Ontario, providing home care and long-term care home placement services and facilitation of access to community services |
Postal Code Conversion File (PCCF) | Allows for the matching of six-digit postal codes to standard census geographies. |
Registered Persons Database (RPDB) | Basic population and demographic information (age, sex, location of residence, date of birth and date of death for deceased individuals) |
Health services | |
CIHI (Canadian Institute for Health Information) Continuing Care Reporting System (CCRS) | Complex and continuing care |
CIHI Discharge Abstract Database (DAD) | Inpatient hospitalizations |
CIHI Same Day Surgery (SDS) | All day surgical procedures |
Ontario Home Care Database (HCD) | Home care visits |
CIHI National Ambulatory Care Reporting System (NACRS) | Emergency department visits, outpatient clinic visits, same day surgery |
CIHI National Rehabilitation Reporting System (NRS) | Inpatient rehabilitation |
Ontario Breast Screening Program (OBSP) | Screening program encouraging people in Ontario to get screened for breast cancer via two groups of people eligible for breast cancer screening in Ontario (average risk and high risk) |
Ontario Drug Benefit (ODB) Formulary | Drug prescriptions |
Ontario Health Insurance Plan (OHIP) billings | Physician visits, non-physician (allied health) visits, laboratory services |
Ontario Mental Health Reporting System (OMHRS) | Analyses and reports on information submitted to CIHI about all individuals receiving adult mental health services in Ontario |
Controlled Use Datasets | |
New Drug Funding Program (NDFP) | Chemotherapies (IV) |
Ontario Cancer Registry (OCR) | Cancer diagnosis |
Other | |
Ontario Case Costing Initiative (OCCI) | Costs of acute inpatient, day surgery, ambulatory care cases, mental health, rehabilitation and complex continuing care |
References
- Breast Cancer Statistics. 2024. Available online: https://cancer.ca/en/cancer-information/cancer-types/breast/statistics (accessed on 11 June 2024).
- Ontario Cancer Statistics. 2022. Available online: https://www.cancercareontario.ca/en/data-research/view-data/statistical-reports/ontario-cancer-statistics-2022/ch-1-estimated-current-cancer-incidence-2022#:~:text=ln%202022%2C%20the%20most%20commonly,new%20cancers%20diagnosed%20in%202022 (accessed on 11 June 2024).
- Klarenbach, S.; Sims-Jones, N.; Lewin, G.; Singh, H.; Thériault, G.; Tonelli, M.; Doull, M.; Courage, S.; Garcia, A.J.; Thombs, B.D. Recommendations on screening for breast cancer in women aged 40–74 years who are not at increased risk for breast cancer. CMAJ 2018, 190, E1441–E1451. [Google Scholar] [CrossRef]
- Breast Cancer Screening in Canada. 2022. Available online: https://www.partnershipagainstcancer.ca/topics/breast-cancer-screening-in-canada-2021-2022/programs/guidelines/ (accessed on 11 June 2024).
- US Preventive Services Task Force; Nicholson, W.K.; Silverstein, M.; Wong, J.B.; Barry, M.J.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Jaén, C.R.; Krousel-Wood, M.; et al. Screening for Breast Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 331, 1918–1930. [Google Scholar] [PubMed]
- Cancer Care Ontario. Breast Cancer Screening for People at High risk. Breast Cancer Screening for People at High Risk|Cancer Care Ontario. Available online: https://www.cancercareontario.ca/en/guidelines-advice/cancer-continuum/screening/breast-cancer-high-risk (accessed on 9 August 2024).
- Rahman, W.T.; Helvie, M.A. Breast cancer screening in average and high-risk women. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 83, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Cancer Care Ontario. Breast Cancer. Breast Cancer|Cancer Care Ontario. Available online: https://www.cancercareontario.ca/en/types-of-cancer/breast-cancer#:~:text=In%202020%2C%20close%20to%2012%2C000,risk%20of%20getting%20breast%20cancer (accessed on 9 August 2024).
- Cohen, S.Y.; Stoll, C.R.; Anandarajah, A.; Doering, M.; Colditz, G.A. Modifiable risk factors in women at high risk of breast cancer: A systematic review. Breast Cancer Res. 2023, 25, 45. [Google Scholar] [CrossRef]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- Pashayan, N.; Antoniou, A.C.; Ivanus, U.; Esserman, L.J.; Easton, D.F.; French, D.; Sroczynski, G.; Hall, P.; Cuzick, J.; Evans, D.G.; et al. Personalized early detection and prevention of breast cancer: Envision consensus statement. Nat. Rev. Clin. Oncol. 2020, 17, 687–705, Erratum in Nat. Rev. Clin. Oncol. 2020, 17, 716. [Google Scholar] [CrossRef]
- Pashayan, N.; Antoniou, A.C.; Lee, A.; Wolfson, M.; Chiquette, J.; Eloy, L.; Eisen, A.; Stockley, T.L.; Nabi, H.; Brooks, J.D.; et al. Should Age-Dependent Absolute Risk Thresholds Be Used for Risk Stratification in Risk-Stratified Breast Cancer Screening? J. Pers. Med. 2021, 11, 916. [Google Scholar] [CrossRef] [PubMed]
- Pashayan, N.; Morris, S.; Gilbert, F.J.; Pharoah, P.D.P. Cost-effectiveness and Benefit-to-Harm Ratio of Risk-Stratified Screening for Breast Cancer: A Life-Table Model. JAMA Oncol. 2018, 4, 1504–1510, Erratum in JAMA Oncol. 2022, 8, 484. [Google Scholar] [CrossRef]
- Walker, M.J.; Blackmore, K.M.; Chang, A.; Lambert-Côté, L.; Turgeon, A.; Antoniou, A.C.; Bell, K.A.; Broeders, M.J.; Brooks, J.D.; Carver, T.; et al. Implementing multifactorial risk assessment with polygenic risk scores for personalized breast cancer screening in the population setting: Challenges and opportunities. Cancers 2024, 16, 2116. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.; Cholerton, R.; Sicsic, J.; Moumjid, N.; French, D.P.; Rossi, P.G.; Balleyguier, C.; Guindy, M.; Gilbert, F.J.; Burrion, J.-B.; et al. Study protocol comparing the ethical, psychological and socio-economic impact of personalised breast cancer screening to that of standard screening in the “My Personal Breast Screening” (MyPeBS) randomised clinical trial. BMC Cancer 2022, 22, 507. [Google Scholar] [CrossRef]
- Shieh, Y.; Eklund, M.; Madlensky, L.; Sawyer, S.D.; Thompson, C.K.; Fiscalini, A.S.; Ziv, E.; van’t Veer, L.J.; Esserman, L.J.; Tice, J.A.; et al. Breast Cancer Screening in the Precision Medicine Era: Risk-Based Screening in a Population-Based Trial. J. Natl. Cancer Inst. 2017, 109, djw290. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, M.; Eriksson, M.; Hammarström, M.; Borgquist, S.; Leifland, K.; Czene, K.; Hall, P. Cohort Profile: The Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA). Int. J. Epidemiol. 2017, 46, 1740–1741g. [Google Scholar] [CrossRef] [PubMed]
- Giordano, L.; Gallo, F.; Petracci, E.; Chiorino, G.; Segnan, N.; Andromeda working group. The ANDROMEDA prospective cohort study: Predictive value of combined criteria to tailor breast cancer screening and new opportunities from circulating markers: Study protocol. BMC Cancer 2017, 17, 785. [Google Scholar] [CrossRef] [PubMed]
- Rainey, L.; van der Waal, D.; Broeders, M.J.M. Dutch women’s intended participation in a risk-based breast cancer screening and prevention programme: A survey study identifying preferences, facilitators and barriers. BMC Cancer 2020, 20, 965. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.; Donnelly, L.S.; Harkness, E.F.; Astley, S.M.; Stavrinos, P.; Dawe, S.; Watterson, D.; Fox, L.; Sergeant, J.C.; Ingham, S.; et al. Breast cancer risk feedback to women in the UK NHS breast screening population. Br. J. Cancer 2016, 114, 1045–1052. [Google Scholar] [CrossRef]
- Khan, S.A.; Hernandez-Villafuerte, K.V.; Muchadeyi, M.T.; Schlander, M. Cost-effectiveness of risk-based breast cancer screening: A systematic review. Int. J. Cancer 2021, 149, 790–810. [Google Scholar] [CrossRef]
- Badal, K.; Staib, J.; Tice, J.; Kim, M.-O.; Eklund, M.; DaCosta Byfield, S.; Catlett, K.; Wilson, L.; Maffey, L.; Soonavala, R.; et al. Cost of breast cancer screening in the USA: Comparison of current practice, advocated guidelines, and a personalized risk-based approach. J. Clin. Oncol. 2023, 41 (Suppl. S16), e18917. [Google Scholar] [CrossRef]
- Mittmann, N.; Blackmore, K.M.; Seung, S.J.; Diong, C.; Done, S.J.; Chiarelli, A.M. Healthcare and cancer treatment costs of breast screening outcomes among higher than average risk women. Curr. Oncol. 2023, 30, 8550–8562. [Google Scholar] [CrossRef]
- Mittmann, N.; Seung, S.J.; Diong, C.; Gatley, J.M.; Wolfson, M.; Guertin, M.-H.; Pashayan, N.; Simard, J.; Chiarelli, A.M. Using real-world data to determine health system costs of Ontario women screened for breast cancer. Curr. Oncol. 2022, 29, 8330–8339. [Google Scholar] [CrossRef]
- Brooks, J.D.; Nabi, H.; Andrulis, I.L.; Antoniou, A.C.; Chiquette, J.; Després, P.; Devilee, P.; Dorval, M.; Droit, A.; Easton, D.F.; et al. Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation (PERSPECTIVE I&I). J. Pers. Med. 2021, 11, 511. [Google Scholar] [CrossRef]
- Hurry, M.; Hassan, S.; Seung, S.J.; Walton, R.; Elnoursi, A.; McGee, J. Real-world treatment patterns, survival, and costs for ovarian cancer in Canada: A retrospective cohort study using provincial administrative data. J. Health Econ. Outcomes Res. 2021, 8, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Sickles, E.A.; D’Orsi, C.J.; Bassett, L.W.; Appleton, C.M.; Berg, W.A.; Burnside, E.S. ACR BIRADS Atlas, Breast Imaging Reporting and Data System, 5th ed.; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Fowler, E.E.; Sellers, T.A.; Lu, B.; Heine, J.J. Breast Imaging Reporting and Data System (bi-rads) breast composition descriptors: Automated measurement development for full field digital mammography. Med. Phys. 2013, 40, 11. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in Longitudinal Studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson Comorbidity index: A critical review of clinimetric properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef]
- Mavaddat, N.; Michailidou, K.; Dennis, J.; Lush, M.; Fachal, L.; Lee, A.; Tyrer, J.P.; Chen, T.-H.; Wang, Q.; Bolla, M.K.; et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am. J. Hum. Genet. 2019, 104, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Ficorella, L.; Carver, T.; Lee, A.; Cunningham, A.P.; Lush, M.; Dennis, J.; Tischkowitz, M.; Downes, K.; Hu, D.; et al. Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model. Cancer Epidemiol. Biomark. Prev. 2023, 32, 422–427. [Google Scholar] [CrossRef]
- Yang, X.; Eriksson, M.; Czene, K.; Lee, A.; Leslie, G.; Lush, M.; Wang, J.; Dennis, J.; Dorling, L.; Carvalho, S.; et al. Prospective validation of the BOADICEA multifactorial breast cancer risk prediction model in a large prospective cohort study. J. Med. Genet. 2022, 59, 1196–1205. [Google Scholar] [CrossRef]
- Carver, T.; Hartley, S.; Lee, A.; Cunningham, A.P.; Archer, S.; de Villiers, C.B.; Roberts, J.; Ruston, R.; Walter, F.M.; Tischkowitz, M.; et al. CanRisk Tool-A Web Interface for the Prediction of Breast and Ovarian Cancer Risk and the Likelihood of Carrying Genetic Pathogenic Variants. Cancer Epidemiol. Biomark. Prev. 2021, 30, 469–473. [Google Scholar] [CrossRef]
- Kuwornu, P.; Wodchis, W.; Calzavara, A. A Methodological Guide on Using the GETCOST Macro for Costing Studies; ICES Central: Toronto, ON, Canada, 2017. [Google Scholar]
- Wodchis, W.; Bushmeneva, K.; Nikitovic, M.; McKillop, I. Guidelines on Person-Level Costing Using Administrative Databases in Ontario, Health System Performance Research Network. 2013. Available online: https://hspn.ca/wp-content/uploads/2019/09/Guidelines_on_PersonLevel_Costing_May_2013.pdf (accessed on 10 June 2024).
- Seung, S.J.; Hurry, M.; Hassan, S.; Walton, R.N.; Evans, W.K. Cost-of-Illness Study for Non-Small-Cell Lung Cancer Using Real-World Data. Curr. Oncol. 2019, 26, 102–107. [Google Scholar] [CrossRef]
- Mbuya Bienge, C.; Pashayan, N.; Brooks, J.; Dorval, M.; Chiquette, J.; Eloy, L.; Turgeon, A.; Lambert-Côté, L.; Paquette, J.-S.; Lévesque, E.; et al. Women’s views on Multifactorial Breast Cancer Risk Assessment and risk-stratified screening: A population-based survey from four provinces in Canada. J. Pers. Med. 2021, 11, 95. [Google Scholar] [CrossRef]
- Seely, J.M.; Ellison, L.F.; Billette, J.-M.; Zhang, S.X.; Wilkinson, A.N. Incidence of breast cancer in younger women: A Canadian trend analysis. Can. Assoc. Radiol. J. 2024; online first. [Google Scholar]
- van den Broek, J.J.; Schechter, C.B.; van Ravesteyn, N.T.; Janssens, A.C.; Wolfson, M.C.; Trentham-Dietz, A.; Simard, J.; Easton, D.F.; Mandelblatt, J.S.; Kraft, P.; et al. Personalizing breast cancer screening based on polygenic risk and family history. J. Natl. Cancer Inst. 2020, 113, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Government of Canada (25 September 2023). Government of Canada. Breast Cancer—Canada.ca. Available online: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/breast-cancer.html (accessed on 9 August 2024).
- Wilkinson, A.N.; Seely, J.M.; Rushton, M.; Williams, P.; Cordeiro, E.; Allard-Coutu, A.; Look Hong, N.J.; Moideen, N.; Robinson, J.; Renaud, J.; et al. Capturing the true cost of breast cancer treatment: Molecular subtype and stage-specific per-case activity-based costing. Curr. Oncol. 2023, 30, 7860–7873. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Legood, R.; dos-Santos-Silva, I.; Gaiha, S.M.; Sadique, Z. Global treatment costs of breast cancer by stage: A systematic review. PLoS ONE 2018, 13, e0207993. [Google Scholar] [CrossRef] [PubMed]
- Yedjou, C.G.; Sims, J.N.; Miele, L.; Noubissi, F.; Lowe, L.; Fonseca, D.D.; Alo, R.A.; Payton, M.; Tchounwou, P.B. Health and racial disparity in breast cancer. Adv. Exp. Med. Biol. 2019, 1152, 31–49. [Google Scholar] [PubMed]
- Seely, J.M.; Scaranelo, A.M.; Yong-Hing, C.; Appavoo, S.; Flegg, C.; Kulkarni, S.; Kornecki, A.; Wadden, N.; Loisel, Y.; Schofield, S.; et al. COVID-19: Safe guidelines for breast imaging during the pandemic. Can. Assoc. Radio. J. 2020, 71, 459–469. [Google Scholar] [CrossRef]
- Fu, R.; Tinmouth, J.; Li, Q.; Dare, A.; Hallet, J.; Coburn, N.; Lapointe-Shaw, L.; Look Hong, N.J.; Karam, I.; Rabeneck, L.; et al. COVID-19 pandemic impact on the potential exacerbation of screening mammography disparities: A population-based study in Ontario, Canada. Prev. Med. Rep. 2024, 37, 102578. [Google Scholar] [CrossRef]
- Yong, J.H.; Mainprize, J.G.; Yaffe, M.J.; Ruan, Y.; Poirier, A.E.; Coldman, A.; Nadeau, C.; Iragorri, N.; Hilsden, R.J.; Brenner, D.R. The im-pact of episodic screening interruption: COVID-19 and population-based cancer screening in Canada. J. Med. Screen. 2020, 28, 100–107. [Google Scholar] [CrossRef]
- Walker, M.J.; Wang, J.; Mazuryk, J.; Skinner, S.-M.; Meggetto, O.; Ashu, E.; Habbous, S.; Nazeri Rad, N.; Espino-Hernández, G.; Wood, R.; et al. Delivery of cancer care in Ontario, Canada, during the first year of the COVID-19 pandemic. JAMA Netw. Open 2022, 5, e228855. [Google Scholar] [CrossRef]
Characteristic | Total N = 1997 | Average Risk N = 1664 | Higher than Average Risk N = 288 | High Risk N = 45 | p-Value |
---|---|---|---|---|---|
Age at study initiation | |||||
Mean (SD) | 60.2 (5.0) | 60.6 (5.0) | 58.4 (4.6) | 56.9 (3.7) | <0.0001 |
Median (Q1–Q3) | 60 (56–64) | 61 (57–65) | 58 (55–62) | 57 (54–59) | <0.0001 |
Min–max | 50–70 | 50–70 | 50–68 | 50–65 | |
Age group | |||||
50–60 years | 893 (44.7%) | 695 (41.8%) | 164 (56.9%) | 34 (75.6%) | <0.0001 |
60–70 | 1104 (55.3%) | 969 (58.2%) | 124 (43.1%) | 11 (24.4%) | |
Ethnic origin | |||||
White | 1714 (86.7%) | 1451 (88.1%) | 234 (82.1%) | 29 (64.4%) | |
East Asian | 90 (4.6%) | 62 (3.8%) | 22 (7.7%) | 6 (13.3%) | |
Mixed | 31 (1.6%) | 21 (1.3%) | * 5–9 | * 1–5 | |
Black | 30 (1.5%) | 19 (1.2%) | * 3–7 | * 4–8 | |
Southeast Asian | 29 (1.5%) | 22 (1.3%) | * 2–6 | * 1–5 | |
Latin American | 26 (1.3%) | 20 (1.2%) | * 3–7 | * 1–5 | |
Indigenous | 24 (1.2%) | * 19–23 | * 1–5 | 0 (0.0%) | |
South Asian | 22 (1.1%) | * 17–21 | * 1–5 | 0 (0.0%) | |
West Asian | * 6–10 | * 4–8 | * 1–5 | * 1–5 | |
Arab | * 1–5 | * 1–5 | 0 (0.0%) | 0 (0.0%) | <0.0001 |
Breast Density (BI-RADS) | |||||
Almost entirely fatty (A)/scattered fibroglandular (B), heterogeneously dense (C) | 1790 (89.6%) | 1556 (93.5%) | 213 (74.0%) | 21 (46.7%) | <0.0001 |
Extremely dense (D) | 207 (10.4%) | 108 (6.5%) | 75 (26.0%) | 24 (53.3%) | |
Family history of any breast, ovarian, prostate or pancreatic cancer | |||||
No family history | 893 (44.7%) | 793 (47.7%) | 90 (31.3%) | 10 (22.2%) | |
First-degree relative with cancer | 385 (19.3%) | 307 (18.4%) | 70 (24.3%) | 8 (17.8%) | <0.0001 |
Second-degree relative with cancer | 480 (24.0%) | 395 (23.7%) | 70 (24.3%) | 15 (33.3%) | |
Both first and second-degree relatives with cancer | 239 (12.0%) | 169 (10.2%) | 58 (20.1%) | 12 (26.7%) | |
Rural/Small Town | |||||
No | 1867 (93.6%) | 1552 (93.4%) | * 271–275 | * 40–44 | 0.6839 |
Yes | 128 (6.4%) | 110 (6.6%) | * 13–17 | * 1–5 | |
Neighborhood income quintile | |||||
1 | 202 (10.1%) | 167 (10.0%) | 27 (9.4%) | 8 (17.8%) | 0.3522 |
2 | 338 (16.9%) | 290 (17.4%) | 42 (14.6%) | 6 (13.3%) | |
3 | 368 (18.4%) | 311 (18.7%) | 50 (17.4%) | 7 (15.6%) | |
4 | 386 (19.3%) | 323 (19.4%) | 52 (18.1%) | 11 (24.4%) | |
5 | 701 (35.1%) | 571 (34.4%) | 117 (40.6%) | 13 (28.9%) | |
Employment status | |||||
Working | 1091 (55.0%) | 894 (54.0%) | 166 (58.5%) | 31 (68.9%) | 0.0124 |
Retired | 732 (36.9%) | 634 (38.3%) | 90 (31.7%) | 8 (17.8%) | |
Not Working/Other | 162 (8.2%) | 128 (7.7%) | 28 (9.9%) | 6 (13.3%) | |
Education status | |||||
Bachelor’s degree or higher | 1031 (52.4%) | 833 (50.9%) | 162 (56.4%) | 36 (83.7%) | |
College/Technical school | 645 (32.8%) | 547 (33.4%) | * 92–96 | * 2–6 | |
High school or less | 292 (14.8%) | 258 (15.8%) | * 29–33 | * 1–5 | 0.0002 |
Charlson Comorbidity Group (2 years prior) | |||||
No hospitalization | 985 (49.3%) | 808 (48.6%) | 149 (51.7%) | 28 (62.2%) | 0.2362 |
0 score | 914 (45.8%) | 767 (46.1%) | * 131–135 | * 12–16 | |
1 | 65 (3.3%) | * 60–64 | * 2–6 | * 1–5 | |
2 | 24 (1.2%) | * 19–23 | * 1–5 | * 1–5 | |
3+ | 9 (0.5%) | * 4–8 | * 1–5 | 0 (0.0%) | |
Follow-up from start to end of study period in months | |||||
Mean (SD) | 22.3 (6.7) | 22.1 (6.8) | 22.9 (6.3) | 24.0 (7.0) | 0.0443 |
Median (Q1–Q3) | 21 (18–26) | 21 (18–26) | 22 (19–27) | 22 (19–28) | 0.0159 |
Reason to end of follow-up | |||||
End of study | 1974–1978 | 1645 (98.9%) | * 283–287 | * 40–44 | |
New breast cancer | 18 | * 14–18 | * 1–5 | * 1–5 | |
Death | * 1–5 | * 1–5 | 0 (0.0%) | 0 (0.0%) | 0.769 |
Risk Assessment and Breast Cancer Screening Events and Measures | Total N = 1997 | Average Risk N = 1664 | Higher than Average Risk N = 288 | High Risk N = 45 | p-Value |
---|---|---|---|---|---|
Risk assessment events | |||||
Number of PRS test and risk assessment events | |||||
Mean (SD) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) |
Median (Q1–Q3) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | NA |
Min–max | 1–1 | 1–1 | 1–1 | 1–1 | |
No. of participants who used the resource (%) | 1997 (100%) | 1664 (100%) | 288 (100%) | 45 (100%) | |
Number of genetic counseling events | |||||
Mean (SD) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) | NA |
Median (Q1-Q3) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | NA |
Min–max | 1–1 | 1–1 | 1–1 | 1–1 | |
No. of participants who used the resource (%) | 211 (11%) | 117 (7%) | 49 (17%) | 45 (100%) | |
Breast cancer screening events | |||||
Number of screening mammogram events | |||||
Mean (SD) | 1.18 (0.42) | 1.15 (0.38) | 1.32 (0.52) | 1.40 (0.54) | <0.0001 |
Median (Q1–Q3) | 1 (1–1) | 1 (1–1) | 1 (1–2) | 1 (1–2) | <0.0001 |
Min–max | 1–3 | 1–3 | 1–3 | 1–3 | |
No. of participants who used the resource (%) | 1801 (90%) | 1481 (89%) | 275 (95%) | 45 (100%) | |
Number of diagnostic mammogram events | |||||
Mean (SD) | 1.61 (0.89) | 1.58 (0.81) | 1.82 (1.22) | 1.43 (1.13) | 0.3495 |
Median (Q1–Q3) | 1 (1–2) | 1 (1–2) | 1 (1–2) | 1 (1–1) | 0.3943 |
Min–max | 1–6 | 1–5 | 1–6 | 1–4 | |
No. of participants who used the resource (%) | 203 (10%) | 168 (10%) | 28 (10%) | 7 (16%) | |
Number of breast MRI/ultrasound events | |||||
Mean (SD) | 1.41 (0.78) | 1.40 (0.80) | 1.43 (0.79) | 1.44 (0.73) | 0.9676 |
Median (Q1–Q3) | 1 (1–2) | 1 (1–2) | 1 (1–2) | 1 (1–2) | 0.8701 |
Min–max | 1–5 | 1–5 | 1–4 | 1–3 | |
No. of participants who used the resource (%) | 147 (7%) | 108 (6%) | 23 (8%) | 16 (36%) | |
Number of diagnostic test (diagnostic mammogram, MRI, ultrasound, biopsy, genetics test) | |||||
Mean (SD) | 2.29 (1.74) | 2.32 (1.78) | 2.29 (1.69) | 2.00 (1.50) | 0.7547 |
Median (Q1–Q3) | 2 (1–3) | 2 (1–3) | 2 (1–3) | 1 (1–3) | 0.5999 |
Min–max | 1–11 | 1–11 | 1–8 | 1–6 | |
No. of participants who used the resource (%) | 265 (13%) | 205 (12%) | 42 (15%) | 18 (40%) |
Breast Cancer Screening Event and Measures | Total N = 1997 | Average Risk N = 1664 | Higher than Average Risk N = 288 | High Risk N = 45 | p-Value | |
---|---|---|---|---|---|---|
Overall costs * | ||||||
Total cost | 1,074,117 | 866,288 | 167,114 | 40,716 | ||
Mean cost (SD) | 538 (181) | 521 (163) | 580 (192) | 905 (269) | <0.0001 | |
Median cost (Q1–Q3) | 458 (455–575) | 458 (455–559) | 474 (456–686) | 805 (701–1056) | <0.0001 | |
Min–max cost | 339–1742 | 339–1724 | 339–1716 | 701–1742 | ||
No. of participants who used the resource (%) | 1997 (100%) | 1664 (100%) | 288 (100%) | 45 (100%) | ||
Risk assessment cost ** | ||||||
Total cost | 770,368 | 627,123 | 115,711 | 27,534 | ||
Mean cost (SD) | 386 (77) | 377 (64) | 402 (93) | 612 (15) | <0.0001 | |
Median cost (Q1–Q3) | 355 (355–370) | 355 (355–370) | 355 (355–370) | 600 (600–627) | <0.0001 | |
Min–max cost | 339–641 | 339–641 | 339–641 | 600–641 | ||
No. of participants who used the resource (%) | 1997 (100%) | 1664 (100%) | 288 (100%) | 45 (100%) | ||
Total screening cost *** | ||||||
Total cost | 216,813 | 173,341 | 37,058 | 6414 | ||
Mean cost (SD) | 120 (43) | 117 (40) | 135 (54) | 143 (55) | <0.0001 | |
Median cost (Q1–Q3) | 102 (101–104) | 102 (101–104) | 104 (101–205) | 104 (101–204) | <0.0001 | |
Min–max cost | 94–336 | 94–336 | 101–312 | 101–311 | ||
No. of participants who used the resource (%) | 1801 (90%) | 1481 (89%) | 275 (95%) | 45 (100%) | ||
Total diagnostic cost **** | ||||||
Total cost | 86,936 | 65,824 | 14,345 | 6768 | ||
Mean cost (SD) | 328 (191) | 321 (187) | 342 (203) | 376 (212) | 0.4493 | |
Median cost (Q1–Q3) | 253 (223–366) | 253 (228–346) | 261 (217–416) | 306 (238–412) | 0.3432 | |
Min–max cost | 86–1267 | 86–1267 | 133–1033 | 161–898 | ||
No. of participants who used the resource (%) | 265 (13%) | 205 (12%) | 42 (15%) | 18 (40%) | ||
Screening mammogram cost | ||||||
Total cost | 134,138 | 107,264 | 22,907 | 3968 | ||
Mean cost (SD) | 74 (27) | 72 (25) | 83 (33) | 88 (34) | <0.0001 | |
Median cost (Q1–Q3) | 63 (62–64) | 63 (62–64) | 64 (62–127) | 64 (62–127) | 0.0005 | |
Min–max cost | 43–200 | 43–200 | 62–195 | 62–194 | ||
No. of participants who used the resource (%) | 1801 (90%) | 1481 (89%) | 275 (95%) | 45 (100%) | ||
Non-OBSP overhead screening cost | ||||||
Total cost | 1485 | 512 | 359 | 615 | ||
Mean cost (SD) | 59 (19) | 57 (17) | 60 (21) | 61 (22) | 0.883 | |
Median cost (Q1–Q3) | 51 (51–51) | 51 (51–51) | 51 (51–51) | 51 (51–51) | 0.8738 | |
Min–max cost | 51–102 | 51–102 | 51–102 | 51–102 | ||
No. of participants who used the resource (%) | 25 (1%) | 9 (1%) | 6 (2%) | 10 (22%) | ||
Diagnostic mammogram cost | ||||||
Total cost | 22,904 | 18,571 | 3566 | 768 | ||
Mean cost (SD) | 113 (72) | 111 (67) | 127 (93) | 110 (87) | 0.5142 | |
Median cost (Q1–Q3) | 97 (65–136) | 99 (65–126) | 94 (65–173) | 87 (65–106) | 0.8862 | |
Min–max cost | 11–440 | 11–440 | 43–388 | 43–301 | ||
No. of participants who used the resource (%) | 203 (10%) | 168 (10%) | 28 (10%) | 7 (16%) | ||
Overhead diagnostic cost | ||||||
Total cost | 15,776 | 11,934 | 2663 | 1178 | ||
Mean cost (SD) | 60 (23) | 58 (20) | 63 (30) | 65 (29) | 0.2096 | |
Median cost (Q1–Q3) | 51 (51–51) | 51 (51–51) | 51 (51–51) | 51 (51–51) | 0.3183 | |
Min–max cost | 51–154 | 51–154 | 51–154 | 51–154 | ||
No. of participants who used the resource (%) | 265 (13%) | 205 (12%) | 42 (15%) | 18 (40%) | ||
Breast MRI/ultrasound cost | ||||||
Total cost | 11,768 | 7171 | 1645 | 2951 | ||
Mean cost (SD) | 80 (82) | 66 (72) | 72 (66) | 184 (99) | <0.0001 | |
Median cost (Q1–Q3) | 37 (36–74) | 37 (36–72) | 37 (36–71) | 187 (129–205) | <0.0001 | |
Min–max cost | 35–478 | 35–478 | 35–304 | 36–453 | ||
No. of participants who used the resource (%) | 147 (7%) | 108 (6%) | 23 (8%) | 16 (36%) | ||
Breast biopsy cost | ||||||
Total cost | 9111 | 7188 | 1290 | 632 | ||
Mean cost (SD) | 228 (151) | 218 (138) | 215 (153) | * NA | 0.021 | |
Median cost (Q1–Q3) | 170 (86–311) | 169 (88–300) | 180 (82–291) | * NA | 0.2642 | |
Min–max cost | 81–657 | 82–657 | 81–476 | 632–632 | ||
No. of participants who used the resource (%) | 40 (2%) | 33 (2%) | * 2–6 | * 1–5 | ||
Genetic cost | ||||||
Total cost | 1078 | 660 | 380 | 38 | ||
Mean cost (SD) | 98 (57) | 94 (50) | * NA | * NA | 0.4335 | |
Median cost (Q1–Q3) | 74 (39–155) | 74 (39–151) | * NA | * NA | 0.1982 | |
Min–max cost | 38–171 | 39–155 | 39–171 | 38–38 | ||
No. of participants who used the resource (%) | 11 (1%) | 7 (0%) | * 1–5 | * 1–5 | ||
OBSP administrative cost | ||||||
Total cost | 36,494 | 29,469 | 6202 | 823 | ||
Mean cost (SD) | 20 (7) | 20 (7) | 23 (9) | 22 (9) | <0.0001 | |
Median cost (Q1–Q3) | 18 (18–18) | 18 (18–18) | 18 (18–35) | 18 (18–18) | <0.0001 | |
Min–max cost | 18–53 | 18–53 | 18–53 | 18–53 | ||
No. of participants who used the resource (%) | 1785 (89%) | 1475 (89%) | 272 (94%) | 38 (84%) | ||
OBSP screening facility cost | ||||||
Total cost | 44,695 | 36,096 | 7591 | 1008 | ||
Mean cost (SD) | 25 (9) | 24 (8) | 28 (11) | 27 (11) | <0.0001 | |
Median cost (Q1–Q3) | 22 (22–22) | 22 (22–22) | 22 (22–43) | 22 (22–22) | <0.0001 | |
Min–max cost | 16–65 | 16–65 | 16–65 | 16–65 | ||
No. of participants who used the resource (%) | 1785 (89%) | 1475 (89%) | 272 (94%) | 38 (84%) | ||
OBSP diagnostic follow-up cost | ||||||
Total cost | 26,300 | 20,300 | 4800 | 1200 | ||
Mean cost (SD) | 116 (45) | 115 (41) | 123 (54) | 120 (63) | 0.5524 | |
Median cost (Q1–Q3) | 100 (100–100) | 100 (100–100) | 100 (100–100) | 100 (100–100) | 0.622 | |
Min–max cost | 100–300 | 100–300 | 100–300 | 100–300 | ||
No. of participants who used the resource (%) | 226 (11%) | 177 (11%) | 39 (14%) | 10 (22%) |
Overall Healthcare Costs | Total N = 1997 | Average Risk N = 1664 | Higher than Average Risk N = 288 | High Risk N = 45 | p-Value |
---|---|---|---|---|---|
Total cost | 12,285,985 | 10,500,857 | 1,552,519 | 232,609 | |
Mean cost (SD) | 6152 (18,243) | 6311 (19,641) | 5391 (8325) | 5169 (7676) | 0.6848 |
Median cost (Q1–Q3) | 2890 (1555–5523) | 2920 (1560–5584) | 2598 (1437–5436) | 3138 (2200–4740) | 0.4852 |
Min–max cost | 355–604,893 | 355–604,893 | 568–72,552 | 1327–49,762 | |
No. of participants who used the resource (%) | 1997 (100%) | 1664 (100%) | 288 (100%) | 45 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seung, S.-J.; Mittmann, N.; Ante, Z.; Liu, N.; Blackmore, K.M.; Richard, E.S.; Wong, A.; Walker, M.J.; Earle, C.C.; Simard, J.; et al. Evaluating Real World Health System Resource Utilization and Costs for a Risk-Based Breast Cancer Screening Approach in the Canadian PERSPECTIVE Integration and Implementation Project. Cancers 2024, 16, 3189. https://doi.org/10.3390/cancers16183189
Seung S-J, Mittmann N, Ante Z, Liu N, Blackmore KM, Richard ES, Wong A, Walker MJ, Earle CC, Simard J, et al. Evaluating Real World Health System Resource Utilization and Costs for a Risk-Based Breast Cancer Screening Approach in the Canadian PERSPECTIVE Integration and Implementation Project. Cancers. 2024; 16(18):3189. https://doi.org/10.3390/cancers16183189
Chicago/Turabian StyleSeung, Soo-Jin, Nicole Mittmann, Zharmaine Ante, Ning Liu, Kristina M. Blackmore, Emilie S. Richard, Anisia Wong, Meghan J. Walker, Craig C. Earle, Jacques Simard, and et al. 2024. "Evaluating Real World Health System Resource Utilization and Costs for a Risk-Based Breast Cancer Screening Approach in the Canadian PERSPECTIVE Integration and Implementation Project" Cancers 16, no. 18: 3189. https://doi.org/10.3390/cancers16183189
APA StyleSeung, S. -J., Mittmann, N., Ante, Z., Liu, N., Blackmore, K. M., Richard, E. S., Wong, A., Walker, M. J., Earle, C. C., Simard, J., & Chiarelli, A. M. (2024). Evaluating Real World Health System Resource Utilization and Costs for a Risk-Based Breast Cancer Screening Approach in the Canadian PERSPECTIVE Integration and Implementation Project. Cancers, 16(18), 3189. https://doi.org/10.3390/cancers16183189