Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Method
2.1. Study Population
2.2. Study Design
2.3. Image Pre-Processing and Feature Extraction
2.4. Stability Analysis
2.5. Identifying a Clinical and Radiomic Signature
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeAngelis, L.M. Brain Tumors. N. Engl. J. Med. 2001, 344, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Zhang, B.; Guo, X.; Zong, M.; Rahman, R.; Sanchez, D.; Winder, N.; Reardon, D.A.; Zhao, B.; Wen, P.Y.; et al. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro Oncol. 2016, 18, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Qazi, M.A.; Vora, P.; Venugopal, C.; Sidhu, S.S.; Moffat, J.; Swanton, C.; Singh, S.K. Intratumoral heterogeneity: Pathways to treatment resistance and relapse in human glioblastoma. Ann. Oncol. 2017, 28, 1448–1456. [Google Scholar] [CrossRef]
- Gutman, D.A.; Cooper, L.A.D.; Hwang, S.N.; Holder, C.A.; Gao, J.; Aurora, T.D.; Dunn, W.D., Jr.; Scarpace, L.; Mikkelsen, T.; Jain, R.; et al. MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional Study of the TCGA Glioblastoma Data Set. Radiology 2013, 267, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Bark, J.M.; Kulasinghe, A.; Chua, B.; Day, B.W.; Punyadeera, C. Circulating biomarkers in patients with glioblastoma. Br. J. Cancer 2020, 122, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Beig, N.; Bera, K.; Tiwari, P. Introduction to radiomics and radiogenomics in neuro-oncology: Implications and challenges. Neurooncol. Adv. 2020, 2 (Suppl. 4), iv3–iv14. [Google Scholar] [CrossRef]
- Banerjee, S.; Arora, H.S.; Mitra, S. Ensemble of CNNs for Segmentation of Glioma Sub-regions with Survival Prediction. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Crimi, A., Bakas, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 37–49. [Google Scholar]
- Wang, X.; Xie, T.; Luo, J.; Zhou, Z.; Yu, X.; Guo, X. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment. Breast Cancer Res. 2022, 24, 20. [Google Scholar] [CrossRef]
- Han, X.; Cao, W.; Wu, L.; Liang, C. Radiomics assessment of the tumor immune microenvironment to predict outcomes in breast cancer. Front. Immunol. 2022, 12, 5356. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, M.; Al Suman, A.; Molina, E.S.; Pan, E.; Di Ieva, A.; Liu, S. Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review. Cancers 2023, 15, 3845. [Google Scholar] [CrossRef]
- Shaheen, A.; Bukhari, S.T.; Nadeem, M.; Burigat, S.; Bagci, U.; Mohy-ud-Din, H. Overall Survival Prediction of Glioma Patients With Multiregional Radiomics. Front. Neurosci. 2022, 16, 911065. Available online: https://www.frontiersin.org/articles/10.3389/fnins.2022.911065 (accessed on 1 July 2024). [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2015, 278, 563–577. [Google Scholar] [CrossRef]
- Tixier, F.; Jaouen, V.; Hognon, C.; Gallinato, O.; Colin, T.; Visvikis, D. Evaluation of conventional and deep learning based image harmonization methods in radiomics studies. Phys. Med. Biol. 2021, 66, 245009. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, S.; Pérez-Nuñez, A.; García-García, S.; García-Pérez, D.; Arrese, I.; Jiménez-Roldán, L.; García-Galindo, M.; González, P.; Velasco-Casares, M.; Zamora, T.; et al. Predicting Short-Term Survival after Gross Total or Near Total Resection in Glioblastomas by Machine Learning-Based Radiomic Analysis of Preoperative MRI. Cancers 2021, 13, 5047. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Hill, V.B.; Statsevych, V.; Bera, K.; Correa, R.; Leo, P.; Ahluwalia, M.; Madabhushi, A.; Tiwari, P. Stable and Discriminatory Radiomic Features from the Tumor and Its Habitat Associated with Progression-Free Survival in Glioblastoma: A Multi-Institutional Study. Am. J. Neuroradiol. 2022, 43, 1115. [Google Scholar] [CrossRef] [PubMed]
- Hajianfar, G.; Avval, A.H.; Hosseini, S.A.; Nazari, M.; Oveisi, M.; Shiri, I.; Zaidi, H. Time-to-event overall survival prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics. Radiol. Med. 2023, 128, 1521–1534. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—‘how-to’ guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Meneghetti, A.R.; Zwanenburg, A.; Leger, S.; Leger, K.; Troost, E.G.C.; Linge, A.; Lohaus, F.; Schreiber, A.; Kalinauskaite, G.; Tinhofer, I.; et al. Definition and validation of a radiomics signature for loco-regional tumour control in patients with locally advanced head and neck squamous cell carcinoma. Clin. Transl. Radiat. Oncol. 2021, 26, 62–70. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, C.; Zhang, C.; Song, Y.; Yan, X.; Guo, Y.; Ai, T.; Yang, G. Fully automatic classification of breast lesions on multi-parameter MRI using a radiomics model with minimal number of stable, interpretable features. Radiol. Med. 2023, 128, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117. [Google Scholar] [CrossRef] [PubMed]
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar]
- Wen, P.Y.; Chang, S.M.; Van den Bent, M.J.; Vogelbaum, M.A.; Macdonald, D.R.; Lee, E.Q. Response Assessment in Neuro-Oncology Clinical Trials. J. Clin. Oncol. 2017, 35, 2439–2449. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef]
- Rohlfing, T.; Zahr, N.M.; Sullivan, E.V.; Pfefferbaum, A. The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 2010, 31, 798–819. [Google Scholar] [CrossRef] [PubMed]
- Davatzikos, C.; Rathore, S.; Bakas, S.; Pati, S.; Bergman, M.; Kalarot, R.; Sridharan, P.; Gastounioti, A.; Jahani, N.; Cohen, E.; et al. Cancer imaging phenomics toolkit: Quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 2018, 5, 011018. [Google Scholar] [CrossRef] [PubMed]
- Isensee, F.; Schell, M.; Pflueger, I.; Brugnara, G.; Bonekamp, D.; Neuberger, U.; Wick, A.; Schlemmer, H.-P.; Heiland, S.; Wick, W.; et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 2019, 40, 4952–4964. [Google Scholar] [CrossRef] [PubMed]
- Duman, A.; Karakuş, O.; Sun, X.; Thomas, S.; Powell, J.; Spezi, E. RFS+: A clinically adaptable and computationally efficient strategy for enhanced brain tumor segmentation. Cancers 2023, 15, 5620. [Google Scholar] [CrossRef]
- Duman, A.; Whybra, P.; Powell, J.; Thomas, S.; Sun, X.; Spezi, E. PO-1620 Transferability of deep learning models to the segmentation of gross tumour volume in brain cancer. Radiother. Oncol. 2023, 182, S1315–S1316. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Jones, D. ICRU Report 50—Prescribing, Recording and Reporting Photon Beam Therapy. Med. Phys. 1994, 21, 833–834. [Google Scholar] [CrossRef]
- Whybra, P.; Parkinson, C.; Foley, K.; Staffurth, J.; Spezi, E. Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging. Sci. Rep. 2019, 9, 9649. [Google Scholar] [CrossRef] [PubMed]
- Piazzese, C.; Foley, K.; Whybra, P.; Hurt, C.; Crosby, T.; Spezi, E. Discovery of stable and prognostic CT-based radiomic features independent of contrast administration and dimensionality in oesophageal cancer. PLoS ONE 2019, 14, e0225550. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Leger, S.; Agolli, L.; Pilz, K.; Troost, E.G.C.; Richter, C.; Löck, S. Assessing robustness of radiomic features by image perturbation. Sci. Rep. 2019, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 2009, 53, 3735–3745. [Google Scholar] [CrossRef]
- Yeo, I.-K.; Johnson, R.A. A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika 2000, 87, 954–959. Available online: http://www.jstor.org/stable/2673623 (accessed on 1 July 2024). [CrossRef]
- Leger, S.; Zwanenburg, A.; Pilz, K.; Lohaus, F.; Linge, A.; Zöphel, K.; Kotzerke, J.; Schreiber, A.; Tinhofer, I.; Budach, V.; et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci. Rep. 2017, 7, 13206. [Google Scholar] [CrossRef]
- Gierlichs, B.; Batina, L.; Tuyls, P.; Preneel, B. Mutual information analysis: A generic side-channel distinguisher. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 426–442. [Google Scholar]
- Long, F.; Peng, H.; Ding, C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Mwangi, O.W.; Islam, A.; Luke, O. Bootstrap Confidence Intervals for Proportions of Unequal Sized Groups Adjusted for Overdispersion. Open J. Stat. 2015, 5, 502–510. [Google Scholar] [CrossRef]
- Kamarudin, A.N.; Cox, T.; Kolamunnage-Dona, R. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med. Res. Methodol. 2017, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-C.; Zhao, Q.-Y.; Tu, G.-W. Clinical prediction models in the precision medicine era: Old and new algorithms. Ann. Transl. Med. 2020, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Whybra, P.; Spezi, E. Sensitivity of standardised radiomics algorithms to mask generation across different software platforms. Sci. Rep. 2023, 13, 14419. [Google Scholar] [CrossRef] [PubMed]
- Whybra, P.; Zwanenburg, A.; Andrearczyk, V.; Schaer, R.; Apte, A.P.; Ayotte, A.; Baheti, B.; Bakas, S.; Bettinelli, A.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Convolutional Filters for Reproducible Radiomics and Enhanced Clinical Insights. Radiology 2024, 310, e231319. [Google Scholar] [CrossRef]
- Mandreoli, F.; Ferrari, D.; Guidetti, V.; Motta, F.; Missier, P. Real-world data mining meets clinical practice: Research challenges and perspective. Front. Big Data 2022, 5, 1021621. Available online: https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2022.1021621 (accessed on 1 July 2024). [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Zhang, G.; Qiu, X.; Tan, W.; Yin, X.; Liao, L. Deep Learning with Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front. Oncol. 2022, 12, 773840. Available online: https://www.frontiersin.org/articles/10.3389/fonc.2022.773840 (accessed on 1 July 2024). [CrossRef] [PubMed]
Variable | Training Dataset Median (Range) | Validation Dataset Median (Range) | Statistical Cohort Comparison |
---|---|---|---|
Age (years) | 61.1 [18.98–86.27] | 63.4 [31.0–86.65] | U: 0.65, p-value: 0.74 |
OS (months) | 11.9 [0.17–58.9] | 12.3 [0.7666–57.7] | U: 0.63, p-value: 0.48 |
OS < 11-month (%) | 43.7% (101/231) | 39.7% (23/58) | χ2: 0.19 p-value: 0.66 |
Feature Selection Method | ||
---|---|---|
Lasso | MutInfo | MRMR |
morph_av dzm_zdnu_3D (FLAIR) | szm_glnu_3D (T1ce) stat_p10 (T2) | dzm_zdnu_3D (FLAIR) szm_glnu_3D (T1ce) |
Univariate Cox Regression Analysis | |||||||
---|---|---|---|---|---|---|---|
Dataset | Model | Variable | HR [95% CI] | p-Value | C-Index | iAUC | 11m-iAUC |
Training | Clinical model | Age | 1.32 [1.15–1.50] | 0.010 | 0.59 [0.53–0.64] | 0.67 | 0.62 |
Radiomic model | RFs Risk Score | 2.72 [1.66–4.46] | 0.007 | 0.60 [0.54–0.66] | 0.67 | 0.63 | |
Validation | Clinical Model | Age | 1.63 [1.23–2.16] | 0.006 | 0.63 [0.56–0.68] | 0.66 | 0.67 |
Radiomic model | RFs Risk Score | 2.97 [0.8–10.99] | 0.290 | 0.62 [0.54–0.71] | 0.79 | 0.78 | |
Multivariate Cox Regression Analysis | |||||||
Dataset | Model | Variable | HR [95% CI] | p-Value | C-Index | iAUC | 11m-iAUC |
Training | Clinical–radiomic Model | Age | 1.30 [1.14–1.49] | 6 × 10−5 | 0.63 [0.56–0.74] | 0.68 | 0.69 |
morph_av | 1.02 [0.87–1.20] | ||||||
dzm_zdnu_3D | 1.36 [1.13–1.62] | ||||||
Validation | Clinical-radiomic Model | Age | 1.60 [1.21–2.13] | 7 × 10−5 | 0.69 [0.62–0.75] | 0.78 | 0.81 |
morph_av | 1.58 [1.08–2.29] | ||||||
dzm_zdnu_3D | 1.89 [1.19–3.01] |
References | No. of Patients | MRI Sequence | Region of Feature Extraction | Extracted Feature Number | Selected Feature Number | Feature Number Guideline (3–10) | ML Model | Validation Method | IBSI Guideline | Performance Metrics |
---|---|---|---|---|---|---|---|---|---|---|
Tixier et al. [14] | 234 | T1 | Gd-ET, NEC, NET, TC | 88 | 57 | No | Lasso | Five-fold CV | Yes | AUC: 0.75 |
Cepeda et al. [15] | 203 | T1ce, T1, T2, FLAIR | Tumor, Peritumoral | 15,720 | 10 | Yes | Random Forest Survival | Five-fold CV | Partially (Convolutional Filters) | iAUC: 0.77 C-index 0.61 |
Verma et al. [16] | 150 | T1ce, T2, FLAIR | ET, NCR | 3792 | 316 | No | - | Five-fold CV | Partially (Convolutional Filters) | AUC: 0.78 |
Hajianfar et al. [17] | 119 | FLAIR, T1ce | ET, TC, NEC, ED | 4471 | - | No | Cox Boost | Three-fold CV Bootstrap | Partially (Convolutional Filters) | C-index: 0.77 |
Our Study | 289 | FLAIR | GTV (TC) | 689 | 2 (without Age) | Yes | Cox-Lasso | Three-fold CV 33 repetitions Bootstrap | Yes | C-index: 0.69 iAUC: 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duman, A.; Sun, X.; Thomas, S.; Powell, J.R.; Spezi, E. Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme. Cancers 2024, 16, 3351. https://doi.org/10.3390/cancers16193351
Duman A, Sun X, Thomas S, Powell JR, Spezi E. Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme. Cancers. 2024; 16(19):3351. https://doi.org/10.3390/cancers16193351
Chicago/Turabian StyleDuman, Abdulkerim, Xianfang Sun, Solly Thomas, James R. Powell, and Emiliano Spezi. 2024. "Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme" Cancers 16, no. 19: 3351. https://doi.org/10.3390/cancers16193351
APA StyleDuman, A., Sun, X., Thomas, S., Powell, J. R., & Spezi, E. (2024). Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme. Cancers, 16(19), 3351. https://doi.org/10.3390/cancers16193351