Systemic Metabolic and Volumetric Assessment via Whole-Body [18F]FDG-PET/CT: Pancreas Size Predicts Cachexia in Head and Neck Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Acquisition and Quantification
2.3. Statistical Analysis
2.4. Network Analysis
2.5. Cox Regression Analysis
2.6. Machine Learning
3. Results
3.1. Clinical Characteristics
3.2. Metabolic and Clinical Profiles by Weight Loss
3.3. HiWL Is Associated with Increased Metabolic Inter-Organ Connectivity
3.4. Metabolic and Volumetric Features as Key Predictors of Survival in HNSCC
3.5. Machine Learning Model for Cachexia and Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. BMI Adjusted Weight Loss System
- Grade 0: Patients with a BMI ≥ 25.0 kg/m2 who are weight-stable (±2.4% WL). These patients have the longest median survival (20.9 months). This group represents the lowest risk, indicating that having higher body reserves and no significant weight loss is associated with better outcomes.
- Grade 1: Patients with a moderate BMI (20.0 to 21.9 kg/m2) and moderate WL (−2.5% to −5.9%). Median survival drops to 14.6 months, reflecting an intermediate risk.
- Grade 2: Patients with a similar BMI but more significant WL (−6.0% to −10.9%), with a median survival of 10.8 months. This suggests that greater WL, even within a moderate BMI category, is associated with worse survival.
- Grade 3: Patients with lower BMI (BMI < 20.0 kg/m2) and substantial WL (−11.0% to −14.9%). Their median survival is only 7.6 months. This grade represents a higher risk due to both low body reserves and significant WL.
- Grade 4: Patients with the lowest BMI and the most severe WL (≥−15.0%) who have the shortest median survival of 4.3 months. This grade indicates the highest risk, where severe cachexia with minimal body reserves leads to the poorest outcomes.
Appendix B. Image Acquisition and Quantification
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Anzai, Y.; Brizel, D.M.; Bruce, J.Y.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2020, 18, 873–898. [Google Scholar] [CrossRef] [PubMed]
- Mäkitie, A.A.; Alabi, R.O.; Orell, H.; Youssef, O.; Almangush, A.; Homma, A.; Takes, R.P.; López, F.; de Bree, R.; Rodrigo, J.P.; et al. Managing Cachexia in Head and Neck Cancer: A Systematic Scoping Review. Adv. Ther. 2022, 39, 1502–1523. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.; Kellett, J.; Toohey, K.; D’Cunha, N.M.; Isbel, S.; Naumovski, N. Toxicities Caused by Head and Neck Cancer Treatments and Their Influence on the Development of Malnutrition: Review of the Literature. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Takalkar, A.M.; Hall, L.T. Molecular Imaging of Head and Neck Cancers. In Gastrointestinal Cancers; Hall, L.T., Ed.; Exon Publications: Brisbane, Australia, 2023; pp. 15–36. ISBN 9780645332063. [Google Scholar]
- Muthanandam, S.; Muthu, J. Understanding Cachexia in Head and Neck Cancer. Asia-Pac. J. Oncol. Nurs. 2021, 8, 527–538. [Google Scholar] [CrossRef]
- Sroussi, H.Y.; Epstein, J.B.; Bensadoun, R.-J.; Saunders, D.P.; Lalla, R.V.; Migliorati, C.A.; Heaivilin, N.; Zumsteg, Z.S. Common Oral Complications of Head and Neck Cancer Radiation Therapy: Mucositis, Infections, Saliva Change, Fibrosis, Sensory Dysfunctions, Dental Caries, Periodontal Disease, and Osteoradionecrosis. Cancer Med. 2017, 6, 2918–2931. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Anthony, T.G.; Ayres, J.S.; Biffi, G.; Brown, J.C.; Caan, B.J.; Cespedes Feliciano, E.M.; Coll, A.P.; Dunne, R.F.; Goncalves, M.D.; et al. Cachexia: A Systemic Consequence of Progressive, Unresolved Disease. Cell 2023, 186, 1824–1845. [Google Scholar] [CrossRef] [PubMed]
- Neshan, M.; Tsilimigras, D.I.; Han, X.; Zhu, H.; Pawlik, T.M. Molecular Mechanisms of Cachexia: A Review. Cells 2024, 13, 252. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, K.; Jose, I.; Hoogenraad, N.J.; Osellame, L.D. Biomarkers for Cancer Cachexia: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4501. [Google Scholar] [CrossRef]
- Vagnildhaug, O.M.; Blum, D.; Wilcock, A.; Fayers, P.; Strasser, F.; Baracos, V.E.; Hjermstad, M.J.; Kaasa, S.; Laird, B.; Solheim, T.S.; et al. The Applicability of a Weight Loss Grading System in Cancer Cachexia: A Longitudinal Analysis. J. Cachexia Sarcopenia Muscle 2017, 8, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Argilés, J.M.; López-Soriano, F.J.; Toledo, M.; Betancourt, A.; Serpe, R.; Busquets, S. The Cachexia Score (CASCO): A New Tool for Staging Cachectic Cancer Patients. J. Cachexia Sarcopenia Muscle 2011, 2, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Camargo, R.G.; Quintas Teixeira Ribeiro, H.; Geraldo, M.V.; Matos-Neto, E.; Neves, R.X.; Carnevali, L.C., Jr.; Donatto, F.F.; Alcântara, P.S.M.; Ottoch, J.P.; Seelaender, M. Cancer Cachexia and MicroRNAs. Mediat. Inflamm. 2015, 2015, 367561. [Google Scholar] [CrossRef] [PubMed]
- Peixoto da Silva, S.; Santos, J.M.O.; Costa E Silva, M.P.; Gil da Costa, R.M.; Medeiros, R. Cancer Cachexia and Its Pathophysiology: Links with Sarcopenia, Anorexia and Asthenia. J. Cachexia Sarcopenia Muscle 2020, 11, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Porporato, P.E. Understanding Cachexia as a Cancer Metabolism Syndrome. Oncogenesis 2016, 5, e200. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- van Heusden, H.C.; Chargi, N.; Dankbaar, J.W.; Smid, E.J.; de Bree, R. Masseter Muscle Parameters Can Function as an Alternative for Skeletal Muscle Mass Assessments on Cross-Sectional Imaging at Lumbar or Cervical Vertebral Levels. Quant. Imaging Med. Surg. 2022, 12, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Lipshitz, M.; Visser, J.; Anderson, R.; Nel, D.G.; Smit, T.; Steel, H.C.; Rapoport, B. Emerging Markers of Cancer Cachexia and Their Relationship to Sarcopenia. J. Cancer Res. Clin. Oncol. 2023, 149, 17511–17527. [Google Scholar] [CrossRef] [PubMed]
- Elisia, I.; Lam, V.; Cho, B.; Hay, M.; Li, M.Y.; Yeung, M.; Bu, L.; Jia, W.; Norton, N.; Lam, S.; et al. The Effect of Smoking on Chronic Inflammation, Immune Function and Blood Cell Composition. Sci. Rep. 2020, 10, 19480. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.D.; Oke, J.L.; Aveyard, P.; Hamilton, W.T.; Hobbs, F.D.R. Individual Inflammatory Marker Abnormalities or Inflammatory Marker Scores to Identify Primary Care Patients with Unexpected Weight Loss for Cancer Investigation? Br. J. Cancer 2021, 124, 1540–1542. [Google Scholar] [CrossRef]
- Janhunen, O.; Jokelainen, O.; Peltoniemi, R.; Nykopp, T.K.; Arponen, O. Comparison of Different 2D Muscle Indexes Measured at the Level of the 3rd Lumbar Vertebra in Survival Prediction in Patients with Renal Cell Carcinoma. Acta Oncol. 2024, 63, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Wolmark, N.; Mamounas, E.P.; Baehner, F.L.; Butler, S.M.; Tang, G.; Jamshidian, F.; Sing, A.P.; Shak, S.; Paik, S. Prognostic Impact of the Combination of Recurrence Score and Quantitative Estrogen Receptor Expression (ESR1) on Predicting Late Distant Recurrence Risk in Estrogen Receptor-Positive Breast Cancer After 5 Years of Tamoxifen: Results From NRG Oncology/National Surgical Adjuvant Breast and Bowel Project B-28 and B-14. J. Clin. Oncol. 2016, 34, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Leslie, A.; Fyfe, E.; Guest, P.; Goddard, P.; Kabala, J.E. Staging of Squamous Cell Carcinoma of the Oral Cavity and Oropharynx: A Comparison of MRI and CT in T- and N-Staging. J. Comput. Assist. Tomogr. 1999, 23, 43–49. [Google Scholar] [CrossRef]
- Imaizumi, A.; Yoshino, N.; Yamada, I.; Nagumo, K.; Amagasa, T.; Omura, K.; Okada, N.; Kurabayashi, T. A Potential Pitfall of MR Imaging for Assessing Mandibular Invasion of Squamous Cell Carcinoma in the Oral Cavity. AJNR Am. J. Neuroradiol. 2006, 27, 114–122. [Google Scholar]
- Kale, H.; Rath, T.J. Chapter 3 The Role of PET/CT in Squamous Cell Carcinoma of the Head and Neck. Semin. Ultrasound CT MR 2017, 38, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, P.; Leccisotti, L.; Bussu, F.; Miccichè, F.; Rufini, V. Role of (18)F-FDG PET-CT in Head and Neck Squamous Cell Carcinoma. Acta Otorhinolaryngol. Ital. 2013, 33, 1–8. [Google Scholar]
- Oldan, J.D.; Yoo, D.S.; Lee, W.T.; Hoang, J.K. PET/CT for Head and Neck Squamous Cell Cancer—Uses and Updates for Radiologists. Curr. Radiol. Rep. 2014, 2, 47. [Google Scholar] [CrossRef]
- Han, J.; Harrison, L.; Patzelt, L.; Wu, M.; Junker, D.; Herzig, S.; Berriel Diaz, M.; Karampinos, D.C. Imaging Modalities for Diagnosis and Monitoring of Cancer Cachexia. EJNMMI Res. 2021, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Shozushima, M.; Tsutsumi, R.; Terasaki, K.; Sato, S.; Nakamura, R.; Sakamaki, K. Augmentation Effects of Lymphocyte Activation by Antigen-Presenting Macrophages on FDG Uptake. Ann. Nucl. Med. 2003, 17, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.S.; Zellweger, C.; Bacanovic, S.; Franckenberg, S.; Nagel, H.W.; Frick, L.; Schawkat, K.; Eberhard, M.; Blüthgen, C.; Volbracht, J.; et al. Brown Fat Does Not Cause Cachexia in Cancer Patients: A Large Retrospective Longitudinal FDG-PET/CT Cohort Study. PLoS ONE 2020, 15, e0239990. [Google Scholar] [CrossRef] [PubMed]
- Spielvogel, C.P.; Stoiber, S.; Papp, L.; Krajnc, D.; Grahovac, M.; Gurnhofer, E.; Trachtova, K.; Bystry, V.; Leisser, A.; Jank, B.; et al. Radiogenomic Markers Enable Risk Stratification and Inference of Mutational Pathway States in Head and Neck Cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 546–558. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and Classification of Cancer Cachexia: An International Consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Sundar, L.K.S.; Yu, J.; Muzik, O.; Kulterer, O.; Fueger, B.J.; Kifjak, D.; Nakuz, T.; Shin, H.M.; Sima, A.K.; Kitzmantl, D.; et al. Fully Automated, Semantic Segmentation of Whole-Body 18F-FDG PET/CT Images Based on Data-Centric Artificial Intelligence. J. Nucl. Med. 2022, 63, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Beretta, L.; Santaniello, A. Nearest Neighbor Imputation Algorithms: A Critical Evaluation. BMC Med. Inform. Decis. Mak. 2016, 16 (Suppl. S3), 74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Anand, R.; Wang, M. Maximum Relevance and Minimum Redundancy Feature Selection Methods for a Marketing Machine Learning Platform. In Proceedings of the 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Washington, DC, USA, 5–8 October 2019; pp. 442–452. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Vasey, B.; Ursprung, S.; Beddoe, B.; Taylor, E.H.; Marlow, N.; Bilbro, N.; Watkinson, P.; McCulloch, P. Association of Clinician Diagnostic Performance With Machine Learning-Based Decision Support Systems: A Systematic Review. JAMA Netw. Open 2021, 4, e211276. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, S.; Mateen, B.A.; Bohner, G.; Király, F.J.; Ghani, R.; Jonsson, P.; Cumbers, S.; Jonas, A.; McAllister, K.S.L.; Myles, P.; et al. Machine Learning and Artificial Intelligence Research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics, and Effectiveness. BMJ 2020, 368, l6927. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Erion, G.G.; Lee, S.-I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar]
- Grossberg, A.J.; Mohamed, A.S.R.; Elhalawani, H.; Bennett, W.C.; Smith, K.E.; Nolan, T.S.; Williams, B.; Chamchod, S.; Heukelom, J.; Kantor, M.E.; et al. Imaging and Clinical Data Archive for Head and Neck Squamous Cell Carcinoma Patients Treated with Radiotherapy. Sci. Data 2018, 5, 180173. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Binder-Markey, B.; Sychowski, D.; Willbanks, A.; Phipps, T.; McAllister, D.; Bhakta, A.; Marquez, E.; D’Andrea, D.; Franz, C.; et al. Gait Speed Is a Biomarker of Cancer-Associated Cachexia Decline and Recovery. bioRxiv 2023. [Google Scholar] [CrossRef]
- Xie, H.; Ruan, G.; Wei, L.; Zhang, H.; Ge, Y.; Lin, S.; Song, M.; Zhang, Q.; Zhang, X.; Wang, Z.; et al. Development and Applicability of Modified Weight Loss Grading System in Cancer: A Real-World Cohort Study. J. Cachexia Sarcopenia Muscle 2023, 14, 2090–2097. [Google Scholar] [CrossRef]
- Giraldi, L.; Collatuzzo, G.; Hashim, D.; Franceschi, S.; Herrero, R.; Chen, C.; Schwartz, S.M.; Smith, E.; Kelsey, K.; McClean, M.; et al. Infection with Human Papilloma Virus (HPV) and Risk of Subsites within the Oral Cancer. Cancer Epidemiol. 2021, 75, 102020. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zimmers, T.A. Sex Differences in Cancer Cachexia. Curr. Osteoporos. Rep. 2020, 18, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Shiyam Sundar, L.K.; Hacker, M.; Beyer, T. Whole-Body PET Imaging: A Catalyst for Whole-Person Research? J. Nucl. Med. 2022, 64, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, Z.; An, Z.; Jin, W. Cancer Cachexia: Focus on Cachexia Factors and Inter-Organ Communication. Chin. Med. J. 2024, 137, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Wang, Z.; Wu, Y.; Gu, F.; Li, X.; Bai, Y.; Shen, C.; Hu, Z.; Liang, D.; Liu, X.; et al. Identifying the Individual Metabolic Abnormities from a Systemic Perspective Using Whole-Body PET Imaging. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Huang, J.; Wu, H.; Wang, Y.; Du, Z.; Ling, Y.; Wang, W.; Wu, Q.; Gao, W. Molecular Mechanisms of Cancer Cachexia-induced Muscle Atrophy (Review). Mol. Med. Rep. 2020, 22, 4967–4980. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, T.; Sari, I.N.; Wijaya, Y.T.; Julianto, N.M.; Muhammad, J.A.; Lee, H.; Chae, J.H.; Kwon, H.Y. Cancer Cachexia: Molecular Mechanisms and Treatment Strategies. J. Hematol. Oncol. 2023, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, Z.; Li, B.; Liu, Y.-E.; Wang, P. Immunoregulation in Cancer-Associated Cachexia. J. Advert. Res. 2024, 58, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Baazim, H.; Antonio-Herrera, L.; Bergthaler, A. The Interplay of Immunology and Cachexia in Infection and Cancer. Nat. Rev. Immunol. 2021, 22, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Yin, H.; Liu, X.; Ding, Z.; Shen, L.; Sah, S.; Han, J.; Wu, G. Elevated 18F-FDG Uptake in Subcutaneous Adipose Tissue Correlates Negatively with Nutritional Status and Prognostic Survival in Cachexia Patients with Gastric Cancer. Clin. Nutr. 2024, 43, 567–574. [Google Scholar] [CrossRef]
- Montalvo, R.N.; Counts, B.R.; Carson, J.A. Understanding Sex Differences in the Regulation of Cancer-Induced Muscle Wasting. Curr. Opin. Support. Palliat. Care 2018, 12, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Masi, T.; Patel, B.M. Altered Glucose Metabolism and Insulin Resistance in Cancer-Induced Cachexia: A Sweet Poison. Pharmacol. Rep. 2021, 73, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Eckstein, S.S.; Yamazaki, H.; Gerst, F.; Machann, J.; Jaghutriz, B.A.; Schürmann, A.; Solimena, M.; Singer, S.; Königsrainer, A.; et al. Metabolic Implications of Pancreatic Fat Accumulation. Nat. Rev. Endocrinol. 2022, 18, 43–54. [Google Scholar] [CrossRef]
- Rozynek, M.; Gut, D.; Kucybała, I.; Strzałkowska-Kominiak, E.; Tabor, Z.; Urbanik, A.; Kłęk, S.; Wojciechowski, W. Fully Automated 3D Body Composition Analysis and Its Association with Overall Survival in Head and Neck Squamous Cell Carcinoma Patients. Front. Oncol. 2023, 13, 1176425. [Google Scholar] [CrossRef] [PubMed]
- Compton, S.L.E.; Heymsfield, S.B.; Brown, J.C. Nutritional Mechanisms of Cancer Cachexia. Annu. Rev. Nutr. 2024, 44, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.R.; Liu, C.; Herremans, K.M.; Riner, A.N.; Vudatha, V.; Freudenberger, D.C.; McKinley, K.L.; Triplett, E.W.; Trevino, J.G. From Mouth to Muscle: Exploring the Potential Relationship between the Oral Microbiome and Cancer-Related Cachexia. Microorganisms 2022, 10, 2291. [Google Scholar] [CrossRef] [PubMed]
- Herremans, K.M.; Riner, A.N.; Cameron, M.E.; Trevino, J.G. The Microbiota and Cancer Cachexia. Int. J. Mol. Sci. 2019, 20, 6267. [Google Scholar] [CrossRef] [PubMed]
- Argilés, J.M.; Fontes-Oliveira, C.C.; Toledo, M.; López-Soriano, F.J.; Busquets, S. Cachexia: A Problem of Energetic Inefficiency. J. Cachexia Sarcopenia Muscle 2014, 5, 279–286. [Google Scholar] [CrossRef]
- Petruzzelli, M.; Schweiger, M.; Schreiber, R.; Campos-Olivas, R.; Tsoli, M.; Allen, J.; Swarbrick, M.; Rose-John, S.; Rincon, M.; Robertson, G.; et al. A Switch from White to Brown Fat Increases Energy Expenditure in Cancer-Associated Cachexia. Cell Metab. 2014, 20, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Rohm, M.; Zeigerer, A.; Machado, J.; Herzig, S. Energy Metabolism in Cachexia. EMBO Rep. 2019, 20, e47258. [Google Scholar] [CrossRef] [PubMed]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-Associated Cachexia. Nat. Rev. Dis. Primers 2018, 4, 17105. [Google Scholar] [CrossRef] [PubMed]
- Roeland, E.J.; Bohlke, K.; Baracos, V.E.; Bruera, E.; Del Fabbro, E.; Dixon, S.; Fallon, M.; Herrstedt, J.; Lau, H.; Platek, M.; et al. Management of Cancer Cachexia: ASCO Guideline. J. Clin. Oncol. 2020, 38, 2438–2453. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, D.; Abenavoli, E.M.; Beyer, T.; Gruenert, S.; Hacker, M.; Hesse, S.; Hofmann, L.; Pusitz, S.; Rullmann, M.; Sabri, O.; et al. Detection of Cancer-Associated Cachexia in Lung Cancer Patients Using Whole-Body [18F]FDG-PET/CT Imaging: A Multi-Centre Study. J. Cachexia Sarcopenia Muscle 2024. online ahead of print. Available online: https://pubmed.ncbi.nlm.nih.gov/39189415/ (accessed on 8 September 2024).
- Center for Devices. Radiological Health Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices (accessed on 8 September 2024).
- Katakami, N.; Uchino, J.; Yokoyama, T.; Naito, T.; Kondo, M.; Yamada, K.; Kitajima, H.; Yoshimori, K.; Sato, K.; Saito, H.; et al. Anamorelin (ONO-7643) for the Treatment of Patients with Non-Small Cell Lung Cancer and Cachexia: Results from a Randomized, Double-Blind, Placebo-Controlled, Multicenter Study of Japanese Patients (ONO-7643-04). Cancer 2018, 124, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Argilés, J.M.; López-Soriano, F.J.; Stemmler, B.; Busquets, S. Therapeutic Strategies against Cancer Cachexia. Eur. J. Transl. Myol. 2019, 29, 7960. [Google Scholar] [CrossRef] [PubMed]
- Groarke, J.D.; Crawford, J.; Collins, S.M.; Lubaczewski, S.; Roeland, E.J.; Naito, T.; Hendifar, A.E.; Fallon, M.; Takayama, K.; Asmis, T.; et al. Ponsegromab for the Treatment of Cancer Cachexia. N. Engl. J. Med. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
Vienna (N = 114) | TCIA (N = 139) | Total (N = 253) | |||||
---|---|---|---|---|---|---|---|
Age ± SD (years) | 60.0 ± 11.55 | 57.4 ± 9.37 | 58.5 ± 10.57 | ||||
Weight ± SD (kg) | 73.1 ± 20.55 | 87.9 ± 18.70 | 81.2 ± 20.58 | ||||
Follow-up (months) | 15.1 ± 36.88 | 65.0 ± 29.74 | 42.5 ± 35.65 | ||||
Overall survival (OS) | |||||||
1-year OS alive | 61 | (53.51%) | 125 | (89.93%) | 191 | (75.49%) | |
5-year OS alive | 23 | (20.18%) | 79 | (56.83%) | 102 | (40.32%) | |
Sex | |||||||
Male | 81 | (71.05%) | 117 | (84.17%) | 198 | (78.26%) | |
Body mass index (kg/m2) | |||||||
BMI ≥ 25 | 45 | (39.47%) | 102 | (73.38%) | 157 | (62.06%) | |
BMI < 25 | 69 | (60.53%) | 37 | (26.62%) | 96 | (37.94%) | |
Weight loss grading system (WLGS) | |||||||
WLGS 0 | 5 | (4.39%) | 9 | (6.47%) | 14 | (5.53%) | |
WLGS 1 | 19 | (16.67%) | 27 | (19.42%) | 46 | (18.18%) | |
WLGS 2 | 10 | (8.77%) | 37 | (26.62%) | 47 | (18.58%) | |
WLGS 3 | 31 | (27.19%) | 54 | (38.85%) | 85 | (33.60%) | |
WLGS 4 | 49 | (42.98%) | 12 | (8.63%) | 61 | (24.11%) | |
Tumor origin | |||||||
Oropharynx | 72 | (63.16%) | 100 | (71.94%) | 172 | (67.98%) | |
Larynx | 12 | (10.53%) | 16 | (11.51%) | 28 | (11.07%) | |
Oral Cavity | 17 | (14.91%) | 6 | (4.32%) | 23 | (9.09%) | |
Hypopharynx | 13 | (11.40%) | 8 | (5.76%) | 21 | (8.30%) | |
Nasopharynx | 0 | (0.00%) | 5 | (3.60%) | 5 | (1.98%) | |
Cancer unknown primary | 0 | (0.00%) | 4 | (2.88%) | 4 | (1.58%) | |
Clinical staging | |||||||
I | 6 | (5.26%) | 2 | (1.44%) | 8 | (3.16%) | |
II | 11 | (9.65%) | 2 | (1.44%) | 13 | (5.14%) | |
III | 7 | (6.14%) | 20 | (14.39%) | 27 | (10.67%) | |
IVa | 71 | (62.28%) | 104 | (74.82%) | 175 | (69.17%) | |
IVb | 9 | (7.89%) | 11 | (7.91%) | 20 | (7.91%) | |
IVc | 10 | (8.77%) | 0 | (0.00%) | 10 | (3.95%) | |
HPV status | |||||||
Negative | 62 | (54.39%) | 11 | (7.91%) | 73 | (28.85%) | |
Positive | 11 | (9.65%) | 24 | (17.27%) | 35 | (13.83%) | |
Not reported | 41 | (35.96%) | 104 | (74.82%) | 145 | (57.31%) | |
Feeding tube | |||||||
Yes | 56 | (49.12%) | 75 | (54.74%) | 131 | (51.78%) | |
Smoking history | |||||||
Yes | 86 | (76.79%) | 89 | (64.03%) | 175 | (69.17%) | |
Therapy regimen | |||||||
Surgery | 55 | (48.25%) | 41 | (29.50%) | 96 | (37.94%) | |
Neoadjuvant | 14 | (12.28%) | 50 | (35.97%) | 64 | (25.30%) | |
Radiotherapy | 94 | (82.46%) | 139 | (100.00%) | 233 | (92.09%) | |
Chemotherapy | 74 | (64.91%) | 112 | (80.58%) | 186 | (73.52%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Spielvogel, C.; Haberl, D.; Jiang, Z.; Özer, Ö.; Pusitz, S.; Geist, B.; Beyerlein, M.; Tibu, I.; Yildiz, E.; et al. Systemic Metabolic and Volumetric Assessment via Whole-Body [18F]FDG-PET/CT: Pancreas Size Predicts Cachexia in Head and Neck Squamous Cell Carcinoma. Cancers 2024, 16, 3352. https://doi.org/10.3390/cancers16193352
Yu J, Spielvogel C, Haberl D, Jiang Z, Özer Ö, Pusitz S, Geist B, Beyerlein M, Tibu I, Yildiz E, et al. Systemic Metabolic and Volumetric Assessment via Whole-Body [18F]FDG-PET/CT: Pancreas Size Predicts Cachexia in Head and Neck Squamous Cell Carcinoma. Cancers. 2024; 16(19):3352. https://doi.org/10.3390/cancers16193352
Chicago/Turabian StyleYu, Josef, Clemens Spielvogel, David Haberl, Zewen Jiang, Öykü Özer, Smilla Pusitz, Barbara Geist, Michael Beyerlein, Iustin Tibu, Erdem Yildiz, and et al. 2024. "Systemic Metabolic and Volumetric Assessment via Whole-Body [18F]FDG-PET/CT: Pancreas Size Predicts Cachexia in Head and Neck Squamous Cell Carcinoma" Cancers 16, no. 19: 3352. https://doi.org/10.3390/cancers16193352
APA StyleYu, J., Spielvogel, C., Haberl, D., Jiang, Z., Özer, Ö., Pusitz, S., Geist, B., Beyerlein, M., Tibu, I., Yildiz, E., Kandathil, S. A., Buschhorn, T., Schnöll, J., Kumpf, K., Chen, Y. -T., Wu, T., Zhang, Z., Grünert, S., Hacker, M., & Vraka, C. (2024). Systemic Metabolic and Volumetric Assessment via Whole-Body [18F]FDG-PET/CT: Pancreas Size Predicts Cachexia in Head and Neck Squamous Cell Carcinoma. Cancers, 16(19), 3352. https://doi.org/10.3390/cancers16193352