Supplementary Figures

The putative polyadenylation signal of human BORG RNA

Genomic DNA hg38 chr8:103095055-103095458 strand=+ repeatMasking=none

ATGATAGATATAATTATATGAAAAAGTTTGAAATATTGTGAGAATTACCA
AAATGTGACACAGAGACGTGAAGTAAGCACGTGCTGTTGGAAAATGGACT
T/GATCAATGCAGGGTTTTCACACACCCCCAATTTATTAAAATCACAATAT
TTGCACAGCACAATAAAATGAAGTACAATAAAATGGGGTATGTTTATACA
TAAGAGATCAAATTAATAACTTCCAACTGCAACAGCCATAGGCCACCAAT
GATGTTGAAGTTATTAACATATAGAGTGTAAGGAATTGAACTTTGATTCT
TACATAATTCCTGCAACAGACCTAATGGTAATGAACTGGGGGAAATCCAG
CAAGCCCTGTTCAGATTCATTTCTGTGTCCCCTTGTCTTCAGGGATGAGA
ACGT

hg38 chr 8: 103,095,186: the putative polyadenylation signal AAUAAA sequence (here read
as TTTATT in antisense, highlighted in yellow)

hg38 chr 8: 103,095,156: the putative cleavage site (highlighted in purple, C/A, here in
antisense read as T/G, 30 nts downstream of the putative polyA signal).

Fig. S1. BORG is transcribed in the antisense standard genomic direction. Position of the canonical
poly(A) signal (AAUAAA hexamer, here in antisense direction, highlighted in yellow) at the 3’ end of
BORG is shown. The putative cleavage site (highlighted in purple) which is located 30 nucleotides
downstream of the AAUAAA hexamer is also marked. The genomic coordinates of the poly(A) signal
hexamer and the cleavage site is listed at the bottom of the figure.



hg38 chr8: 103,109,058-103,109,425
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AGCAGGAGCGATGGGTCACATGACAAAGAGAGAAGCAGGTTTTCTCTCCACATCTGATAA
AGCAGGAGCGATGGGTCACATGACAAAGAGAGAAGCAGGTTTTCTCTCCACATCTGATAA
AGCAGGATCGATAGGTCACATGACAAAGAGAGAAGCAGGTATTCTCTCCACATCTGATAA
------------------------------------- GGTTTTCTCTCTACATTAAATAA
————————— GATGGCTCAGGTGACCTAGAGAGAAGCGGCTTTTCTCTCTACCTGAAGTCA

AGCGGGAACCAGGGCTCCTATGACAGAAA-AGAAGCAGGC-TTCTCTCTGCAATTCATAA
AGCAGGAACCAGAGCTCTTCTGACAGAAA-AGAAACAGGC-TTCTCTCTGCGTTTCATAG

ACACTGACAAGAGTTAGGTGATTTTCCTACACACAGCACTATCTTGTTCTGAGAAAGGAT
ACACTGACAAGAGTTAGGTGATTTTCCTACACACAGCACTATCTTGTTCTGAGAAAGGAT
ACACCGACAAGAGTTAGGTGATTCTCCTACACATGGCACTATCTTGTTCTGAGAAAGGAT
ACACTAACAAGAGTTAGGTGATCCCCCT-CACCCTACACTTCCTTGTTCAGAGAAAGGAT
ATGCTGACAAGAGTTGGGTGATCTTCCTACACCCACCGCTGTCTGGTTCAGAGGAAGGGT
------------------------------------------- TTGTTCTGAGGAAGGAT
ACACCGACAGGAATATGTTGCTTTTCCTAAGCCCTTCGCTGTCTTTCCAAGAAGAATTTT
ACACTGACAAGAGTCGGATGCTTTTCCTAGGCCCTGCGCTGCCTTTCCAAGAAGAATCTT

TTG--CCTTAACCAAATACGGGGCCTGACAGCTTTTTCTCTCAAATGAATCAGTGGGGAG
TTG--CCTTAACCAAATACGGGGCCTGACAGCTTTTTCTCTCAAATGAATCAGTGGGGAG
TTG--CCTCAACCAAATACAGGGCCTGACAGCTTTT -CTCTCAAATGAATCAGTGGGGAG
CTG--ACTTCACCAGACATAAAACCTGACAGGTATTTCTCGCGAATGAATCAGTGGGGAG
TTG--ACTTTACCAAATAGAAAACCTGACAGGTAGGCCTCCCCAGTGAATCAATGGGGTG
——————————————————————————————————— TTCTCCCAAATGAGTCAGTGGGGAG
CTG--ACTCAACCA-ATACAGAACCTGACA- -TATCTCTCTCAAATGAATCAGTGGGGAG
TTTGTCCTTAACCAAATGTGAAAT - - -GCACATTTTGAGCACAAA-GAATCAAAGCTCCA

TTCATCTTTAACCAAATAGGAA- - - - - - CTGCTGGTGCGCATAAATGAATGAATGCTTCA
* * **x * % *
GAGCTGAAGTGACTTTTTGTTTTG- - -AAAGAAATGCAATATTTAAAGAGAGA------ G
GAGCTGAAGTGACTTTTTGTTTTG- - -AAAGAAATGCAATATTTAAAGAGAGA------ G
GAGCTGAAGTGACTTTTTGTTTTG- - -AAAGACATGAAATATTTAAAGAGAGA- - - - - - G
GACCTGAAGCGACTTAGTTTTTTATCTAAAGAAATGTAATATTTAAAGAAAGA- - - - - - G
GAGCTGAAGTGACTTTTTTTTAAATTTAAAGAAATGTAATATTTAAAGA---------- G
GAGCTGAAATGGCAGTTGTTTAAGA - -AAAGGAGTGTAATATTTAAAGAGAGT - - - - - - T
GAGCTCAAATGACATTTGGGGGGGG - -AAAGAAATGTAATATTTAAAGAGA- - - - - - - - G
ACAGCAAACTGACATGACATCCTTTA-CAGGAAGTAAAATATTTAAAGACAGAGTCAGAG
ACAGCAGGCTGATGCGACATCCTTTA AAGGAAGAGAAATATTTAAAGACAGA —————— G

kkkkhkkhkkhkkkhkk*k

GTTTCTATTTTTCCCC-CA-GGAGAAGGGAGCCCTTAATATTCCCATCAACGATGACACA
GTTTCTATTTTTCCCC-CA-GGAGAAGGGAGCCCTTAATATTCCCATCAACGATGACACA
TTTTCTATTTTTCCCC-TA-GGAGAAGGGAGCCCTTAATATTCCCATCAACGATGACACG
TTCGCTATCCCCCCTC-TTTGGGGAAGGGAGCCCTTAATTTTCCCATCAACTCTGACACA
TTTTCTATTCCCCCTC-CTTGGGGAAGAGAGCCCTTAATTTTCCCATCAACTCTGACATG
TTCTGCTTCCCCCTCG-CTTGGGGAAAGGAGCCCTTAATATTCCCATCAACCGTGACACG
TTCTCAGTCCCCCCTCGCTTGGGGAAGGGAGCCCTTAATCTTCCCATCAAC---------
TCTTCTATTCCCCTCC-CCCCAGGAAGAAACCCTTTAATATTCCCATTAACCTTGA- - - -
TCTTCTATTTTCCCCC---TGAGGAAGAAACCCTGTAATATTCCTATTAACCTTGACATG

* % % * k% kkhkkk *kkkk *k *k*k



human TGTGAATCACAGCCCTTTCTT-TCCTATAAAAGCA----- TCATGATTCAACACAAAGCC

chimp TGTGAATCACAGCCCTTTCTT-TCCTATAAAAGCA----- TCATGATTCAACACAAAGCC
macaca TATGAATCACAGCCCTTTCTT-TCCTATAAAAGCA- - - - - TCATGATTCATTACAAAGCC
cow TGTGAATCACAGCACTTTCAG-TCCTATAAAAGCC- - - - - TCATGATTCATCAACAACCC
pig TGTGAATCACAGCCCTTCTGT-TCCTATAAAAGCA- - --- TCATGATTCATCAGCAGCCT
cat TGTGAATCACACCCCTTTCGC-TCTTACAGAAGCG- - - - - GCATGATTCATCGCGAACCC
(o oo I e T T
mouse TGTGAATCACAGCGCTCCTTC-TTCCCTGTAGGCAGATAATCATGACTCACCACAGACCC
rat TGTGAATCACTGAGCTCTTTCATCCCCTGTAGGTAGATTATCATGACTCACCACAGACCC
human CGCC----AGCTGTGGGCTGCATGTGATTCT- - - -
chimp CGCC----AGCTGTGGGCTGCATGTGATTCT- - - -
macaca CGCC----AGCTGTGGGCTGCATGTGATTCT- - - -
cow TTCT----AGCTGTGGGCTGC--------------
pig TGCC- - - -AGCTGTGGGCTGCA-------------
cat TGCCCGCCAGCTGTGGGTTGCGTGTTATTCT- - - -
(oo Ts I e T
mouse CT------ GACTGTGGGCTTCATGTAATTCTGGCA
rat AC------ GACTGTGGGCTTCATGTAACCCT- - - -

Fig. S2. Alignment of the phylogenetically conserved region of BORG located close to the 3’ end of
the main BORG transcript isoform in the mouse among nine mammalian species. This region is shown
in Fig. 1A as the rightmost red line above the BORG gene model.
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Fig. S3. Validation of the HER2+, luminal and triple negative phenotype in the breast cancer tumors
analyzed in Fig. 1B. RNA-level expression of HER2 (ERBB2), ER (ESR1) and basal and luminal-
specific cytokeratins are shown. Number of tumors in each category is shown to the right.
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Fig. S4. The TCGA BRCA dataset samples used in this study, after the filtering steps described in
Methods. A. Number of tumors in each PAM50 histological subtype after filtering. B. UMAP
representation of the TCGA BRCA cohort samples used in this study. PAM50 subtypes closely follow
the pattern of unbiased leiden clustering, indicating distinct transcriptional patterns among BC
subtypes. Tumors removed during the filtering process are shown in gray. C. Expression pattern of ER,
PR and HER? at protein level based on the annotations provided by TCGA. D. TNBC tumors are
segregated in a separated cluster compared to Luminal A, B and HER2+ tumors. E. Depth of
sequencing in TCGA BRCA tumors used in this study.
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Fig. S5: Comparison of tumors with higher versus lower expression of BORG regardless of subtype. A.
Number of tumors in the high and low BORG-expressing tumors in each PAM50 subtype of breast
cancer tumors. All basal tumors included in this study are also triple negative and vice versa (see
Methods). B. Several key cancer-related genes (asterisks) are among the top 25 genes upregulated in
BORG"#" cells across all BC subtypes.
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Genes involved in cancer aggression

Fig. S6: Key cancer-related genes and pathways are differentially enriched in BORG™®" versus
BORG"*" tumors across all breast cancer subtypes. A and B: enrichment plots for the most positively-
and negatively-enriched pathways in BORG™®" tumors across all breast cancer subtypes. Vertical dark
blue bars mark the position of genes differentially expressed in high versus low BORG tumors that are
part of the indicated pathways. The color bar below the vertical bars identifies upregulated genes
(shades of red) and downregulated genes (shades of blue), with the genes sorted based on differential
expression value from left (most upregulated genes) to right (most downregulated genes). Genes
marked by red are upregulated in BORG"®" tumors compared to their BORG"*" counterparts. C.



Expression of genes known to be involved in induction of aggressive tumor behavior is increased in
BORG"®" tumors. The expression pattern of all breast cancer aggression-related genes is shown
including those that show mild or no changes. The genes in this list were selected from genes reported
in the literature to be involved in breast cancer invasiveness. Asterisks mark genes known to be
associated with basal or breast cancer stem cell phenotype.
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Fig. S7. BORG"®" tumors upregulate multiple cytokines and cell surface proteins compared to
BORG"" tumors across all BC subtypes. A. Changes in the expression pattern of multiple cytokines
and chemokines from the interferon (IFN), interleukin (IL), and tumor necrosis factor (TNF) families
are shown in high and low BORG tumors. B. BORG"®" tumors upregulate the expression of several
cell surface proteins at mRINA level, including key breast cancer aggression factors (asterisks)
compared to BORG"*" tumors.
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Fig. S8: The transcriptomic signature observed in BORG™#" tumors across all breast cancer subtypes
persists after the removal of the basal TNBC subset of tumors. A. Differential expression pattern of
genes in BORG™®" versus BORG™" tumors were compared in all breast cancers irrespective of
subtypes (y axis) or after eliminating basal, TNBC tumors from the comparison group (x axis). Each
circle represents a single gene, with the size and hue of the circle determined by the FDR and the
absolute value of z-score (labeled as “score” in the figure) values, respectively. The calculated Pearson
correlation coefficient indicates that the two comparisons yield very similar gene expression patterns,
thereby identifying a BORG-specific transcriptomic signature for high BORG expression independent
of breast cancer subtype. B. Pathway analysis on genes differentially expressed in BORG™" versus
BORG"™" non-basal, non-TNBC tumors is largely similar to the pattern observed when all breast tumor
subtypes including basal TNBCs are used (Fig. 2A). C. Despite significant similarities, the number of
genes involved in breast cancer aggression that are differentially expressed in high versus low BORG
tumors is much smaller after removal of the basal TNBC tumors from the analysis.
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Fig. S9: High levels of BORG in TNBC tumors are associated with increased tumor invasiveness and
pluripotency. A. Top differentially expressed genes in BORG"#" versus BORG"*" tumors in the basal
TNBCs. Key genes involved in pluripotency and induction of neoplastic process are marked with
asterisks. B. Increased expression of multiple cancer invasiveness genes in BORG"" tumors. C.
Several cell surface proteins are upregulated at mRNA level in BORG"®" basal TNBC tumors,
including those involved in key neoplastic processes (marked by asterisks). D. Enrichment analysis
using the entire set of gene lists from the largest gene list database (C2) of mSigDB, which indicated
that the positive enrichment of multiple breast cancer-related pathways and signatures (asterisks),
including the multi-cancer invasiveness signature gene list. For the enrichment pattern of the subset of



gene lists related to cancer, please see Fig. 4B. E. Enrichment plot for the multi-cancer invasiveness
signature gene list. Vertical black bars mark the position of genes differentially expressed in high
versus low BORG basal TNBC tumors that are part of the multi-cancer invasiveness gene list. The
color bar below the vertical bars identifies upregulated genes (shades of red) and downregulated genes
(shades of blue), with the genes sorted based on differential expression value from left (most
upregulated genes) to right (most downregulated genes). Genes marked by red are upregulated in
BORG"®" basal TNBC tumors compared to BORG™" ones.
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Fig. S10. BORG overexpression results in enrichment of genes specific to basal tumors and breast
cancer progenitor cells. A. Forced mouse Borg overexpression from a transgene in D2OR cells leads to
a strong rise in the cellular level of Borg as measured by RNA-seq. B. Top pathways enriched
following Borg overexpression in D20R cells include those specific to basal breast tumors (Smid
breast cancer basal up) and breast cancer progenitors. Top 39 (out of 77) BORG induced genes that
map to the 6 most enriched pathways are shown. The heatmap to the right shows the level of
differential expression of each gene in three replicate studies. The annotation matrix to the left indicates
the membership of each gene in the pathways named at the bottom. While genes expected to be
upregulated in basal BC tumors and BC progenitors are indeed positively enriched after Borg
overexpression, those expected to be downregulated in basal BC tumors are also negatively enriched.
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Fig. S11. Higher BORG expression levels induce a basal, aggressive phenotype observed in BORG"#"
TNBCs. A. Amongst the genes that are upregulated in both BORG-expressing D2.0OR cells and
BORG"®" basal TNBC tumors, a significant fraction map to the Smid breast cancer basal up pathway.
Vertical black bars mark the position of shared differentially expressed genes that are part of the ‘Smid
breast cancer up’ pathway. The color bar below the vertical bars identifies upregulated genes (shades of
red) and downregulated genes (shades of blue), with the genes sorted based on differential expression
value from left (most upregulated genes) to right (most downregulated genes). Genes marked by red are
the shared upregulated genes, while those in blue are the shared downregulated genes present in both
BORG-expressing D2.0R cells (compared to vector-transfected control D2.0ORs) and in BORG™"
basal TNBC tumors (compared to low BORG ones). B. Validation of the upregulation of the ‘Smid
breast cancer basal up’ pathway in basal TNBC cells compared to the other BC subtypes. Each dot
corresponds to a tumor. The values shown are the enrichment scores for the pathway in each tumor. C.
A similar validation study for the Smid breast cancer basal down gene list, indicating that the genes



included in these pathways are indeed up- (panel B) and down-regulated (panel C) in the basal TNBC
tumors in the TCGA BRCA dataset.



