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Simple Summary: Lung cancer is the most common form of cancer globally, making early detection
essential for improving patient outcomes. In this study, deep learning methods were used to analyze
CT lung images to detect cancer at an early stage. Several pre-trained models were employed, with
InceptionResNetV2 achieving the highest detection accuracy of 98.5%. When cancer was detected,
the extent of the tumor area was determined through segmentation models. The most accurate results
were obtained using the InceptionUNet model, which achieved a Jaccard index of 95.3% in identifying
the tumor area. These findings demonstrate the potential of deep learning for enhancing both the
detection and localization of lung cancer, which may contribute to more effective treatment strategies.

Abstract: Background: Lung cancer is the leading cause of cancer-related deaths worldwide, ranking
first in men and second in women. Due to its aggressive nature, early detection and accurate local-
ization of tumors are crucial for improving patient outcomes. This study aims to apply advanced
deep learning techniques to identify lung cancer in its early stages using CT scan images. Methods:
Pre-trained convolutional neural networks (CNNs), including MobileNetV2, ResNet152V2, Inception-
ResNetV2, Xception, VGG-19, and InceptionV3, were used for lung cancer detection. Once the disease
was identified, the tumor’s region was segmented using models such as UNet, SegNet, and Inceptio-
nUNet. Results: The InceptionResNetV2 model achieved the highest detection accuracy of 98.5%,
while UNet produced the best segmentation results, with a Jaccard index of 95.3%. Conclusions:
The study demonstrates the effectiveness of deep learning models, particularly InceptionResNetV2
and UNet, in both detecting and segmenting lung cancer, showing significant potential for aiding
early diagnosis and treatment. Future work could focus on refining these models and exploring their
application in other medical domains.

Keywords: lung cancer; classification; CNN; deep learning; segmentation; CT images

1. Introduction

Lung cancer is a condition marked by the abnormal and uncontrolled division of lung
cells. This type of cancer can lead to significant physical harm and may be life-threatening.
Due to its widespread occurrence globally, lung cancer has become a significant health
issue threatening human well-being. According to the research conducted in 2022, there
were nearly 2.5 million new patients diagnosed with lung cancer, and more than 1.8 million
people lost their lives to the disease worldwide within the same year [1].

Given that lung cancer spreads rapidly and can quickly affect other organs, early
detection is crucial. Treating advanced lung cancer is both challenging and complex,
making early diagnosis and identification of the tumor area critical for effective treatment.

Cancers 2024, 16, 3321. https://doi.org/10.3390/cancers16193321 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16193321
https://doi.org/10.3390/cancers16193321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-8056-1905
https://orcid.org/0000-0002-3408-0083
https://orcid.org/0000-0002-1011-1105
https://orcid.org/0000-0003-4153-0764
https://doi.org/10.3390/cancers16193321
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16193321?type=check_update&version=1


Cancers 2024, 16, 3321 2 of 18

For instance, a recent case study highlighted that soft tissue metastases from lung cancer
can mimic other conditions, complicating diagnosis [2]. Deep learning algorithms have
the potential to detect serious diseases like lung cancer in their early stages, thereby
contributing to saving human lives. By training neural models on a dataset of lung CT scans,
cancerous cells can be accurately identified with high precision and sensitivity. Additionally,
these models can quickly scan and analyze radiology images, often capturing fine details
that may be overlooked by the human eye. Given the aggressive nature of lung cancer and
the challenges associated with its late-stage treatment, this study underscores the critical
need for early detection to improve patient outcomes and survival rates. The novelty of this
research lies in the development and application of a two-stage deep learning approach
that not only classifies lung CT images with high accuracy but also precisely segments the
tumor region, providing a comprehensive tool for early and accurate diagnosis.

The study involved a two-stage detection process primarily using medical images.
In the first stage, the aim was to detect the disease by classifying it using deep learning
algorithms. In the second stage, segmentation was performed on the images where the
disease was detected in order to determine the region of the tumor, as illustrated in Figure 1.
From the experiment, satisfying results were produced in which the approach proposed
can classify CT images as healthy/sick, then predict tumor region accurately, as given in
the following sections in detail.

Figure 1. Deep-learning-based lung cancer diagnosis.

From the experiment, satisfying results were produced in which the approach pro-
posed can classify CT images as healthy/sick then predict tumor region accurately, as
given in the following sections in detail. The Literature Review section outlines the prior
research related to the applied methodology and comparable studies from the past. The
Methodology section explores the details of the dataset and the methods used, including
the models and experimental steps. The Experimental Results section outlines the findings
of the experiment and explains the criteria used for their evaluation, specifically the met-
rics. The Discussion section then interprets these results and draws certain conclusions.
Finally, the Conclusion provides a summary of the overall study, including the results and
key takeaways.

2. Literature Review

In the recent decades, the use of AI technologies like deep learning, image classification,
and segmentation has notable increased across multiple domains. In healthcare, these
technologies have notably accelerated the diagnostic process and greatly minimized errors
in calculating tumor areas by analyzing multiple images.
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2.1. Model Foundations

For this experiment, certain pre-trained models were chosen to classify lung images
and differentiate between diseased and healthy states: MobileNetV2, ResNet152V2, Xcep-
tion, InceptionResNetV2, VGG-19, and InceptionV3.

MobileNets, developed by Google researchers with a focus on mobile applications,
are engineered to be efficient, compact, and versatile [3,4]. The architecture reduces compu-
tational costs by employing depthwise separable convolution layers [5–7].

ResNets, originally developed by Microsoft researchers, are designed to create deeper
neural network architectures and address the challenges posed by deep layers through
“residual mapping” [8,9]. ResNet152V2, a model that utilizes residual connections, enhances
deep convolutional neural networks (CNNs). Having a depth of 152 layers, ResNet152V2
is highly effective in image recognition and classification tasks [10].

Xception, created by F. Chollet at Google, extends the Inception model framework to
its limits, resulting in a model that surpasses the original Inception models, hence the name
“Extreme Inception” [11]. By using depthwise separable convolutions instead of standard
ones, Xception becomes more efficient and powerful. It enhances CNN performance by
more effectively distinguishing spatial and cross-channel correlations within feature maps,
supporting activities like image categorization and object recognition. [12].

InceptionResNetV2, developed by Christian Szegedy and his team at Google, com-
bines residual connections with the Inception framework, enhancing feature extraction and
overcoming training difficulties associated with very deep networks. This makes Inception-
ResNetV2 a robust and effective architecture for various image recognition tasks [13].

In 2014, VGG—abbreviated form of “Visual Geometry Group”—networks are of a
specific advanced type created at Oxford University. VGG-19 has a reputation of a robust
performance in tasks of computer vision, despite its high depth of 19 layers. VGG-16 or
VGG-19 are preferred popularly in tasks requiring image classification, feature extraction,
and object recognition, leveraging a large number of small 3 × 3 convolutional filters to
learn deep and complex features, leading to high accuracy and performance [14,15].

Inception architectures, developed by Google engineers and researchers, feature incep-
tion blocks—specialized components that use parallel convolutional layers, culminating
in a concatenation layer that merges outputs into a single result. Inception models tackle
the issues posed by extremely deep networks by assessing loss at mid-level layers and
combining these with the overall loss. [16].

Ronneberger and his colleagues proposed the UNet model in 2015, which UNet
is an image segmentation model prepared for biomedical visuals. It delivers detailed
and accurate segmentation, demonstrating high performance even with limited data,
particularly in tasks like cell and organ segmentation [17,18].

The SegNet model, introduced by Vijay Badrinarayanan, Alex Kendall, and Roberto
Cipolla from the University of Cambridge, is also designed for image segmentation. It
features a encoder–decoder structure within a deep CNN that efficiently classifies single
pixels of images. SegNet’s unique upsampling method uses pooling indices from the
encoder to enhance segmentation accuracy, making it particularly effective for precise
segmentation tasks such as medical imaging and autonomous driving [19,20].

These models were chosen for the two-stage experiment, taking into account their
conceptual and structural differences. This approach allows for a comparative analysis
at each stage, enabling an interpretation of how the models’ underlying concepts and
structures influence their performance on the task.

2.2. Related Works

In their work, Punn et al. employed the InceptionUNet architecture to automate nu-
clear detection in microscope cell images. This architecture integrates switch normalization
layers, convolution layers, and pooling layers (max and Hartley spectral pooling) with
1 × 1, 3 × 3, and 5 × 5 convolutions within the UNet scheme. They also used activation
maximization and filter map visualization techniques to analyze the model’s performance.
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InceptionUNet was shown to significantly outperform the original UNet and UNet++
models on the KDSB18 dataset [21–24].

Numerous academic studies have explored this subject. Tekade and Rajeswari devel-
oped a system for detecting lung nodules from tomography images with high accuracy and
predicting malignancy levels using a combination of UNet and a 3D multipath VGG-like
network. This approach has proven effective in predicting lung cancer risk, achieving a
95.66% accuracy rate [25].

In a different study, Sharma and his team introduced a two-step approach to detect
early cancer in lungs, utilizing data-driven segmentation and deep CNNs combined with
the Otsu technique. Their method outperformed the existing algorithms, achieving 84.13%
accuracy on CT images [26].

Likewise, Lakshmanaprabu et al. discerned malign and benign nodules in lungs employing
an “Optimal Deep Neural Network (ODNN)” with the use of “Linear Discriminant Analysis
(LDA)”. Achieving 94.56% accuracy on lung tomography images, their method provides a
quick, straightforward, and cost-effective solution by minimizing manual labeling errors [27].

Jafar and his colleagues designed and used a customized “Weighted Optimized Neu-
ral Network (WONN)” to diagnose images with lung cancer from large datasets. The
researchers designed a combination of their model with “Maximum Likelihood Boosting
(MLB)”, named “WONNN-MLB”. The approach enhances accuracy and lowers false posi-
tive rates. This method facilitates faster and more accurate diagnoses by integrating feature
selection with enhanced neural network classification [28].

To tackle the challenges of detecting various lung tumors, Lu and his co-researchers
proposed a novel “Computer-Aided Diagnosis (CAD)” system. They used 294 lung CT
radiology images from “Lung Image Database Consortium (LIDC)” and divided them
into groups of training and testing, with sizes of 196 and 98, respectively. A total of 631
nodules in lung images were identified by two radiologist medical doctors, with sensitivity
measured at 87% during training and 85.2% during testing. [29].

Manikandan and Bharathi created a “Fuzzy Auto-Seed Cluster Means Morpholog-
ical Algorithm” to detect cancer by segmentation of lung nodules from CT scans. They
determined initial cluster values by averaging pixel values in the rows and removed blood
vessels through center change analysis. Using SVM, they classified real malignant nodules
by calculating texture features in nodules. The study, conducted on cases with 56 of malig-
nant nodules and 745 of benign nodules, achieved 100% sensitivity, 93% specificity, and
94% accuracy. The false positive rate (FPR) for each patient was found to be 0.38 [30].

Wang and colleagues came forward with a novel model called “Center Focused
Convolutional Neural Networks (CF-CNN)” to precisely perform segmentation to find
lung nodules on CT scans, taking a different approach to CNN architectures. CF-CNN
captures features that are sensitive to nodules from both 2D and 3D scans and assesses
neighboring voxel effects through a central pooling layer. Evaluated by processing the
dataset of LIDC with 893 examples of nodules and a separate dataset from “Guangdong
General Hospital (GDGH)” comprising 74 nodules, the model achieved a Dice–Sørensen
coefficient score of 82.15% and 80.02%, respectively. This study emphasized the current
potential of applying deep learning architecture in lung nodule segmentation and aimed to
advance this approach in the future [31].

Teramoto and Fujita, aiming for swift lung tumor detection, proposed a novel method
using a cylindrical nodule boosting filter. This method seeks to improve time efficiency on
nodule detection by minimizing computational time. The proposed method follows the
given steps. First segment lung regions, then preprocess, next augment nodules, follow
with a further segmentation, and finally, reduce false positives. The nodule candidates are
identified using a cylindrical filter, and false positives are reduced with seven characteristic
parameters using support vector machines. Experiments on the LIDC dataset reveal that
the method detects 80% of nodules with minimal false positives and shows at least 4 and at
most 36 times better time efficiency than the current methods. The results suggest that this
method could be beneficial to detect nodules on chest CT scans in clinical settings [32].
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While the aforementioned studies offer valuable insights into lung cancer detection
using deep learning, there remains a need for a combined approach that integrates both
classification and segmentation, which is important for early treatment planning.

3. Methodology

CNNs have emerged as the preferred method for medical image classification tasks in
recent times. In the experiment, pre-trained CNN architectures were utilized to classify
CT images as either patient or healthy. While numerous studies exist in this area, this
research offers a comprehensive approach that not only includes diagnosing the disease
from images but also segments the tumor region if the disease is detected. Moreover, the
results obtained were highly satisfactory.

The experimental studies were conducted using data from a public Kaggle dataset [33].
A total of 3296 images were selected from this dataset, which contains over 14,000 images
along with their corresponding masks. The initial step involved dividing the dataset
into two categories: patient/healthy (positive/negative). Each image is paired with a
corresponding mask image. These mask images are black-and-white and highlight the
tumor region, if present, on the original image, as illustrated in the Figure 2.

Figure 2. Some samples of lung CT images and their region of tumor as a black-white mask.
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The research was conducted using the Google Colab platform, which was chosen for
its ability to fulfill the experiment’s technical requirements. Google Colab is cloud-based,
does not require installation, and is freely accessible, making it ideal for collaborative work.
It is commonly utilized for implementing machine learning and deep learning projects,
as it supports Python and TensorFlow, a widely used open-source library that provides
various CNN architectures and features.

The following procedures were followed to prepare the classification model for training.

1. Scaling of Images: First, the images are imported and resized to 128 × 128 pixels.
2. Dataset Splitting: The dataset, which consists of 3296 images, is split into three: 70%

for training, 20% for validation, and lastly, 10% for testing.
3. Data Augmentation: The dataset size is artificially expanded through the augmenta-

tion process, increasing the original 2543 images to ten times their initial quantity.
4. Pre-processing: Each image consists of 1D matrices containing RGB values, which are

then scaled to the range [0, 1] or [−1, 1]. The necessary pre-processing layer is defined
for the pre-trained models to ensure the values are within the appropriate range.

5. Models: Pre-trained models loaded from the TensorFlow library are used as base
models. These models consist of multiple layers.

6. Pooling Layer: A pooling layer is defined (Global Average).
7. Prediction Layer: The prediction layer is set up with the softmax activation function

to produce the outputs of the model, as softmax offers the most accurate probability
for each class membership.

8. Model Compilation: The primary model is constructed by combining these layers
with the base model. Each of the seven pre-trained models serves as the foundation
for its respective experiment, with identical procedures applied to each one. The
structural details of the layers in the main models are provided in Table 1. After
compiling, categorical cross-entropy loss is used, along with evaluation metrics such
as accuracy, precision, recall, F1-Score, and ROC AUC.

9. Training: The main model is trained for 20 epochs, with the loss and metrics recorded
at each epoch throughout the training process.

10. Model Evaluation: After training, the success of the main model, including base
pre-trained model, is evaluated. The evaluation is performed by examining and
comparing metric results from predicting the images of the test dataset. The assess-
ment includes accuracy, cross-entropy loss, precision, recall, F1-Score, and ROC AUC.
These outcomes are subsequently utilized to compare the overall performance of the
primary models.

Table 1. Sequential layers of classification models.

Input Layer

Data Augmentation Layer

Rescaling Layer

Pre-Trained Model (one of MobileNetV2, ResNet152V2, InceptionResNetV2, Xception, VGG-19,
and InceptionV3)

Pooling Layer (Global Average)

Prediction Layer (Softmax)

The following steps were applied to prepare the segmentation model in its trained form.

1. Image Preparation: The images were rescaled to a size of 128 × 128 pixels.
2. Data Augmentation and Splitting: The dataset was split into parts of 70:20:10

percents for training, validation, and test, respectively.
3. Model Preparation: A model was constructed for the segmentation process, with one

of the UNet, SegNet, or Inception UNet models selected and used. Encoder–decoder
connections were established, as outlined in Table 2.
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4. Training: The segmentation architecture is trained with 20 epochs, with the loss and
metric results recorded at each epoch during the training process.

5. Model Evaluation: The final metric results are calculated using the test dataset,
which was not included in the training phase.

6. Visualization: The input image, the actual mask, and the predicted mask from
selected test samples are displayed, as given in Figure 3. These steps are repeated for
each of the other segmentation models.

Table 2. Layers of segmentation models.

Input Layer

Encoder Layers

Bottleneck Layers

Decoder Layers

Final Convolutional Layer

Figure 3. The sample prediction results are presented in the following order: first, the original image
with its filename; second, the true mask of the tumor region; third, the predicted mask generated by
the segmentation model; and finally, a combined image displaying all three. In the combined image,
the masks are overlaid onto the original image, with green indicating correctly predicted tumor areas,
blue showing missed actual tumor regions, and red highlighting healthy areas mistakenly classified
as tumor.

4. Experimental Results

The entire study was carried out in Google Colab’s cloud environment, utilizing the
platform’s provided hardware. The experiment made use of the Google TPU V2, a special-
ized processing unit designed specifically for matrix calculations, which are fundamental
to the operations of neural networks.

As previously discussed, the trained models produce predictions on randomly se-
lected samples from the test data. This particular dataset was chosen because it contains
information not seen by the models during training, ensuring unbiased behavior and
providing more objective outcomes. The predictions are presented as 1D arrays or vectors
since the softmax is used as the activation function in the final prediction layer across all
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primary models, enabling categorical classification. Each array’s length corresponds to
the number of classes—eleven in this study. Every element within the array represents
a probability value ranging from zero to one ([0, 1]), with the sum of all these floating
numbers equal to one. Every index is associated with a particular class, and the value at
that index indicates the likelihood that the input image is classified under that class. The
model’s final prediction is determined by the class with the greatest probability.

Once the classification process identifies the test images, the input image associated
with a patient is forwarded for segmentation. The encoder layers compress (encode)
the input image into a lower-dimensional representation by passing it through multiple
convolution layers, where features are extracted. In the bottleneck layer, the smallest
feature map from the encoder undergoes deeper convolution, enhancing the model’s
learning capability. The decoder then combines (decodes) these compressed data with
the encoder layers to reconstruct the output image in its original dimensions. Finally, an
output layer is utilized to estimate each pixel’s likelihood of belonging to a specific class.
The outcome includes the original image, the true mask, and the estimated mask generated
after processing.

For all classification models, both training and testing scores are generated and doc-
umented using six metrics for comparison: accuracy, cross-entropy loss, precision, recall,
F1-score, and ROC AUC.

In the case of segmentation models, six metrics are computed and contrasted through-
out the training process and for the test data: Jaccard index, accuracy, cross-entropy loss,
precision, recall, and F1-score. The metrics are thoroughly examined in this section and
further elaborated in the Discussion section below.

All metrics, except for cross-entropy loss, are calculated using the prediction system’s
output. When predicting positive instances from a set containing both positive and negative
values, each prediction is categorized as either true or false. The following values are
derived based on these predictions:

TP: True Positives—the number of correctly predicted positive cases.
FP: False Positives—the number of incorrectly predicted positive cases, which are actu-
ally negative.
TN: True Negatives—the number of correctly predicted negative cases.
FN: False Negatives—the number of incorrectly predicted negative cases, which are actu-
ally positive.

Accuracy =
TN + TP

TP + TN + FN + FP
(1)

Accuracy is calculated as the proportion of the model’s correct predictions (TP and
FP) relative to the number of all the predictions. Simply put, it represents how frequently
the model makes accurate predictions, as illustrated in Equation (1).

Precision =
TP

FP + TP
(2)

Precision quantifies the accuracy of the model’s positive predictions (TP) over the
predicted positives (TP and FP). Specifically, it evaluates how well the model correctly
identifies positive cases, as illustrated in Equation (2).

Recall =
TP

TP + FN
(3)

Recall represents the fraction of TP instances that the model accurately detects over
the actual positives (TP and FN), as demonstrated in Equation (3).

F1 =
TP

TP + 1
2 (FP + FN)

(4)
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When precision and recall are significantly imbalanced, and it is essential to achieve
equilibrium between these metrics, the F1 score becomes crucial. The F1 score is particularly
useful when reducing all false predictions. The formula for the metric F1-Score is provided
in Equation (4).

TPR =
TP

TP + FN
(5)

FPR =
FP

FP + FN
(6)

The ROC curve is a graph taking the true positive rate (TPR), Equation (5), as y-axis
and the false positive rate (FPR), Equation (6), as x-axis. The area under the curve (AUC)
represents the area beneath this curve. A higher AUC signifies a stronger overall ability
of the model to differentiate positive and negative prediction sets from one another. The
higher the value of ROC AUC, the better the model performs, as shown in Figure 4.

Figure 4. ROC curve and its AUC.

Loss is a numerical measurement of the distance between actual classes and the
predicted results. The loss is calculated using this distance in a logarithmic way. In both
classification and segmentation tasks, the categorical type of cross-entropy loss is preferred
due to the multi-class nature of them. The loss function directs the model’s learning by
striving to minimize errors. A lower loss value reflects better model performance.

In the segmentation phase, the Jaccard index measures the ratio of the intersection of
two clusters to their union. Known as “Intersection over Union (IoU)” as well, this metric
is widely used in segmentation tasks. The Jaccard index varies between 0 and 1, with
1 signifying complete overlap between the clusters and 0 indicating no overlap. A high
Jaccard index means that the segments predicted by the model closely match the actual
segments. This metric is particularly valuable for evaluating the accuracy of segmented
areas in an image, as illustrated in Equation (7).

Jaccard Index =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(7)

Training occurs over several epochs, with evaluation metrics calculated at each step to
generate learning curves. All the selected models are put to training on both the training
and validation datasets, enabling the visualization of key metrics through these curves.

The accuracy values for all models and datasets during the classification phase vary
depending on the specific model. Observations from the learning curves reveal distinct
patterns. The learning curves of the models MobileNet V2 and VGG-19 models indicate
that the learning and mastery process for these models is generally moderate, as shown
in Figures 5 and 6 with high–low oscillations in validation. The ResNet152V2 model
exhibited a gradual increase in accuracy during the initial training periods, followed by
stability, as depicted in Figure 7. For the Xception, InceptionResNetV2, and InceptionV3
models, a significant jump in accuracy was observed early in the training process, and these
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models maintained their accuracy rates with very small oscillations thereafter, as seen in
Figures 8–10.

Figure 5. Accuracy rate of the MobileNetV2-based model by epochs, presented as learning curves.

Figure 6. Accuracy rate of the VGG-19-based model by epochs, presented as learning curves.

Figure 7. Accuracy rate of the ResNet152V2-based model by epochs, presented as learning curves.
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Figure 8. Accuracy rate of the Xception-based model by epochs, presented as learning curves.

Figure 9. Accuracy rate of the InceptionResNetV2-based model by epochs, presented as
learning curves.

Figure 10. Accuracy rate of the InceptionV3-based model by epochs, presented as learning curves.

In the segmentation phase, the Jaccard index values generated by the training and
validation datasets fluctuate over different time periods. This metric, essential for assessing
the success of segmentation, was analyzed as the primary metric using learning curves.
The learning curve for the UNet model displayed a sharp increase, indicating rapid im-
provement. In contrast, the SegNet model remained mostly stable, with minor fluctuations
at certain points. The InceptionUNet model, on the other hand, showed a more gradual
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increase in its values with the smoothest transitions. For a detailed comparison, refer to
Figures 11–13.

Figure 11. Jaccard index rate of the UNet-based model by epochs, presented as learning curves.

Figure 12. Jaccard index rate of the SegNet-based model by epochs, presented as learning curves.

Figure 13. Jaccard index rate of the InceptionUNet-based model by epochs, presented as
learning curve.

In the final evaluation section, the results from the test dataset were thoroughly
analyzed, enabling an objective comparison of each metric based on the model used in the
initial stage of image classification. The InceptionResNetV2 model achieved the highest
accuracy at 98.57%, while the Xception model recorded the lowest loss value at 0.03. When
assessing precision (98.61%), recall (98.54%), and F1 score (98.58%), the InceptionResNetV2
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model again delivered the best results. Additionally, the VGG-19 model achieved the
highest ROC AUC value at 99.93%. Overall, the InceptionResNetV2 model emerged as the
top performer across all metrics, with the exception of the ROC AUC value. For a detailed
comparison, refer to Table 3, along with Figures 14–16.

Table 3. Metric Results of Classification.

Base Model Accuracy Loss Precision Recall F1-Score ROC AUC

MobileNetV2 92.32% 0.19 92.93% 92.81% 92.87% 99.43%
ResNet152V2 98.29% 0.04 98.36% 98.28% 98.32 99.71%
Xception 98.01% 0.03 98.02% 97.98% 98.00% 99.92%
InceptionResNetV2 98.57% 0.07 98.61% 98.54% 98.58% 99.39%
VGG-19 96.02% 0.10 96.50% 95.78% 96.14% 99.93%
InceptionV3 97.44% 0.09 97.54% 97.47% 97.50% 99.43%

The best result in each column (the lowest in loss and the highest in the rest) are in bold.

Figure 14. Classification metrics of accuracy and ROC AUC produced from final evaluation presented
as a bar graph.

Figure 15. Classification metrics of F1-score, precision, and recall produced from final evaluation
presented as a bar graph.
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Figure 16. Classification metric of loss produced from final evaluation presented as a bar graph.

The test dataset, generated from the classification process, proceeds to the segmenta-
tion stage, where the results are evaluated using various metrics. During this evaluation,
each metric is objectively analyzed according to the selected model. The UNet model
achieved the highest performance, with a Jaccard Index value of 95.86%. The Inceptio-
nUNetV2 model followed closely with 95.39%, while the SegNet model also exhibited
strong performance, achieving a rate of 93.44%. See Figures 17 and 18, along with Table 4.

Upon examining the results across all metrics, it is evident that the InceptionResNetV2
and Inception UNet models achieved the highest performance in the study. In contrast,
the MobileNetV2 and SegNet models were observed to produce the lowest results among
their counterparts.

Figure 17. Segmentation metric of Jaccard index produced from final evaluation presented as a
bar graph.
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Figure 18. Segmentation metrics of F1-Score, precision, and recall produced from final evaluation
presented as a bar graph.

Table 4. Metric Results of Segmentation.

Models Jaccard
Index

Accuracy
(%) Loss Precision

(%) Recall (%) F1-Score
(%)

UNet 95.86 99.95 0.001 98.49 97.21 97.85
SegNet 93.44 99.92 0.001 96.01 96.98 96.49
InceptionUNetV2 95.39 99.94 0.001 97.74 97.43 97.58

The best result in each column are in bold.

5. Discussion

As shown in Table 3 and Figures 14–16, the InceptionResNetV2-based model outper-
formed the others across most metrics, emerging as the best overall. It not only achieved
the highest accuracy but also excelled in precision, recall, and F1-Score, indicating a well-
balanced performance. The accomplishment of the model can be credited to its imple-
mentation of residual mapping, which helps alleviate challenges associated with being
a “very deep model” and the integration of parallel convolutional layers at the end of
each inception block. This combination of techniques in InceptionResNetV2 led to the best
results in this study. The only exceptions were its performance in the ROC AUC metric,
where it ranked last, and its average loss, which was not the lowest.

InceptionResNetV2, despite its strong overall performance, ranks slightly lower in
ROC AUC because this metric evaluates performance across all thresholds. While the
model excels at the chosen threshold (0.5), its ability to maintain performance consistently
across different thresholds is slightly less robust than other models. However, the difference
is small and does not detract from its overall effectiveness.

However, when comparing the Inception and ResNet models, it is evident that the
ResNet approach performed significantly better. ResNet152V2 consistently ranked second
across all metrics and was very close to the first-placed model, with only small margins
in some metrics. This highlights that residual mapping was the most effective technique
among the standalone approaches in this study. Furthermore, while the inception approach
was not as strong as residual mapping, it still performed exceptionally well when combined
rather than used alone.

On the other hand, MobileNetV2 consistently ranked last or near last across all metrics,
with significant gaps in critical metrics such as accuracy and loss. This suggests that
MobileNetV2 prioritizes time performance over accuracy, which aligns with its design and
purpose as a “mobile” model.

In the segmentation of CT lung images, the task focuses on classifying individual
pixels rather than whole images, leading to a significant imbalance between the two types
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of pixels: healthy and tumor. Specifically, the tumor area in an image is typically very
small compared to the entire image area, often constituting less than 10 percent of the
total. This results in a substantial disparity between the number of samples from each class.
Consequently, the accuracy metric can appear deceptively high, while the cross-entropy
loss remains low. To properly assess the results of such segmentation tasks, precision,
recall, and F1-Score are more crucial than accuracy and loss. Additionally, a metric that
is typically less emphasized in classification tasks—the Jaccard index, also referred to as
intersection over union (IoU)—becomes the most significant indicator of a segmentation
model’s success.

As shown in Table 4 and Figures 17 and 18, although the accuracy and loss results
are promising, with values that are either very close or equal across models, they can be
deceptive. However, when evaluating other metrics, UNet emerges as the top performer
in all categories except recall. InceptionUNetV2 takes the lead in recall and comes a close
second in the other metrics. The high Jaccard index values for UNet and InceptionUNetV2
indicate their strong ability to accurately classify tumor areas by distinguishing pixels. In
contrast, SegNet trails behind both models, with noticeable differences across all metrics.

A high precision rate suggests that the model is less likely to incorrectly classify
healthy areas as tumor regions. A high recall suggests that the model is unlikely to exclude
actual tumor regions from the predicted tumor area. Given these considerations, UNet
excels at accurately excluding healthy areas from the predicted tumor regions with a well-
balanced evaluation, attributed to high F1-Score, while closely following InceptionUNetV2
in consistently including actual tumor areas in the predictions. As the simplest approach,
UNet delivers the best overall results, with the Inception-enhanced version of UNet being
a close second.

The superiority of UNet over both InceptionUNetV2 and SegNet is likely due to
the simplicity of the dataset and the models’ capacities in relation to the task. UNet’s
straightforward architecture effectively captures the essential patterns in the CT lung
images, making it well-suited for this specific application. In contrast, the more complex
models—InceptionUNetV2 and SegNet—do not demonstrate significant advantages in this
context, as their additional features are not fully leveraged by the dataset. This suggests that
for simpler tasks, a less complex model like UNet can yield better performance, highlighting
the importance of aligning model complexity with the characteristics of the dataset.

In summary, this study highlights the critical importance of selecting appropriate
models and evaluation metrics when dealing with the dual challenges of classification and
segmentation in lung cancer detection. Building on the foundations laid by previous works,
which have predominantly focused on either classification or segmentation independently,
our approach demonstrates the value of integrating both methods. While InceptionRes-
NetV2 proved to be the most effective in classification tasks, the UNet model excelled in
segmentation, particularly in accurately identifying tumor regions. These findings under-
score the need for a combined approach that leverages the strengths of different models
for both classification and segmentation tasks. Future research should continue to explore
hybrid models that build upon the strengths of earlier studies, integrating the robust-
ness of classification algorithms with the precision of segmentation techniques, ultimately
improving early detection and treatment planning for lung cancer.

6. Conclusions

Today, lung cancer remains one of the most widespread and lethal forms of cancer
globally. Despite progress in treatment methods, lung cancer is difficult to treat due to
its often late diagnosis. Therefore, early detection is crucial to prevent the disease from
spreading. The target of this study is to recognise lung cancer in its early stages. While
deep learning methods have proven highly accurate in detecting diseases from images,
the InceptionResNetV2 model has demonstrated particularly impressive results, with an
accuracy rate of 98.57%. Following such a strong detection, the UNet model delivers
excellent precision in outlining the affected area, achieving a rate of 95.86%. Despite the
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fact that the research focuses on classifying healthy and diseased lungs and segmenting
tumor areas, it does not discriminate between various types of tumors, even benign and
malign ones. Our future goal is to develop an extended model capable of distinguishing
between and segmenting these different tumor types.

Author Contributions: Conceptualization, M.K. and M.S.G.; methodology, M.K. and F.E.; software,
M.K.; validation, M.S.G.; writing—original draft preparation, M.K., M.S.G. and E.A.S.; writing—
review and editing, M.K., F.E., M.S.G. and T.A.; supervision, M.S.G., E.A.S., F.E. and T.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset that was used in this experiment is available at [33].

Acknowledgments: This project was supported by TUBITAK under the 1501 Industrial R&D Projects
Support Program with project number being 3230989.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI: Artificial intelligence
CNN: Convolutional neural networks
CT: Computed tomography
ROC AUC: Area under the curve of receiver operating characteristic

References
1. Lung Cancer Statistics. World Cancer Research Fund International. 2022. Available online: https://www.wcrf.org/cancer-

trends/lung-cancer-statistics/ (accessed on 10 April 2024).
2. Hashimoto, K.; Nishimura, S.; Akagi, M. Lung adenocarcinoma presenting as a soft tissue metastasis to the shoulder: A case

report. Medicina 2021, 57, 181. [CrossRef] [PubMed]
3. Howard, A.G. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

[CrossRef]
4. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Inverted Residuals and Linear Bottlenecks: Mobile Networks for

Classification, Detection and Segmentation. arXiv 2018, arXiv:1801.04381. [CrossRef]
5. Al-Huseiny, M.S.; Sajit, A.S. Transfer learning with GoogLeNet for detection of lung cancer. Indones. J. Electr. Eng. Comput. Sci.

2021, 22, 1078–1086. [CrossRef]
6. Souid, A.; Sakli, N.; Sakli, H. Classification and Predictions of Lung Diseases from Chest X-rays Using MobileNet V2. Appl. Sci.

2021, 11, 2751. [CrossRef]
7. Gulzar, Y. Fruit image classification model based on MobileNetV2 with deep transfer learning technique. Sustainability 2023,

15, 1906. [CrossRef]
8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [CrossRef]
9. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. arXiv 2016, arXiv:1603.05027. [CrossRef]
10. Mahajan, D.; Girshick, R.; Ramanathan, V.; He, K.; Paluri, M.; Dollar, P.; van der Maaten, L. Exploring the Limits of Weakly

Supervised Pretraining. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 181–196.

11. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2016, arXiv:1610.02357. [CrossRef]
12. Gomez, S.A.; Rios, A.; Velasco, L.Z. Understanding the Xception Architecture for Deep Learning. J. Mach. Learn. Res. 2018, 19, 1–9.
13. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning. Proc. AAAI Conf. Artif. Intell. 2017, 31, 4278–4284. [CrossRef]
14. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

[CrossRef]
15. Blurredmachine, M. VGGNet-16 Architecture: A Complete Guide, Kaggle. 2023. Available online: https://www.kaggle.com/

code/blurredmachine/vggnet-16-architecture-a-complete-guide (accessed on 7 August 2024).
16. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015,

arXiv:1512.00567. [CrossRef]

https://www.wcrf.org/cancer-trends/lung-cancer-statistics/
https://www.wcrf.org/cancer-trends/lung-cancer-statistics/
http://doi.org/10.3390/medicina57020181
http://www.ncbi.nlm.nih.gov/pubmed/33672554
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.48550/arXiv.1801.04381
http://dx.doi.org/10.11591/ijeecs.v22.i2.pp1078-1086
http://dx.doi.org/10.3390/app11062751
http://dx.doi.org/10.3390/su15031906
http://dx.doi.org/10.48550/arXiv.1512.03385
http://dx.doi.org/10.48550/arXiv.1603.05027
http://dx.doi.org/10.48550/arXiv.1610.02357
http://dx.doi.org/10.1609/aaai.v31i1.11231
http://dx.doi.org/10.48550/arXiv.1409.1556
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide
http://dx.doi.org/10.48550/arXiv.1512.00567


Cancers 2024, 16, 3321 18 of 18

17. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015,
Proceedings, Part III 18; Springer: Cham, Switzerland, 2015; pp. 234–241.

18. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016: 19th International Conference,
Athens, Greece, 17–21 October 2016, Proceedings, Part II 19; Springer: Cham, Switzerland, 2016; pp. 424–432.

19. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

20. Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1520–1528.

21. Punn, N.S.; Agarwal, S. Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM
Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–15. [CrossRef]

22. Oktay, O.; Schlemper, M.; Le Folgoc, L. Anatomy of a Medical Image Segmentation Network: Inception-UNet. In Proceedings
of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Granada, Spain, 16–20 September 2018;
pp. 349–357.

23. Wang, H.; Zhang, Y.; Wang, L. Inception-UNet for Multi-Class Medical Image Segmentation. In Proceedings of the International
Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 4213–4221.

24. Chen, L.; Wu, Y.; Zhang, X. Improving Segmentation Performance with Inception-UNet Architecture for Biomedical Applications.
In Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 1354–1362.

25. Tekade, R.; Rajeswari, K. Lung Cancer Detection and Classification Using Deep Learning. In Proceedings of the 2018 Fourth
International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018;
pp. 1–5. [CrossRef]

26. Sharma, M.; Bhatt, J.; Joshi, M. Early detection of lung cancer from CT images: Nodule segmentation and classification using
deep learning. Tenth Int. Conf. Mach. Vis. 2018, 10696, 226–233.

27. Lakshmanaprabu, S.; Mohanty, S.; Shankar, K.; Arunkumar, N.; Ramirez, G. Optimal deep learning model for classification of
lung cancer on CT images. Future Gene. Comput. Syst. 2019, 92, 374–382.

28. ALzubi, J.; Bharathikannan, B.; Tanwar, S.; Manikandan, R.; Khanna, A.; Thaventhiran, C. Boosted neural network ensemble
classification for lung cancer disease diagnosis. Appl. Soft Comput. 2019, 80, 579–591. [CrossRef]

29. Lu, L.; Tan, Y.; Schwartz, L.; Zhao, B. Hybrid detection of lung nodules on CT scan images. Med. Phys. 2015, 42, 5042–5054.
[CrossRef]

30. Manikandan, T.; Bharathi, N. Lung cancer detection using fuzzy auto-seed cluster means morphological segmentation and SVM
classifier. J. Med. Syst. 2016, 40, 1–9. [CrossRef]

31. Wang, S.; Zhou, M.; Liu, Z.; Liu, Z.; Gu, D.; Zang, Y.; Dong, D.; Gevaert, O.; Tian, J. Central focused convolutional neural networks:
Developing a data-driven model for lung nodule segmentation. Med. Image Anal. 2017, 40, 172–183. [CrossRef] [PubMed]

32. Teramoto, A.; Fujita, H. Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int. J. Comput.
Assist. Radiol. Surg. 2013, 8, 193–205. [CrossRef] [PubMed]

33. Rasouli, S. Lung Cancer Segment. Kaggle Datasets. 2023. Available online: https://www.kaggle.com/datasets/rasoulisaeid/
lung-cancer-segment/data (accessed on 7 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1145/3376922
http://dx.doi.org/10.1109/ICCUBEA.2018.8697352
http://dx.doi.org/10.1016/j.asoc.2019.04.031
http://dx.doi.org/10.1118/1.4927573
http://dx.doi.org/10.1007/s10916-016-0539-9
http://dx.doi.org/10.1016/j.media.2017.06.014
http://www.ncbi.nlm.nih.gov/pubmed/28688283
http://dx.doi.org/10.1007/s11548-012-0767-5
http://www.ncbi.nlm.nih.gov/pubmed/22684487
https://www.kaggle.com/datasets/rasoulisaeid/lung-cancer-segment/data
https://www.kaggle.com/datasets/rasoulisaeid/lung-cancer-segment/data

	Introduction
	Literature Review
	Model Foundations
	Related Works

	Methodology
	Experimental Results
	Discussion
	Conclusions
	References

