Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Lines and Cell Culture
2.3. MTT Cell Viability Assay
2.4. Measurement of Apoptotic Nuclei
2.5. Activation of Caspase 3/7
2.6. Immunoblotting
2.7. RT-PCR
2.8. Analysis of Double Strand Breaks with γ-H2AX and 53BP1
2.9. Enzyme HDAC Inhibition Assay
2.10. Data Analysis
3. Results
3.1. Cytotoxic Activity and Synergism Studies of Entinostat, JQ1, and Cisplatin
3.2. Triple Combination Treatment with Entinostat, JQ1, and Cisplatin Enhances Apoptosis Induction Via Caspase-3/7 Activation and Double-Strand Breaks
3.3. Effect of Entinostat and JQ1 on Expression of Pro- and Anti-Apototic Genes and Proteins
3.4. Investigation of BETi OTX015, JQ35, and Dual Inhibitor 20 in Combination Treatments
3.5. Selectivity of the Triple Combination Entinostat, BETi, and Cisplatin for Cancer over Non-Cancer Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Dobruch, J.; Oszczudłowski, M. Bladder Cancer: Current Challenges and Future Directions. Medicina 2021, 57, 749. [Google Scholar] [CrossRef] [PubMed]
- ECIS. Available online: https://ecis.jrc.ec.europa.eu/explorer.php?$0-4$1-All$4-1,2$3-38$6-0,85$5-2020,2025$7-7$21-0$2-All$CLongtermChart1_1$X0_-1-AE27 (accessed on 31 January 2023).
- Jones, R.J.; Crabb, S.J.; Linch, M.; Birtle, A.J.; McGrane, J.; Enting, D.; Stevenson, R.; Liu, K.; Kularatne, B.; Hussain, S.A. Systemic anticancer therapy for urothelial carcinoma: UK oncologists’ perspective. Br. J. Cancer 2024, 130, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Aldossary, S.A. Review on Pharmacology of Cisplatin: Clinical Use, Toxicity and Mechanism of Resistance of Cisplatin. Biomed. Pharmacol. J. 2019, 12, 7–15. [Google Scholar] [CrossRef]
- Siegsmund, M.J.; Marx, C.; Seemann, O.; Schummer, B.; Steidler, A.; Toktomambetova, L.; Köhrmann, K.U.; Rassweiler, J.; Alken, P. Cisplatin-resistant bladder carcinoma cells: Enhanced expression of metallothioneins. Urol. Res. 1999, 27, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; von der Maase, H.; Mead, G.M.; Skoneczna, I.; de Santis, M.; Daugaard, G.; Boehle, A.; Chevreau, C.; Paz-Ares, L.; Laufman, L.R.; et al. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC Intergroup Study 30987. J. Clin. Oncol. 2012, 30, 1107–1113. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, T.; Xiong, X.; Chen, C.; Tan, P.; Wei, Q. Targeting histone modifiers in bladder cancer therapy—Preclinical and clinical evidence. Nat. Rev. Urol. 2024, 21, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Natu, A.; Verma, T.; Khade, B.; Thorat, R.; Gera, P.; Dhara, S.; Gupta, S. Histone acetylation: A key determinant of acquired cisplatin resistance in cancer. Clin. Epigenetics 2024, 16, 8. [Google Scholar] [CrossRef]
- Morel, D.; Jeffery, D.; Aspeslagh, S.; Almouzni, G.; Postel-Vinay, S. Combining epigenetic drugs with other therapies for solid tumours—Past lessons and future promise. Nat. Rev. Clin. Oncol. 2020, 17, 91–107. [Google Scholar] [CrossRef]
- Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef]
- Ponnusamy, L.; Mahalingaiah, P.K.S.; Singh, K.P. Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance. Adv. Clin. Chem. 2020, 94, 219–259. [Google Scholar] [CrossRef] [PubMed]
- Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021, 277, 119504. [Google Scholar] [CrossRef] [PubMed]
- Bandolik, J.J.; Hamacher, A.; Schrenk, C.; Weishaupt, R.; Kassack, M.U. Class I-Histone Deacetylase (HDAC) Inhibition is Superior to pan-HDAC Inhibition in Modulating Cisplatin Potency in High Grade Serous Ovarian Cancer Cell Lines. Int. J. Mol. Sci. 2019, 20, 3052. [Google Scholar] [CrossRef]
- Gueugnon, F.; Cartron, P.-F.; Charrier, C.; Bertrand, P.; Fonteneau, J.-F.; Gregoire, M.; Blanquart, C. New histone deacetylase inhibitors improve cisplatin antitumor properties against thoracic cancer cells. Oncotarget 2014, 5, 4504–4515. [Google Scholar] [CrossRef]
- Shen, J.; Huang, C.; Jiang, L.; Gao, F.; Wang, Z.; Zhang, Y.; Bai, J.; Zhou, H.; Chen, Q. Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Biochem. Pharmacol. 2007, 73, 1901–1909. [Google Scholar] [CrossRef]
- Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination Therapy with Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front. Oncol. 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.J.; Stubbs, M.; Liu, P.; Ruggeri, B.; Khabele, D. The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Gynecol. Oncol. 2018, 149, 575–584. [Google Scholar] [CrossRef]
- Wang, C.; Hamacher, A.; Petzsch, P.; Köhrer, K.; Niegisch, G.; Hoffmann, M.J.; Schulz, W.A.; Kassack, M.U. Combination of Decitabine and Entinostat Synergistically Inhibits Urothelial Bladder Cancer Cells via Activation of FoxO1. Cancers 2020, 12, 337. [Google Scholar] [CrossRef]
- Pérez-Salvia, M.; Esteller, M. Bromodomain inhibitors and cancer therapy: From structures to applications. Epigenetics 2017, 12, 323–339. [Google Scholar] [CrossRef]
- Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.-P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149, 214–231. [Google Scholar] [CrossRef]
- Mochizuki, K.; Nishiyama, A.; Jang, M.K.; Dey, A.; Ghosh, A.; Tamura, T.; Natsume, H.; Yao, H.; Ozato, K. The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase. J. Biol. Chem. 2008, 283, 9040–9048. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Faller, D.V.; Denis, G.V. Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem. J. 2005, 387, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; He, N.; Zhou, Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol. Cell. Biol. 2008, 28, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Bagratuni, T.; Mavrianou, N.; Gavalas, N.G.; Tzannis, K.; Arapinis, C.; Liontos, M.; Christodoulou, M.I.; Thomakos, N.; Haidopoulos, D.; Rodolakis, A.; et al. JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur. J. Cancer 2020, 126, 125–135. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, Q.; Peng, Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol. Ther. 2023, 243, 108354. [Google Scholar] [CrossRef]
- Shorstova, T.; Foulkes, W.D.; Witcher, M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br. J. Cancer 2021, 124, 1478–1490. [Google Scholar] [CrossRef]
- Manzotti, G.; Ciarrocchi, A.; Sancisi, V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers 2019, 11, 304. [Google Scholar] [CrossRef]
- Andrikopoulou, A.; Liontos, M.; Koutsoukos, K.; Dimopoulos, M.-A.; Zagouri, F. Clinical perspectives of BET inhibition in ovarian cancer. Cell. Oncol. 2021, 44, 237–249. [Google Scholar] [CrossRef]
- Zhu, X.; Holmsen, E.; Park, S.; Willingham, M.C.; Qi, J.; Cheng, S.-Y. Synergistic effects of BET and MEK inhibitors promote regression of anaplastic thyroid tumors. Oncotarget 2018, 9, 35408–35421. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Liu, S.-L.; Huang, W.-L.; Tang, D.-B.; Zheng, W.-W.; Zhou, N.; Zhou, H.; Abudureheman, T.; Tang, Z.-H.; Zhou, B.-B.S.; et al. Bromodomains and Extra-Terminal (BET) Inhibitor JQ1 Suppresses Proliferation of Acute Lymphocytic Leukemia by Inhibiting c-Myc-Mediated Glycolysis. Med. Sci. Monit. 2020, 26, e923411. [Google Scholar] [CrossRef]
- Zanellato, I.; Colangelo, D.; Osella, D. JQ1, a BET Inhibitor, Synergizes with Cisplatin and Induces Apoptosis in Highly Chemoresistant Malignant Pleural Mesothelioma Cells. Curr. Cancer Drug Targets 2018, 18, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; MacKenzie, K.R.; Jain, P.; Santini, C.; Young, D.W.; Matzuk, M.M. Metabolism of JQ1, an inhibitor of bromodomain and extra terminal bromodomain proteins, in human and mouse liver microsomes. Biol. Reprod. 2020, 103, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, M.E.; Astorgues-Xerri, L.; Vazquez, R.; Frapolli, R.; Kwee, I.; Rinaldi, A.; Odore, E.; Rezai, K.; Bekradda, M.; Inghirami, G.; et al. OTX015 (MK-8628), a novel BET inhibitor, exhibits antitumor activity in non-small cell and small cell lung cancer models harboring different oncogenic mutations. Oncotarget 2016, 7, 84675–84687. [Google Scholar] [CrossRef]
- Berenguer-Daizé, C.; Astorgues-Xerri, L.; Odore, E.; Cayol, M.; Cvitkovic, E.; Noel, K.; Bekradda, M.; MacKenzie, S.; Rezai, K.; Lokiec, F.; et al. OTX015 (MK-8628), a novel BET inhibitor, displays in vitro and in vivo antitumor effects alone and in combination with conventional therapies in glioblastoma models. Int. J. Cancer 2016, 139, 2047–2055. [Google Scholar] [CrossRef]
- Lewin, J.; Soria, J.-C.; Stathis, A.; Delord, J.-P.; Peters, S.; Awada, A.; Aftimos, P.G.; Bekradda, M.; Rezai, K.; Zeng, Z.; et al. Phase Ib Trial with Birabresib, a Small-Molecule Inhibitor of Bromodomain and Extraterminal Proteins, in Patients with Selected Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 3007–3014. [Google Scholar] [CrossRef]
- Berthon, C.; Raffoux, E.; Thomas, X.; Vey, N.; Gomez-Roca, C.; Yee, K.; Taussig, D.C.; Rezai, K.; Roumier, C.; Herait, P.; et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: A dose-escalation, phase 1 study. Lancet Haematol. 2016, 3, e186–e195. [Google Scholar] [CrossRef]
- Amorim, S.; Stathis, A.; Gleeson, M.; Iyengar, S.; Magarotto, V.; Leleu, X.; Morschhauser, F.; Karlin, L.; Broussais, F.; Rezai, K.; et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: A dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 2016, 3, e196–e204. [Google Scholar] [CrossRef]
- Odore, E.; Lokiec, F.; Cvitkovic, E.; Bekradda, M.; Herait, P.; Bourdel, F.; Kahatt, C.; Raffoux, E.; Stathis, A.; Thieblemont, C.; et al. Phase I Population Pharmacokinetic Assessment of the Oral Bromodomain Inhibitor OTX015 in Patients with Haematologic Malignancies. Clin. Pharmacokinet. 2016, 55, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Merck Sharp & Dohme LLC. A Dose Exploration Study with Birabresib (MK-8628) in Participants with Selected Advanced Solid Tumors (MK-8628-006). Available online: https://www.clinicaltrials.gov/study/NCT02698176?intr=OTX015&rank=4#publications (accessed on 17 June 2024).
- Roboz, G.J.; Desai, P.; Lee, S.; Ritchie, E.K.; Winer, E.S.; DeMario, M.; Brennan, B.; Nüesch, E.; Chesne, E.; Brennan, L.; et al. A dose escalation study of RO6870810/TEN-10 in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk. Lymphoma 2021, 62, 1740–1748. [Google Scholar] [CrossRef]
- Shapiro, G.I.; LoRusso, P.; Dowlati, A.; T Do, K.; Jacobson, C.A.; Vaishampayan, U.; Weise, A.; Caimi, P.F.; Eder, J.P.; French, C.A.; et al. A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br. J. Cancer 2021, 124, 744–753. [Google Scholar] [CrossRef]
- Fiskus, W.; Sharma, S.; Qi, J.; Valenta, J.A.; Schaub, L.J.; Shah, B.; Peth, K.; Portier, B.P.; Rodriguez, M.; Devaraj, S.G.T.; et al. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol. Cancer Ther. 2014, 13, 1142–1154. [Google Scholar] [CrossRef]
- Mazur, P.K.; Herner, A.; Mello, S.S.; Wirth, M.; Hausmann, S.; Sánchez-Rivera, F.J.; Lofgren, S.M.; Kuschma, T.; Hahn, S.A.; Vangala, D.; et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med. 2015, 21, 1163–1171. [Google Scholar] [CrossRef]
- Meng, W.; Wang, B.; Mao, W.; Wang, J.; Zhao, Y.; Li, Q.; Zhang, C.; Tang, Y.; Ma, J. Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma. J. Exp. Clin. Cancer Res. 2018, 37, 241. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-S.; Chen, J.-Y.; Tsai, H.-J.; Chen, T.-Y.; Hung, W.-C. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer J. 2015, 5, e313. [Google Scholar] [CrossRef]
- Ramadoss, M.; Mahadevan, V. Targeting the cancer epigenome: Synergistic therapy with bromodomain inhibitors. Drug Discov. Today 2018, 23, 76–89. [Google Scholar] [CrossRef]
- Hölscher, A.S.; Schulz, W.A.; Pinkerneil, M.; Niegisch, G.; Hoffmann, M.J. Combined inhibition of BET proteins and class I HDACs synergistically induces apoptosis in urothelial carcinoma cell lines. Clin. Epigenetics 2018, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Vasyutin, I.; Zerihun, L.; Ivan, C.; Atala, A. Bladder Organoids and Spheroids: Potential Tools for Normal and Diseased Tissue Modelling. Anticancer Res. 2019, 39, 1105–1118. [Google Scholar] [CrossRef]
- Skowron, M.A.; Petzsch, P.; Hardt, K.; Wagner, N.; Beier, M.; Stepanow, S.; Drechsler, M.; Rieder, H.; Köhrer, K.; Niegisch, G.; et al. Distinctive mutational spectrum and karyotype disruption in long-term cisplatin-treated urothelial carcinoma cell lines. Sci. Rep. 2019, 9, 14476. [Google Scholar] [CrossRef] [PubMed]
- Schäker-Hübner, L.; Warstat, R.; Ahlert, H.; Mishra, P.; Kraft, F.B.; Schliehe-Diecks, J.; Schöler, A.; Borkhardt, A.; Breit, B.; Bhatia, S.; et al. 4-Acyl Pyrrole Capped HDAC Inhibitors: A New Scaffold for Hybrid Inhibitors of BET Proteins and Histone Deacetylases as Antileukemia Drug Leads. J. Med. Chem. 2021, 64, 14620–14646. [Google Scholar] [CrossRef]
- Hoffmann, M.J.; Koutsogiannouli, E.; Skowron, M.A.; Pinkerneil, M.; Niegisch, G.; Brandt, A.; Stepanow, S.; Rieder, H.; Schulz, W.A. The New Immortalized Uroepithelial Cell Line HBLAK Contains Defined Genetic Aberrations Typical of Early Stage Urothelial Tumors. Bladder Cancer 2016, 2, 449–463. [Google Scholar] [CrossRef]
- Engelke, L.H.; Hamacher, A.; Proksch, P.; Kassack, M.U. Ellagic Acid and Resveratrol Prevent the Development of Cisplatin Resistance in the Epithelial Ovarian Cancer Cell Line A2780. J. Cancer 2016, 7, 353–363. [Google Scholar] [CrossRef]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [PubMed]
- Skowron, M.A.; Niegisch, G.; Albrecht, P.; van Koeveringe, G.; Romano, A.; Albers, P.; Schulz, W.A.; Hoffmann, M.J. Various Mechanisms Involve the Nuclear Factor (Erythroid-Derived 2)-Like (NRF2) to Achieve Cytoprotection in Long-Term Cisplatin-Treated Urothelial Carcinoma Cell Lines. Int. J. Mol. Sci. 2017, 18, 1680. [Google Scholar] [CrossRef] [PubMed]
- Bijnsdorp, I.V.; Giovannetti, E.; Peters, G.J. Analysis of drug interactions. Methods Mol. Biol. 2011, 731, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Sachsenmeier, K.; Zhang, L.; Sult, E.; Hollingsworth, R.E.; Yang, H. A New Bliss Independence Model to Analyze Drug Combination Data. J. Biomol. Screen. 2014, 19, 817–821. [Google Scholar] [CrossRef]
- Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016, 32, 2866–2868. [Google Scholar] [CrossRef]
- Kurmasheva, R.T.; Bandyopadhyay, A.; Favours, E.; Del Pozo, V.; Ghilu, S.; Phelps, D.A.; Erickson, S.W.; Peer, C.J.; Figg, W.D.; Smith, M.A.; et al. Evaluation of entinostat alone and in combination with standard-of-care cytotoxic agents against rhabdomyosarcoma xenograft models. Pediatr. Blood Cancer 2019, 66, e27820. [Google Scholar] [CrossRef]
- Pflieger, M.; Hamacher, A.; Öz, T.; Horstick-Muche, N.; Boesen, B.; Schrenk, C.; Kassack, M.U.; Kurz, T. Novel α,β-unsaturated hydroxamic acid derivatives overcome cisplatin resistance. Bioorg. Med. Chem. 2019, 27, 115036. [Google Scholar] [CrossRef]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef]
- Kuo, L.J.; Yang, L.-X. Gamma-H2AX—A novel biomarker for DNA double-strand breaks. In Vivo 2008, 22, 305–309. [Google Scholar] [PubMed]
- Rothkamm, K.; Barnard, S.; Moquet, J.; Ellender, M.; Rana, Z.; Burdak-Rothkamm, S. DNA damage foci: Meaning and significance. Environ. Mol. Mutagen. 2015, 56, 491–504. [Google Scholar] [CrossRef]
- Turinetto, V.; Giachino, C. Multiple facets of histone variant H2AX: A DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015, 43, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Panier, S.; Boulton, S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 2014, 15, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Chronis, F.; Rogakou, E.P. Interplay between γH2AX and 53BP1 Pathways in DNA Double-Strand Break Repair Response. In Apoptosis, Senescence, and Cancer; Gewirtz, D.A., Holt, S.E., Grant, S., Eds.; Humana Press: Totowa, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Schultz, L.B.; Chehab, N.H.; Malikzay, A.; Halazonetis, T.D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 2000, 151, 1381–1390. [Google Scholar] [CrossRef]
- Ward, I.M.; Minn, K.; Jorda, K.G.; Chen, J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 2003, 278, 19579–19582. [Google Scholar] [CrossRef]
- Pang, Y.; Bai, G.; Zhao, J.; Wei, X.; Li, R.; Li, J.; Hu, S.; Peng, L.; Liu, P.; Mao, H. The BRD4 inhibitor JQ1 suppresses tumor growth by reducing c-Myc expression in endometrial cancer. J. Transl. Med. 2022, 20, 336. [Google Scholar] [CrossRef]
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Li, F.; Zheng, Z.; Chen, W.; Li, D.; Zhang, H.; Zhu, Y.; Mo, Q.; Zhao, X.; Fan, Q.; Deng, F.; et al. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist. Updat. 2023, 68, 100938. [Google Scholar] [CrossRef]
- Thy, S.; Hommel, A.; Meneceur, S.; Bartkowiak, A.L.; Schulz, W.A.; Niegisch, G.; Hoffmann, M.J. Epigenetic Treatment of Urothelial Carcinoma Cells Sensitizes to Cisplatin Chemotherapy and PARP Inhibitor Treatment. Cancers 2021, 13, 1376. [Google Scholar] [CrossRef]
- Alves Avelar, L.A.; Schrenk, C.; Sönnichsen, M.; Hamacher, A.; Hansen, F.K.; Schliehe-Diecks, J.; Borkhardt, A.; Bhatia, S.; Kassack, M.U.; Kurz, T. Synergistic induction of apoptosis in resistant head and neck carcinoma and leukemia by alkoxyamide-based histone deacetylase inhibitors. Eur. J. Med. Chem. 2021, 211, 113095. [Google Scholar] [CrossRef] [PubMed]
- Krieger, V.; Hamacher, A.; Cao, F.; Stenzel, K.; Gertzen, C.G.W.; Schäker-Hübner, L.; Kurz, T.; Gohlke, H.; Dekker, F.J.; Kassack, M.U.; et al. Synthesis of Peptoid-Based Class I-Selective Histone Deacetylase Inhibitors with Chemosensitizing Properties. J. Med. Chem. 2019, 62, 11260–11279. [Google Scholar] [CrossRef] [PubMed]
- Donati, B.; Lorenzini, E.; Ciarrocchi, A. BRD4 and Cancer: Going beyond transcriptional regulation. Mol. Cancer 2018, 17, 164. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, L.; Du, Y.; Liu, X.; Chen, Z.; Weng, X.; Guo, J.; Chen, H.; Wang, M.; Wang, X. Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int. J. Oncol. 2018, 53, 2503–2517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.X.; Agborbesong, E.; Li, L.X.; Li, X. Bromodomain Protein BRD4-Mediated Mutant p53 Transcription Promotes TNBC Progression. Int. J. Mol. Sci. 2022, 23, 5163. [Google Scholar] [CrossRef]
- Pandey, S.; Bourn, J.; Cekanova, M. Mutations of p53 decrease sensitivity to the anthracycline treatments in bladder cancer cells. Oncotarget 2018, 9, 28514–28531. [Google Scholar] [CrossRef]
- Wang, H.-T.; Lee, H.-W.; Weng, M.-W.; Liu, Y.; Huang, W.C.; Lepor, H.; Wu, X.-R.; Tang, M.-S. The role of TAp63γ and P53 point mutations in regulating DNA repair, mutational susceptibility and invasion of bladder cancer cells. eLife 2021, 10, e71184. [Google Scholar] [CrossRef]
- Rieger, K.M.; Little, A.F.; Swart, J.M.; Kastrinakis, W.V.; Fitzgerald, J.M.; Hess, D.T.; Libertino, J.A.; Summerhayes, I.C. Human bladder carcinoma cell lines as indicators of oncogenic change relevant to urothelial neoplastic progression. Br. J. Cancer 1995, 72, 683–690. [Google Scholar] [CrossRef]
- Di Micco, P.; Antolin, A.A.; Mitsopoulos, C.; Villasclaras-Fernandez, E.; Sanfelice, D.; Dolciami, D.; Ramagiri, P.; Mica, I.L.; Tym, J.E.; Gingrich, P.W.; et al. canSAR: Update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2023, 51, D1212–D1219. [Google Scholar] [CrossRef]
- Hu, J.; Cao, J.; Topatana, W.; Juengpanich, S.; Li, S.; Zhang, B.; Shen, J.; Cai, L.; Cai, X.; Chen, M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157. [Google Scholar] [CrossRef]
- Bollmann, L.M.; Skerhut, A.J.; Asfaha, Y.; Horstick, N.; Hanenberg, H.; Hamacher, A.; Kurz, T.; Kassack, M.U. The Novel Class IIa Selective Histone Deacetylase Inhibitor YAK540 Is Synergistic with Bortezomib in Leukemia Cell Lines. Int. J. Mol. Sci. 2022, 23, 3398. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Li, L.; Wang, S.; Zuo, Y. The c-MYC transcription factor conduces to resistance to cisplatin by regulating MMS19 in bladder cancer cells. Tissue Cell 2023, 82, 102096. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Liu, C.; Liu, B.; Chen, J.; Wu, X.; Gong, W. JQ1: A novel potential therapeutic target. Pharmazie 2018, 73, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Ria, T.; RoyMaha Patra, D.; Sk, U.H. Single Inhibitors versus Dual Inhibitors: Role of HDAC in Cancer. ACS Omega 2023, 8, 16532–16544. [Google Scholar] [CrossRef]
- Yang, Y.; Mou, Y.; Wan, L.-X.; Zhu, S.; Wang, G.; Gao, H.; Liu, B. Rethinking therapeutic strategies of dual-target drugs: An update on pharmacological small-molecule compounds in cancer. Med. Res. Rev. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Atkinson, S.J.; Soden, P.E.; Angell, D.C.; Bantscheff, M.; Chung, C.; Giblin, K.A.; Smithers, N.; Furze, R.C.; Gordon, L.; Drewes, G.; et al. The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. Med. Chem. Commun. 2014, 5, 342–351. [Google Scholar] [CrossRef]
- Kling, M.J.; Kesherwani, V.; Mishra, N.K.; Alexander, G.; McIntyre, E.M.; Ray, S.; Challagundla, K.B.; Joshi, S.S.; Coulter, D.W.; Chaturvedi, N.K. A novel dual epigenetic approach targeting BET proteins and HDACs in Group 3 (MYC-driven) Medulloblastoma. J. Exp. Clin. Cancer Res. 2022, 41, 321. [Google Scholar] [CrossRef]
- Zhang, X.; Zegar, T.; Weiser, T.; Hamdan, F.H.; Berger, B.-T.; Lucas, R.; Balourdas, D.-I.; Ladigan, S.; Cheung, P.F.; Liffers, S.-T.; et al. Characterization of a dual BET/HDAC inhibitor for treatment of pancreatic ductal adenocarcinoma. Int. J. Cancer 2020, 147, 2847–2861. [Google Scholar] [CrossRef]
- Amemiya, S.; Yamaguchi, T.; Hashimoto, Y.; Noguchi-Yachide, T. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg. Med. Chem. 2017, 25, 3677–3684. [Google Scholar] [CrossRef]
- Burmeister, A.; Stephan, A.; Alves Avelar, L.A.; Müller, M.R.; Seiwert, A.; Höfmann, S.; Fischer, F.; Torres-Gomez, H.; Hoffmann, M.J.; Niegisch, G.; et al. Establishment and Evaluation of Dual HDAC/BET Inhibitors as Therapeutic Options for Germ Cell Tumors and Other Urological Malignancies. Mol. Cancer Ther. 2022, 21, 1674–1688. [Google Scholar] [CrossRef]
- Lucas, X.; Wohlwend, D.; Hügle, M.; Schmidtkunz, K.; Gerhardt, S.; Schüle, R.; Jung, M.; Einsle, O.; Günther, S. 4-Acyl pyrroles: Mimicking acetylated lysines in histone code reading. Angew. Chem. Int. Ed. Engl. 2013, 52, 14055–14059. [Google Scholar] [CrossRef] [PubMed]
- Panteix, G.; Beaujard, A.; Garbit, F.; Chaduiron-Faye, C.; Guillaumont, M.; Gilly, F.; Baltassat, P.; Bressolle, F. Population pharmacokinetics of cisplatin in patients with advanced ovarian cancer during intraperitoneal hyperthermia chemotherapy. Anticancer Res. 2002, 22, 1329–1336. [Google Scholar] [PubMed]
Cisplatin IC50 ± SD [µM] | Entinostat IC50 ± SD [µM] | JQ1 IC50 ± SD [µM] | |
---|---|---|---|
J82 | 1.87 ± 0.06 | 10.4 ± 0.89 | 18.8 ± 1.55 |
J82 cisR | 7.16 ± 0.24 | 7.60 ± 0.59 | 2.22 ± 0.41 |
T24 | 2.99 ± 0.12 | 5.68 ± 0.51 | 2.29 ± 0.42 |
T24 LTT | 72.2 ± 3.57 | 1.38 ± 0.10 | 0.60 ± 0.08 |
Cell Line | Control | ENT Plus Cisplatin | JQ1 Plus Cisplatin | ENT Plus JQ1 Plus Cisplatin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cisplatin IC50 ± SD [µM] | ENT [µM] | Cisplatin IC50 ± SD [µM] | SF | JQ1 [µM] | Cisplatin IC50 ± SD [µM] | SF | ENT+ JQ1 [µM] | Cisplatin IC50 ± SD [µM] | SF | |
J82 | 2.16 ± 0.14 | 0.316 | 1.63 ± 0.24 | 1.33 | 1 | 0.77 ± 0.13 | 2.81 | 0.316 + 1 | 0.38 ± 0.08 | 5.62 |
J82 cisR | 8.49 ± 0.51 | 0.316 | 4.62 ± 0.57 | 1.84 | 0.1 | 2.96 ± 0.38 | 2.87 | 0.316 + 0.1 | 1.53 ± 0.22 | 5.54 |
0.3 | 1.35 ± 0.15 | 6.27 | 0.316 + 0.3 | 0.54 ± 0.06 | 15.6 | |||||
T24 | 4.15 ± 0.12 | 0.316 | 3.08 ± 0.15 | 1.35 | 0.3 | 0.84 ± 0.09 | 4.92 | 0.316 + 0.3 | 1.18 ± 0.13 | 3.52 |
T24 LTT | 75.0 ± 2.85 | 0.316 | 33.2 ± 3.51 | 2.26 | 0.075 | 67.0 ± 9.03 | 1.12 | 0.316 + 0.075 | 26.4 ± 4.28 | 2.85 |
0.15 | 30.6 ± 2.32 | 2.45 | 0.316 + 0.15 | 17.5 ± 1.13 | 4.29 |
J82 | |||||||||
0.316 µM ENT + JQ1 [µM] | 1 µM JQ1 + ENT [µM] | ||||||||
0.5 | 1 | 2 | 3 | 0.1 | 0.316 | 0.5 | 0.75 | ||
cisplatin [µM] | 0.05 | * | 0.502 | 0.413 | 0.311 | * | 0.341 | 0.463 | 0.216 |
0.1 | * | 0.500 | 0.327 | 0.284 | * | 0.479 | 0.352 | 0.193 | |
0.15 | 1.40 | 0.370 | 0.247 | 0.215 | 1.12 | 0.401 | 0.269 | 0.170 | |
0.2 | 1.10 | 0.290 | 0.190 | 0.179 | 1.21 | 0.287 | 0.217 | 0.119 | |
0.3 | 0.662 | 0.163 | 0.131 | 0.124 | 0.786 | 0.196 | 0.141 | 0.087 | |
J82 cisR | |||||||||
0.316 µM ENT + JQ1 [µM] | 0.1 µM JQ1 + ENT [µM] | ||||||||
0.05 | 0.1 | 0.2 | 0.3 | 0.1 | 0.316 | 0.5 | 0.75 | ||
cisplatin [µM] | 0.2 | 1.10 | 0.374 | 0.223 | 0.100 | 1.34 | 0.644 | 0.480 | 0.285 |
0.4 | 0.874 | 0.318 | 0.141 | 0.067 | 1.38 | 0.481 | 0.287 | 0.198 | |
0.6 | 0.782 | 0.243 | 0.118 | 0.067 | 1.07 | 0.352 | 0.249 | 0.167 | |
0.8 | 0.689 | 0.213 | 0.106 | 0.064 | 0.789 | 0.296 | 0.194 | 0.139 | |
1 | 0.538 | 0.192 | 0.104 | 0.063 | 0.795 | 0.250 | 0.183 | 0.133 | |
T24 | |||||||||
0.316 µM ENT + JQ1 [µM] | 0.3 µM JQ1 + ENT [µM] | ||||||||
0.1 | 0.3 | 0.5 | 0.7 | 0.1 | 0.5 | 0.75 | |||
cisplatin [µM] | 0.2 | * | 0.949 | 0.438 | 0.349 | 1.32 | 0.643 | 0.509 | |
0.4 | * | 0.655 | 0.313 | 0.290 | 0.844 | 0.626 | 0.421 | ||
0.6 | * | 0.491 | 0.294 | 0.265 | 0.726 | 0.431 | 0.392 | ||
0.8 | * | 0.463 | 0.258 | 0.247 | 0.552 | 0.392 | 0.322 | ||
1 | * | 0.360 | 0.243 | 0.235 | 0.484 | 0.398 | 0.287 | ||
T24 LTT | |||||||||
0.316 µM ENT + JQ1 [µM] | 0.075 µM JQ1 + ENT [µM] | ||||||||
0.05 | 0.075 | 0.15 | 0.3 | 0.1 | 0.5 | 0.75 | |||
cisplatin [µM] | 5 | * | * | * | 1.23 | * | * | 1.48 | |
10 | * | * | 2.24 | 0.912 | * | 1.97 | 1.08 | ||
15 | * | * | 1.04 | 0.690 | * | 0.940 | 0.698 | ||
20 | 1.26 | 0.980 | 0.668 | 0.610 | * | 0.597 | 0.504 | ||
25 | 0.865 | 0.684 | 0.522 | 0.457 | * | 0.466 | 0.390 |
OTX015 IC50 ± SD [µM] | JQ35 IC50 ± SD [µM] | 20 IC50 ± SD [µM] | |
---|---|---|---|
J82 | 18.9 ± 2.82 | 69.5 ± 7.88 | 7.17 ± 0.57 |
J82 cisR | 1.04 ± 0.13 | 1.49 ± 0.34 | 7.00 ± 0.49 |
T24 | ND | ND | 6.95 ± 0.54 |
T24 LTT | ND | ND | 4.66 ± 0.41 |
Cell Line | Control | + 0.316 µM Entinostat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cisplatin IC50 ± SD [µM] | OTX015 [µM] | Cisplatin IC50 ± SD [µM] | SF | JQ35 [µM] | Cisplatin IC50 ± SD [µM] | SF | 20 [µM] | Cisplatin IC50 ± SD [µM] | SF | |
J82 | 3.02 ± 0.10 | 1 | 0.70 ± 0.23 | 4.31 | 3 | 1.01 ± 0.10 | 2.99 | 7.5 | 1.86 ± 0.56 | 1.62 |
J82 cisR | 7.80 ± 0.23 | 0.1 | 1.55 ± 0.20 | 5.03 | 0.1 | 1.47 ± 0.13 | 5.31 | 7.5 | 1.47 ± 0.76 | 5.31 |
0.3 | 0.85 ± 0.06 | 9.18 |
Cisplatin IC50 ± SD [µM] | Entinostat IC50 ± SD [µM] | JQ1 IC50 ± SD [µM] | OTX015 IC50 ± SD [µM] | |
---|---|---|---|---|
HBLAK | 1.71 ± 0.09 | 1.45 ± 0.18 | 2.37 ± 0.41 | ND |
HEK293 | 3.36 ± 0.09 | 4.47 ± 0.77 | 1.41 ± 0.26 | 1.98 ± 0.42 |
Cell line | Control | +0.316 µM ENT | +0.1 µM JQ1 | +0.316 µM ENT +0.1 µM JQ1 | |||
---|---|---|---|---|---|---|---|
Cisplatin IC50 ± SD [µM] | Cisplatin IC50 ± SD [µM] | SF | Cisplatin IC50 ± SD [µM] | SF | Cisplatin IC50 ± SD [µM] | SF | |
HBLAK | 3.38 ± 0.18 | 6.89 ± 0.81 | 0.49 | 8.33 ± 0.76 | 0.41 | 8.45 ± 0.77 | 0.40 |
HEK293 | 6.26 ± 0.21 | 3.29 ± 0.30 | 1.90 | 3.19 ± 0.32 | 1.96 | 3.19 ± 0.45 | 1.96 |
Cell Line | Control | +0.316 µM ENT | +0.1 µM OTX015 | +0.316 µM ENT +0.1 µM OTX015 | |||
---|---|---|---|---|---|---|---|
Cisplatin IC50 ± SD [µM] | Cisplatin IC50 ± SD [µM] | SF | Cisplatin IC50 ± SD [µM] | SF | Cisplatin IC50 ± SD [µM] | SF | |
HEK293 | 6.26 ± 0.21 | 3.84 ± 0.31 | 1.63 | 3.74 ± 0.31 | 1.67 | 3.16 ± 0.24 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollmann, L.M.; Lange, F.; Hamacher, A.; Biermann, L.; Schäker-Hübner, L.; Hansen, F.K.; Kassack, M.U. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers 2024, 16, 3374. https://doi.org/10.3390/cancers16193374
Bollmann LM, Lange F, Hamacher A, Biermann L, Schäker-Hübner L, Hansen FK, Kassack MU. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers. 2024; 16(19):3374. https://doi.org/10.3390/cancers16193374
Chicago/Turabian StyleBollmann, Lukas M., Friedrich Lange, Alexandra Hamacher, Lukas Biermann, Linda Schäker-Hübner, Finn K. Hansen, and Matthias U. Kassack. 2024. "Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer" Cancers 16, no. 19: 3374. https://doi.org/10.3390/cancers16193374
APA StyleBollmann, L. M., Lange, F., Hamacher, A., Biermann, L., Schäker-Hübner, L., Hansen, F. K., & Kassack, M. U. (2024). Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers, 16(19), 3374. https://doi.org/10.3390/cancers16193374