Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights
Abstract
:Simple Summary
Abstract
1. Introduction
2. Risk Factors
2.1. Biliary Tract Diseases and Concurrent Metabolic/Viral Infection Factors
2.2. Metabolic Syndrome, Diabetes Mellitus, and Obesity
2.3. MASLD/MASH
3. Gender Factors and Biliary Tract Cancers
4. Cardiovascular Risk
5. Metabolomics and Biliary Tract Cancers Screening/Prognosis
Single-Cell RNA Sequencing and Biliary Tract Cancers
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montal, R.; Sia, D.; Montironi, C.; Leow, W.Q.; Esteban-Fabró, R.; Pinyol, R.; Torres-Martin, M.; Bassaganyas, L.; Moeini, A.; Peix, J.; et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J. Hepatol. 2020, 73, 315–327. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Roa, J.C.; García, P.; Kapoor, V.K.; Maithel, S.K.; Javle, M.; Koshiol, J. Gallbladder cancer. Nat. Rev. Dis. Primers 2022, 8, 69, Erratum in Nat. Rev. Dis. Primers 2022, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Mancarella, S.; Gigante, I.; Serino, G.; Pizzuto, E.; Dituri, F.; Valentini, M.F.; Wang, J.; Chen, X.; Armentano, R.; Calvisi, D.F.; et al. Crenigacestat blocking notch pathway reduces liver fibrosis in the surrounding ecosystem of intrahepatic CCA viaTGF-β inhibition. J. Exp. Clin. Cancer Res. 2022, 41, 331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guest, R.V.; Boulter, L.; Kendall, T.J.; Minnis-Lyons, S.E.; Walker, R.; Wigmore, S.J.; Sansom, O.J.; Forbes, S.J. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res. 2014, 74, 1005–1010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clements, O.; Eliahoo, J.; Kim, J.U.; Taylor-Robinson, S.D.; Khan, S.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J. Hepatol. 2020, 72, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Lavu, S.; Therneau, T.M.; Harmsen, W.S.; Mara, K.C.; Wongjarupong, N.; Hassan, M.; Ali, H.A.; Antwi, S.; Giama, N.H.; Miyabe, K.; et al. Effect of Statins on the Risk of Extrahepatic Cholangiocarcinoma. Hepatology 2020, 72, 1298–1309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, S.H.; Park, S.W. Inflammation and Cancer Development in Pancreatic and Biliary Tract Cancer. Korean J. Gastroenterol. 2015, 66, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Azevedo, I. Chronic Inflammation in Obesity and the Metabolic Syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sung, H.; Siegel, R.L.; Torre, L.A.; Pearson-Stuttard, J.; Islami, F.; Fedewa, S.A.; Sauer, A.G.; Shuval, K.; Gapstur, S.M.; Jacobs, E.J.; et al. Global patterns in excess body weight and the associated cancer burden. CA A Cancer J. Clin. 2019, 69, 88–112. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.V.; Patel, K.S.; Teras, L.R. Excess body fatness and cancer risk: A summary of the epidemiologic evidence. Surg. Obes. Relat. Dis. 2023, 19, 742–745. [Google Scholar] [CrossRef] [PubMed]
- Kant, P.; Hull, M.A. Excess body weight and obesity—The link with gastrointestinal and hepatobiliary cancer. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.S.; Van Dyke, A.L.; Zhu, B.; Pfeiffer, R.M.; Petrick, J.L.; Adami, H.-O.; Albanes, D.; Andreotti, G.; Freeman, L.E.B.; de González, A.B.; et al. Anthropometric Risk Factors for Cancers of the Biliary Tract in the Biliary Tract Cancers Pooling Project. Cancer Res. 2019, 79, 3973–3982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, X.-D.; Wu, Q.; Liu, W.; Hong, T.; Li, J.-J.; Miao, R.-Y.; Zhao, H.-T. Association of metabolic syndromes and risk factors with ampullary tumors development: A case-control study in China. World J. Gastroenterol. 2014, 20, 9541–9548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shebl, F.M.; Andreotti, G.; Meyer, T.E.; Gao, Y.-T.; Rashid, A.; Yu, K.; Shen, M.-C.; Wang, B.-S.; Han, T.-Q.; Zhang, B.-H.; et al. Metabolic syndrome and insulin resistance in relation to biliary tract cancer and stone risks: A population-based study in Shanghai, China. Br. J. Cancer 2011, 105, 1424–1429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Randi, G.; Franceschi, S.; La Vecchia, C. Gallbladder cancer worldwide: Geographical distribution and risk factors. Int. J. Cancer 2006, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Welzel, T.M.; Graubard, B.I.; El-Serag, H.B.; Shaib, Y.H.; Hsing, A.W.; Davila, J.A.; McGlynn, K.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: A population-based case-control study. Clin. Gastroenterol. Hepatol. 2007, 5, 1221–1228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grainge, M.J.; West, J.; Solaymani-Dodaran, M.; Aithal, G.P.; Card, T.R. The antecedents of biliary cancer: A primary care case–control study in the United Kingdom. Br. J. Cancer 2009, 100, 178–180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, H.-B.; Yu, T.; Liu, C.; Li, Y.-Q. Diabetes mellitus and increased risk of biliary tract cancer: Systematic review and meta-analysis. Cancer Causes Control. 2011, 22, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Aleksandrova, K.; Pischon, T.; Jenab, M.; Fedirko, V.; Trepo, E.; Overvad, K.; Roswall, N.; Tjønneland, A.; Boutron-Ruault, M.C.; et al. Diabetes mellitus, insulin treatment, diabetes duration, and risk of biliary tract cancer and hepatocellular carcinoma in a European cohort. Ann. Oncol. 2013, 24, 2449–2455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.-H.; Hong, J.Y.; Park, Y.S.; Kang, G.; Han, K.; Park, J.O. Association of prediabetes, diabetes, and diabetes duration with biliary tract cancer risk: A nationwide cohort study. Metabolism 2021, 123, 154848. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Yang, B.; Altekruse, S.F.; Van Dyke, A.L.; Koshiol, J.; Graubard, B.I.; McGlynn, K.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: A population-based study in SEER-Medicare. PLoS ONE 2017, 12, e0186643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Welzel, T.M.; Graubard, B.I.; Zeuzem, S.; El-Serag, H.B.; Davila, J.A.; McGlynn, K.A. Metabolic syndrome increases the risk of primary liver cancer in the United States: A study in the SEER-Medicare database. Hepatology 2011, 54, 463–471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiong, J.; Lu, X.; Xu, W.; Bai, Y.; Huang, H.; Bian, J.; Zhang, L.; Long, J.; Xu, Y.; Wang, Z.; et al. Metabolic syndrome and the risk of cholangiocarcinoma: A hospital-based case–control study in China. Cancer Manag. Res. 2018, 10, 3849–3855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cadamuro, M.; Sarcognato, S.; Camerotto, R.; Girardi, N.; Lasagni, A.; Zanus, G.; Cillo, U.; Gringeri, E.; Morana, G.; Strazzabosco, M.; et al. Intrahepatic Cholangiocarcinoma Developing in Patients with Metabolic Syndrome Is Characterized by Osteopontin Overexpression in the Tumor Stroma. Int. J. Mol. Sci. 2023, 24, 4748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghidini, M.; Ramai, D.; Facciorusso, A.; Singh, J.; Tai, W.; Rijavec, E.; Galassi, B.; Grossi, F.; Indini, A. Metabolic disorders and the risk of cholangiocarcinoma. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, D.; Barbaro, B.; Franchitto, A.; Onori, P.; Glaser, S.S.; Alpini, G.; Francis, H.; Marucci, L.; Sterpetti, P.; Ginanni-Corradini, S.; et al. Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am. J. Pathol. 2006, 169, 877–888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimizu, Y.; Demetris, A.J.; Gollin, S.M.; Storto, P.D.; Bedford, H.M.; Altarac, S.; Iwatsuki, S.; Herberman, R.B.; Whiteside, T.L. Two new human cholangiocarcinoma cell lines and their cytogenetics and responses to growth factors, hormones, cytokines or immunologic effector cells. Int. J. Cancer 1992, 52, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Hausmann, M.; Dietmaier, W.; Kellermeier, S.; Pesch, T.; Stieber-Gunckel, M.; Lippert, E.; Klebl, F.; Rogler, G. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines. BMC Cancer 2010, 10, 302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdel-Razik, A.; ElMahdy, Y.; El Hanafy, E.; Elhelaly, R.; Elzehery, R.; Tawfik, A.M.; Eldars, W. Insulin-Like Growth Factor-1 and Vascular Endothelial Growth Factor in Malignant and Benign Biliary Obstructions. Am. J. Med. Sci. 2016, 351, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, D.; Macarri, G.; Mancino, M.G.; Marzioni, M.; Bragazzi, M.; Onori, P.; Corradini, S.G.; Invernizzi, P.; Franchitto, A.; Attili, A.F.; et al. Serum and biliary insulin-like growth factor I and vascular endothelial growth factor in determining the cause of obstructive cholestasis. Ann. Intern. Med. 2007, 147, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, Y.; Kokuryo, T.; Tsunoda, N.; Yamazaki, Y.; Oda, K.; Nimura, Y.; Mon, N.N.; Huang, P.; Nakanuma, Y.; Chen, M.-F.; et al. Tumor necrosis factor alpha promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2. Cancer Lett. 2005, 219, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Hong, J.Y.; Park, Y.S.; Kang, G.; Han, K.; Park, J.O. Persistent status of metabolic syndrome and risk of cholangiocarcinoma: A Korean nationwide population-based cohort study. Eur. J. Cancer 2021, 155, 97–105. [Google Scholar] [CrossRef] [PubMed]
- A Parsi, M. Obesity and cholangiocarcinoma. World J. Gastroenterol. 2013, 19, 457–462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osataphan, S.; Mahankasuwan, T.; Saengboonmee, C. Obesity and cholangiocarcinoma: A review of epidemiological and molecular associations. J. Hepato-Biliary-Pancreat. Sci. 2021, 28, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Sivanand, A.; Talati, D.; Kalariya, Y.; Patel, P.; Gandhi, S.K. Associations of Liver Fluke Infection and Cholangiocarcinoma: A Scoping Review. Cureus 2023, 15, e46400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stocco, C. Tissue physiology and pathology of aromatase. Steroids 2012, 77, 27–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sampson, L.K.; Vickers, S.M.; Ying, W.; O Phillips, J. Tamoxifen-mediated growth inhibition of human cholangiocarcinoma. Cancer Res. 1997, 57, 1743–1749. [Google Scholar]
- Alvaro, D.; Alpini, G.; Onori, P.; Perego, L.; Baroni, G.S.; Franchitto, A.; Baiocchi, L.; Glaser, S.S.; Le Sage, G.; Folli, F.; et al. Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats. Gastroenterology 2000, 119, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Isse, K.; Specht, S.M.; Lunz, J.G.; Kang, L.-I.; Mizuguchi, Y.; Demetris, A.J. Estrogen stimulates female biliary epithelial cell interleukin-6 expression in mice and humans. Hepatology 2010, 51, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Mancino, A.; Mancino, M.; Glaser, S.; Alpini, G.; Bolognese, A.; Izzo, L.; Francis, H.; Onori, P.; Franchitto, A.; Ginanni-Corradini, S.; et al. Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig. Liver Dis. 2008, 41, 156–163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petrick, J.L.; McMenamin, C.; Zhang, X.; Zeleniuch-Jacquotte, A.; Wactawski-Wende, J.; Simon, T.G.; Sinha, R.; Sesso, H.D.; Schairer, C.; Rosenberg, L.; et al. Exogenous hormone use, reproductive factors and risk of intrahepatic cholangiocarcinoma among women: Results from cohort studies in the Liver Cancer Pooling Project and the UK Biobank. Br. J. Cancer 2020, 123, 316–324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petrick, J.L.; Florio, A.A.; Zhang, X.; Zeleniuch-Jacquotte, A.; Wactawski-Wende, J.; Eeden, S.K.V.D.; Stanczyk, F.Z.; Simon, T.G.; Sinha, R.; Sesso, H.D.; et al. Associations Between Prediagnostic Concentrations of Circulating Sex Steroid Hormones and Liver Cancer Among Postmenopausal Women. Hepatology 2020, 72, 535–547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fava, G.; Alpini, G.; Rychlicki, C.; Saccomanno, S.; DeMorrow, S.; Trozzi, L.; Candelaresi, C.; Venter, J.; Di Sario, A.; Marzioni, M.; et al. Leptin enhances cholangiocarcinoma cell growth. Cancer Res. 2008, 68, 6752–6761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Izzo, P.; Izzo, S.; Di Cello, P.; D’Amata, G.; Cardi, M.; Polistena, A.; Messineo, D.; Izzo, L. Role of Leptin in Neoplastic and Biliary Tree Disease. In Vivo 2020, 34, 2485–2490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, C.; Sun, Z.; Li, O.; Guo, C.; Yi, W.; Tan, Z.; Jiang, B. Leptin stimulates the epithelial-mesenchymal transition and pro-angiogenic capability of cholangiocarcinoma cells through the miR-122/PKM2 axis. Int. J. Oncol. 2019, 55, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Philp, L.K.; Rockstroh, A.; Lehman, M.; Sadowski, M.C.; Bartonicek, N.; Wade, J.D.; Otvos, L.; Nelson, C.C. Adiponectin receptor activation inhibits prostate cancer xenograft growth. Endocr. Relat. Cancer 2020, 27, 711–729. [Google Scholar] [CrossRef] [PubMed]
- Raut, P.K.; Park, P.-H. Globular adiponectin antagonizes leptin-induced growth of cancer cells by modulating inflammasomes activation: Critical role of HO-1 signaling. Biochem. Pharmacol. 2020, 180, 114186. [Google Scholar] [CrossRef] [PubMed]
- Bui, K.C.; Nguyen, T.M.L.; Barat, S.; Scholta, T.; Xing, J.; Bhuria, V.; Sipos, B.; Wilkens, L.; Nguyen, L.T.; Le, H.S.; et al. Novel Adiponectin Receptor Agonist Inhibits Cholangiocarcinoma via Adenosine Monophosphate-activated Protein Kinase. Curr. Med. Chem. 2024, 31, 4534–4548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, T.; Xu, L.; Luan, X. Diabetes mellitus and the risk of cholangiocarcinoma: An updated meta-analysis. Prz. Gastroenterol. Rev. 2015, 10, 108–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saengboonmee, C.; Seubwai, W.; Wongkham, C.; Wongkham, S. Diabetes mellitus: Possible risk and promoting factors of cholangiocarcinoma: Association of diabetes mellitus and cholangiocarcinoma. Cancer Epidemiol. 2015, 39, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Thistle, J.E.; Zeleniuch-Jacquotte, A.; Zhang, X.; Wactawski-Wende, J.; Van Dyke, A.L.; Stampfer, M.J.; Sinha, R.; Sesso, H.D.; Schairer, C.; et al. Body Mass Index, Diabetes and Intrahepatic Cholangiocarcinoma Risk: The Liver Cancer Pooling Project and Meta-analysis. Am. J. Gastroenterol. 2018, 113, 1494–1505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stinton, L.M.; Shaffer, E.A. Epidemiology of gallbladder disease: Cholelithiasis and cancer. Gut Liver 2012, 6, 172–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Obesity and the risk of gallbladder cancer: A meta-analysis. Br. J. Cancer 2007, 96, 1457–1461. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, J.; Chen, M.; Ma, M.; Sheng, B. Elevated serum triglyceride levels may be a key independent predicting factor for gallbladder cancer risk in gallbladder stone disease patients: A case–control study. BMC Endocr. Disord. 2022, 22, 270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhan, Z.; Huang, Z.; Luo, Y.; Zeng, J.; Wang, Y.; Tan, J.; Chen, Y.; Fang, J. Metabolic syndrome, its components, and gastrointestinal cancer risk: A meta-analysis of 31 prospective cohorts and Mendelian randomization study. J. Gastroenterol. Hepatol. 2024, 39, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Borena, W.; Edlinger, M.; Bjørge, T.; Häggström, C.; Lindkvist, B.; Nagel, G.; Engeland, A.; Stocks, T.; Strohmaier, S.; Manjer, J.; et al. A prospective study on metabolic risk factors and gallbladder cancer in the metabolic syndrome and cancer (Me-Can) collaborative study. PLoS ONE 2014, 9, e89368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, Z.; Xuan, Y.; Li, X.; Crawford, W.J.; Yuan, Z.; Chen, Z.; Brooks, A.; Song, Y.; Wang, H.; Liang, X.; et al. Effect of metabolic syndrome components on the risk of malignancy in patients with gallbladder lesions. J. Cancer 2021, 12, 1531–1537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gu, J.; Yan, S.; Wang, B.; Shen, F.; Cao, H.; Fan, J.; Wang, Y. Type 2 diabetes mellitus and risk of gallbladder cancer: A systematic review and meta-analysis of observational studies. Diabetes Metab. Res. Rev. 2016, 32, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jing, C.; Wang, Z.; Fu, X. Effect of diabetes mellitus on survival in patients with gallbladder Cancer: A systematic review and meta-analysis. BMC Cancer 2020, 20, 689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wongjarupong, N.; Assavapongpaiboon, B.; Susantitaphong, P.; Cheungpasitporn, W.; Treeprasertsuk, S.; Rerknimitr, R.; Chaiteerakij, R. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: A systematic review and meta-analysis. BMC Gastroenterol. 2017, 17, 149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanna, C.; Rosso, C.; Marietti, M.; Bugianesi, E. Non-Alcoholic Fatty Liver Disease and Extra-Hepatic Cancers. Int. J. Mol. Sci. 2016, 17, 717. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gehrke, N.; Schattenberg, J.M. Metabolic Inflammation—A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020, 158, 1929–1947.e6. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Hikiba, Y.; Fujiwara, H.; Ikenoue, T.; Sue, S.; Sugimori, M.; Matsubayashi, M.; Kaneko, H.; Irie, K.; Sasaki, T.; et al. NAFLD exacerbates cholangitis and promotes cholangiocellular carcinoma in mice. Cancer Sci. 2021, 112, 1471–1480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, L.-X.; Schwabe, R.F. The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 527–539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leung, C.; Rivera, L.; Furness, J.B.; Angus, P.W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Saab, M.; Mestivier, D.; Sohrabi, M.; Rodriguez, C.; Khonsari, M.R.; Faraji, A.; Sobhani, I. Characterization of biliary microbiota dysbiosis in extrahepatic cholangiocarcinoma. PLoS ONE 2021, 16, e0247798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sayiner, M.; Koenig, A.; Henry, L.; Younossi, Z.M. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin. Liver Dis. 2016, 20, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Seto, W.-K.; Yuen, M.-F. Nonalcoholic fatty liver disease in Asia: Emerging perspectives. J. Gastroenterol. 2017, 52, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Kwon, M.; Lee, J.; Han, K.; Han, I.W.; Kang, W.; Park, J.K. Association between non-alcoholic fatty liver disease and the risk of biliary tract cancers: A South Korean nationwide cohort study. Eur. J. Cancer 2021, 150, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Corrao, S.; Natoli, G.; Argano, C. Nonalcoholic fatty liver disease is associated with intrahepatic cholangiocarcinoma and not with extrahepatic form: Definitive evidence from meta-analysis and trial sequential analysis. Eur. J. Gastroenterol. Hepatol. 2020, 33, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Dungubat, E.; Kusano, H.; Fukusato, T. Pathology and Pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatic Tumors. Biomedicines 2023, 11, 2761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cusi, K.; Younossi, Z.; Roden, M. From NAFLD to MASLD: Promise and pitfalls of a new definition†. Hepatology 2024, 79, E13–E15. [Google Scholar] [CrossRef] [PubMed]
- Gopal, P.; Robert, M.E.; Zhang, X. Cholangiocarcinoma: Pathologic and Molecular Classification in the Era of Precision Medicine. Arch. Pathol. Lab. Med. 2024, 148, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, C.; Suo, C.; Zhao, R.; Jin, L.; Zhang, T.; Chen, X. Metabolic dysfunction–associated fatty liver disease and the risk of 24 specific cancers. Metabolism 2022, 127, 154955. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.K.; Hyder, O.; Marsh, J.W.; Sotiropoulos, G.C.; Paul, A.; Alexandrescu, S.; Marques, H.; Pulitano, C.; Barroso, E.; Aldrighetti, L.; et al. Prevalence of nonalcoholic steatohepatitis among patients with resectable intrahepatic cholangiocarcinoma. J. Gastrointest. Surg. 2013, 17, 748–755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nkontchou, G.; Van Nhieu, J.T.; Ziol, M.; Tengher, I.; Mahmoudi, A.; Roulot, D.; Bourcier, V.; Carrie, N.G.; Grando-Lemaire, V.; Trinchet, J.-C.; et al. Peripheral intrahepatic cholangiocarcinoma occurring in patients without cirrhosis or chronic bile duct diseases: Epidemiology and histopathology of distant nontumoral liver in 57 White patients. Eur. J. Gastroenterol. Hepatol. 2013, 25, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Welzel, T.M.; Mellemkjaer, L.; Gloria, G.; Sakoda, L.C.; Hsing, A.W.; El Ghormli, L.; Olsen, J.H.; McGlynn, K.A. Risk factors for intrahepatic cholangiocarcinoma in a low-risk population: A nationwide case-control study. Int. J. Cancer 2007, 120, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Kubo, S.; Tanaka, S.; Takemura, S.; Nishioka, T.; Hamano, G.; Ito, T.; Tanaka, S.; Ohsawa, M.; Shibata, T. The association between non-alcoholic steatohepatitis and intrahepatic cholangiocarcinoma: A hospital based case-control study. J. Surg. Oncol. 2016, 113, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Makiuchi, T.; Sobue, T.; Kitamura, T.; Sawada, N.; Iwasaki, M.; Sasazuki, S.; Yamaji, T.; Shimazu, T.; Tsugane, S. Reproductive factors and gallbladder/bile duct cancer: A population-based cohort study in Japan. Eur. J. Cancer Prev. 2017, 26, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.S.; Adami, H.-O.; Andreotti, G.; Beane-Freeman, L.E.; de González, A.B.; Buring, J.E.; Fraser, G.E.; Freedman, N.D.; Gapstur, S.M.; Gierach, G.; et al. Associations between reproductive factors and biliary tract cancers in women from the Biliary Tract Cancers Pooling Project. J. Hepatol. 2020, 73, 863–872. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venniyoor, A. Cholesterol gallstones and cancer of gallbladder (CAGB): Molecular links. Med. Hypotheses 2008, 70, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Singletary, B.K.; van Thiel, D.H.; Eagon, P.K. Estrogen and progesterone receptors in human gallbladder. Hepatology 1986, 6, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Hou, L.; Gao, Y.-T.; Brinton, L.A.; Rashid, A.; Chen, J.; Shen, M.-C.; Wang, B.-S.; Han, T.-Q.; Zhang, B.-H.; et al. Reproductive factors and risks of biliary tract cancers and stones: A population-based study in Shanghai, China. Br. J. Cancer 2010, 102, 1185–1189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, A.; Cho, S.; Abe, S.K.; Islam, R.; Rahman, S.; Saito, E.; Kazmi, S.Z.; Katagiri, R.; Merritt, M.; Choi, J.; et al. Association of female reproductive and hormonal factors with gallbladder cancer risk in Asia: A pooled analysis of the Asia Cohort Consortium. Int. J. Cancer 2024, 155, 240–250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, C.Y.; Lim, J.-Y.; Park, H.-Y. Age at natural menopause in Koreans: Secular trends and influences thereon. Menopause 2018, 25, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.-Y.; Chen, H.-J.; Pan, W.-H.; Yu, T. Secular trends and associated factors of age at natural menopause in Taiwanese women. Menopause 2019, 26, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Ohnami, S.; Nakata, H.; Nagafuchi, Y.; Zeze, F.; Eto, S. Estrogen receptors in human gastric, hepatocellular, and gallbladder car-cinomas and normal liver tissues. Gan Kagaku Ryoho. 1988, 15, 2923–2928. (In Japanese) [Google Scholar] [PubMed]
- Nakamura, S.; Muro, H.; Suzuki, S. Estrogen and progesterone receptors in gallbladder cancer. Jpn. J. Surg. 1989, 19, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Barreto, S.G.; Haga, H.; Shukla, P.J. Hormones and gallbladder cancer in women. Indian J. Gastroenterol. 2009, 28, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, R.S.; Singh, R.; Gupta, R.; Verma, G.R.; Kalra, N.; Kiran, K.; Joshi, K. Female sex hormone receptors in gallbladder cancer. J. Gastrointest. Cancer 2015, 46, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Hryciuk, B.; Pęksa, R.; Bieńkowski, M.; Szymanowski, B.; Radecka, B.; Winnik, K.; Żok, J.; Cichowska, N.; Iliszko, M.; Duchnowska, R. Expression of Female Sex Hormone Receptors, Connective Tissue Growth Factor and HER2 in Gallbladder Cancer. Sci. Rep. 2020, 10, 1871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hainsworth, J.D.; Meric-Bernstam, F.; Swanton, C.; Hurwitz, H.; Spigel, D.R.; Sweeney, C.; Burris, H.A.; Bose, R.; Yoo, B.; Stein, A.; et al. Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results from MyPathway, an Open-Label, Phase IIa Multiple Basket Study. J. Clin. Oncol. 2018, 36, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Ginsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; et al. Ado-Trastuzumab Emtansine for Patients with HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. J. Clin. Oncol. 2018, 36, 2532–2537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mancinelli, R.; Onori, P.; Demorrow, S.; Francis, H.; Glaser, S.; Franchitto, A.; Carpino, G.; Alpini, G.; Gaudio, E. Role of sex hormones in the modulation of cholangiocyte function. World J. Gastrointest. Pathophysiol. 2010, 1, 50–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alvaro, D.; Mancino, M.G.; Onori, P.; Franchitto, A.; Alpini, G.; Francis, H.; Glaser, S.; Gaudio, E. Estrogens and the pathophysiology of the biliary tree. World J. Gastroenterol. 2006, 12, 3537–3545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kilander, C.; Mattsson, F.; Lu, Y.; Ljung, R.; Lagergren, J.; Sadr-Azodi, O. Reproductive factors and risk of biliary tract cancer in a population-based study. Acta Oncol. 2015, 54, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.-M.; Zhou, P.; Li, S.-Y.; Zhang, X.-Y.; Shen, J.-X.; Chen, Q.-X.; Zhuang, J.-X.; Shen, D.-Y. Diosgenin Suppresses Cholangiocarcinoma Cells Via Inducing Cell Cycle Arrest and Mitochondria-Mediated Apoptosis. OncoTargets Ther. 2019, 12, 9093–9104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hunsawong, T.; Singsuksawat, E.; In-Chon, N.; Chawengrattanachot, W.; Thuwajit, C.; Sripa, B.; Paupairoj, A.; Chau-In, S.; Thuwajit, P. Estrogen is increased in male cholangiocarcinoma patients’ serum and stimulates invasion in cholangiocarcinoma cell lines in vitro. J. Cancer Res. Clin. Oncol. 2012, 138, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Yoon, S.-J.; Kim, D.-W.; Kim, A.-R.; Kim, E.-J.; Seo, H.-Y.; Gong, Y.-H. Metabolic Risk Profile and Cancer in Korean Men and Women. J. Prev. Med. Public Health 2016, 49, 143–152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ambrignani, M.G.; Parrini, I.; Grosseto, D.; Lestuzzi, C.; Mistrangelo, M.; Passaretti, B.; A nome dell’Area Prevenzione Cardiovascolare ANMCO e della Task Force Cardioncologia ANMCO. Stili di vita, fattori di rischio e prevenzione delle malattie oncologiche: Il ruolo del cardiologo [Lifestyle, risk factors and prevention of cancer: Role of the cardiologist]. G Ital. Cardiol. 2019, 20, 20–31. (In Italian) [Google Scholar] [CrossRef] [PubMed]
- Kuper, H.; Adami, H.O.; Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 2000, 248, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Kamp, D.W.; Shacter, E.; Weitzman, S.A. Chronic inflammation and cancer: The role of the mitochondria. Oncology 2011, 25, 400–413. [Google Scholar] [PubMed]
- Chan, D.S.M.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Rosenblatt, D.N.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer—Systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ballard-Barbash, R.; Friedenreich, C.M.; Courneya, K.S.; Siddiqi, S.M.; McTiernan, A.; Alfano, C.M. Physical activity, biomarkers, and disease outcomes in cancer survivors: A systematic review. J. Natl. Cancer Inst. 2012, 104, 815–840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hovsepyan, G.; Barac, A.; Brasky, T.M.; Shadyab, A.H.; Lehman, A.; McLaughlin, E.M.; Saquib, N.; Iyengar, N.M.; Wild, R.A.; Caan, B.J.; et al. Pre-diagnosis lipid levels and mortality after obesity-related cancer diagnosis in the Women’s Health Initiative cardiovascular disease biomarker cohort. Cancer Med. 2023, 12, 16626–16636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gallagher, E.J.; LeRoith, D. Obesity and Diabetes: The Increased Risk of Cancer and Cancer-Related Mortality. Physiol. Rev. 2015, 95, 727–748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, Y.S.; Park, Y.G.; Kim, B.K.; Han, S.Y.; Jee, Y.H.; Han, K.H.; Lee, M.H.; Song, H.K.; Cha, D.R.; Kang, S.W.; et al. Angiotensin II stimulates the synthesis of vascular endothelial growth factor through the p38 mitogen activated protein kinase pathway in cultured mouse podocytes. J. Mol. Endocrinol. 2006, 36, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Nishihara, R.; Wu, K.; Wang, M.; Ogino, S.; Willett, W.C.; Spiegelman, D.; Fuchs, C.S.; Giovannucci, E.L.; Chan, A.T. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncol. 2016, 2, 762–769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patrignani, P.; Patrono, C. Aspirin and Cancer. J. Am. Coll. Cardiol. 2016, 68, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Koshiol, J.; Huang, Y.; Jackson, S.S.; Huang, Y.; Chan, C.; Huang, C.; Liu, P.; Chen, Y.; Hsieh, R.J.; et al. Postdiagnosis Aspirin Use Associated With Decreased Biliary Tract Cancer–Specific Mortality in a Large Nationwide Cohort. Hepatology 2021, 74, 1994–2006. [Google Scholar] [CrossRef] [PubMed]
- Gunchick, V.; McDevitt, R.L.; Choi, E.; Winslow, K.; Zalupski, M.M.; Sahai, V. Survival Analysis of 1140 Patients with Biliary Cancer and Benefit from Concurrent Renin-Angiotensin Antagonists, Statins, or Aspirin with Systemic Therapy. Oncologist 2023, 28, 531–541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, S.; Sun, Y.; Chen, J.; Li, X.; Larsson, S.C. Long-term risk of venous thromboembolism among patients with gastrointestinal non-neoplastic and neoplastic diseases: A prospective cohort study of 484 211 individuals. Am. J. Hematol. 2024, 99, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, T.; Tanaka, A. Successful multidisciplinary treatment of hilar cholangiocarcinoma in a patient with complicated new-onset coronary artery disease. BMJ Case Rep. 2014, 2014, bcr2014203941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.S.; Paik, W.H.; Lee, S.H.; Lee, M.W.; Park, N.; Choi, J.H.; Cho, I.R.; Ryu, J.K.; Kim, Y.-T. Clinical Significance of Venous Thromboembolism in Patients with Advanced Cholangiocarcinoma. Gut Liver 2024, 18, 165–173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeon, H.K.; Kim, D.U.; Baek, D.H.; Ha, D.W.; Lee, B.E.; Ryu, D.Y.; Cheong, J.H.; Kim, G.H.; Song, G.A.; Jang, A.L. Venous thromboembolism in patients with cholangiocarcinoma: Focus on risk factors and impact on survival. Eur. J. Gastroenterol. Hepatol. 2012, 24, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Pfrepper, C.; Knödler, M.; Schorling, R.M.; Seehofer, D.; Petros, S.; Lordick, F. Predictors for thromboembolism in patients with cholangiocarcinoma. J. Cancer Res. Clin. Oncol. 2022, 148, 2415–2426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamane, A.; Sadahiro, H.; Goto, H.; Inamura, A.; Ishihara, H.; Oka, F.; Oku, T.; Kondo, T.; Suzuki, M. Multiple ischemic strokes caused by nonbacterial thrombotic endocarditis because of gallbladder cancer: A case report. J. Stroke Cerebrovasc. Dis. 2014, 23, 1727–1729. [Google Scholar] [CrossRef] [PubMed]
- Shoji, M.K.; Kim, J.-H.; Bakshi, S.; Govea, N.; Marukian, N.; Wang, S.J.; Shoji, M.K.; Kim, J.-H.; Bakshi, S.; Govea, N.; et al. Nonbacterial Thrombotic Endocarditis Due to Primary Gallbladder Malignancy with Recurrent Stroke Despite Anticoagulation: Case Report and Literature Review. J. Gen. Intern. Med. 2019, 34, 1934–1940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.; Xu, F.; Yuan, S.; Zhao, X.; Qiao, M.; Han, D.; Lyu, J. Competing risk analysis of cardiovascular death in patients with primary gallbladder cancer. Cancer Med. 2023, 12, 2179–2186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xia, Y.; Lu, S.; Huo, C.; Fan, L.; Lin, M.; Huang, J. Non cancer causes of death after gallbladder cancer diagnosis: A population-based analysis. Sci. Rep. 2023, 13, 13746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suganuma, M.; Marugami, Y.; Sakurai, Y.; Ochiai, M.; Hasegawa, S.; Imazu, H.; Matsubara, T.; Funabiki, T.; Kuroda, M. Cardiac metastasis from squamous cell carcinoma of gallbladder. J. Gastroenterol. 1997, 32, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Shiraki, K.; Fuke, H.; Yamanaka, Y.; Miyashita, K.; Ito, K.; Suzuki, M.; Sugimoto, K.; Murata, K.; Nakano, T. Cardiac metastases of gallbladder carcinoma. World J. Gastroenterol. 2005, 11, 2048–2049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanfling, S.M. Metastatic cancer to the heart. Review of the literature and report of 127 cases. Circulation 1960, 22, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Berge, T.; Sievers, J. Myocardial metastases. A pathological and electrocardiographic study. Br. Heart J. 1968, 30, 383–390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mocan, L.-P.; Ilieș, M.; Melincovici, C.S.; Spârchez, M.; Crăciun, R.; Nenu, I.; Horhat, A.; Tefas, C.; Spârchez, Z.; Iuga, C.A.; et al. Novel approaches in search for biomarkers of cholangiocarcinoma. World J. Gastroenterol. 2022, 28, 1508–1525. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, T.; Lyu, L.; Zheng, J.; Li, L. Advances in omics-based biomarker discovery for biliary tract malignancy Diagnosis:A narrative review. Mol. Cell. Probes 2024, 76, 101970. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cheng, S.; Ding, C.; Lv, Z.; Chen, D.; Wu, J.; Zheng, S. Identification of bile biomarkers of biliary tract cancer through a liquid chromatography/mass spectrometry-based metabolomic method. Mol. Med. Rep. 2015, 11, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Albiin, N.; Smith, I.C.P.; Arnelo, U.; Lindberg, B.; Bergquist, A.; Dolenko, B.; Bryksina, N.; Bezabeh, T. Detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis. Acta Radiol. 2008, 49, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Kishi, K.; Kuwatani, M.; Ohnishi, Y.; Kumaki, Y.; Kumeta, H.; Hirata, H.; Takishin, Y.; Furukawa, R.; Nagai, K.; Yonemura, H.; et al. Metabolomics of Duodenal Juice for Biliary Tract Cancer Diagnosis. Cancers 2023, 15, 4370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Z.; Shi, Z.; Zhu, Z.; Li, C.; Du, Z.; Zhang, Y.; Wang, Z.; Jiao, Z.; Tian, X.; et al. Analysis of bile acid profile in plasma to differentiate cholangiocarcinoma from benign biliary diseases and healthy controls. J. Steroid Biochem. Mol. Biol. 2021, 205, 105775. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Lu, S.; Zeng, Z.; Liu, Q.; Dong, Z.; Chen, Y.; Zhu, Z.; Hong, Z.; Zhang, T.; Du, G.; et al. Characterization of Gut Microbiota, Bile Acid Metabolism, and Cytokines in Intrahepatic Cholangiocarcinoma. Hepatology 2020, 71, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Liu, H.; Zhang, T.; Jiang, Y.; Xing, H.; Zhang, H. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma. Mol. Biosyst. 2016, 12, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.S.; Iñarrairaegui, M.; Arbelaiz, A.; Milkiewicz, P.; Muntane, J.; Muñoz-Bellvis, L.; La Casta, A.; Gonzalez, L.M.; Arretxe, E.; Alonso, C.; et al. Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis. Hepatolongy 2019, 70, 547–562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alsaleh, M.; Leftley, Z.; Barbera, T.A.; Koomson, L.K.; Zabron, A.; Crossey, M.M.; Reeves, H.L.; Cramp, M.; Ryder, S.; Greer, S.; et al. Characterisation of the Serum Metabolic Signature of Cholangiocarcinoma in a United Kingdom Cohort. J. Clin. Exp. Hepatol. 2020, 10, 17–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, R.K.; Mishra, K.; Farooqui, A.; Behari, A.; Kapoor, V.K.; Sinha, N. 1H nuclear magnetic resonance (NMR)-based serum metabolomics of human gallbladder inflammation. Inflamm. Res. 2017, 66, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, J.; Zhang, A.-H. Urine metabolic phenotypes analysis of extrahepatic cholangiocarcinoma disease using ultra-high performance liquid chromatography-mass spectrometry. RSC Adv. 2016, 6, 63049–63057. [Google Scholar] [CrossRef]
- Tan, J.; Shu, M.; Liao, J.; Liang, R.; Liu, S.; Kuang, M.; Peng, S.; Xiao, H.; Zhou, Q. Identification and validation of a plasma metabolomics-based model for risk stratification of intrahepatic cholangiocarcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 12365–12377. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Wang, D.C.; Lu, J.; Wu, W.; Wang, X. Potentials of single-cell biology in identification and validation of disease biomarkers. J. Cell. Mol. Med. 2016, 20, 1789–1795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, W.; Xu, D.; Liu, Q.; Wu, Y.; Wang, Y.; Yang, J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed. Pharmacother. 2023, 162, 114697. [Google Scholar] [CrossRef] [PubMed]
- Golino, J.L.; Wang, X.; Maeng, H.M.; Xie, C. Revealing the Heterogeneity of the Tumor Ecosystem of Cholangiocarcinoma through Single-Cell Transcriptomics. Cells 2023, 12, 862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, H.; Wan, L.; Wang, Z.; Wang, H.; Ge, C.; Liu, Y.; Hao, Y.; Zhang, D.; Shi, G.; et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 2020, 73, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Shi, Y.; Meng, L.; Ma, J.; Huang, S.; Zhang, J.; Wu, Y.; Li, J.; Lin, Y.; Yang, S.; et al. Single-cell transcriptomic analysis suggests two molecularly subtypes of intrahepatic cholangiocarcinoma. Nat. Commun. 2022, 13, 1642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bian, J.; Fu, J.; Wang, X.; Lee, J.; Brar, G.; Escorcia, F.E.; Cam, M.; Xie, C. Characterization of Immunogenicity of Malignant Cells with Stemness in Intrahepatic Cholangiocarcinoma by Single-Cell RNA Sequencing. Stem Cells Int. 2022, 2022, 3558200. [Google Scholar] [CrossRef] [PubMed]
- Alvisi, G.; Termanini, A.; Soldani, C.; Portale, F.; Carriero, R.; Pilipow, K.; Costa, G.; Polidoro, M.; Franceschini, B.; Malenica, I.; et al. Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target. J. Hepatol. 2022, 77, 1359–1372. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qu, L.; Yang, Y.; Zhang, H.; Li, X.; Zhang, X. Single-cell Transcriptomic Architecture Unraveling the Complexity of Tumor Heterogeneity in Distal Cholangiocarcinoma. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 1592–1609.e9. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.-J.; Luo, X.-M.; Liu, F.; He, Z.-Q.; Yang, S.-Q.; Ma, W.-J.; Wang, J.-K.; Dai, Y.-S.; Zou, R.-Q.; Hu, Y.-F.; et al. Integrative analyses of bulk and single-cell transcriptomics reveals the infiltration and crosstalk of cancer-associated fibroblasts as a novel predictor for prognosis and microenvironment remodeling in intrahepatic cholangiocarcinoma. J. Transl. Med. 2024, 22, 422. [Google Scholar] [CrossRef] [PubMed]
- Affo, S.; Nair, A.; Brundu, F.; Ravichandra, A.; Bhattacharjee, S.; Matsuda, M.; Chin, L.; Filliol, A.; Wen, W.; Song, X.; et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 2021, 39, 866–882.e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Authors | Year | Study Type | N Patients | Study Period/ Follow up Period (If Applicable) | Risk of BTC | Conclusions |
---|---|---|---|---|---|---|
Shebl et al. [16] | 2011 | Population-based case–control study | 627 BTC 959 controls | 1997–2001 | GBC (OR = 2.75) CCA (OR = 1.92) | MetS and IR are involved in the etiology of BTCs |
Welzel et al. [24] | 2011 | Retrospective population-based study | 743 iCCA and 195,953 controls | 1994–2005 | (aOR = 1.56) * | MetS is a significant risk factor for iCCA in the U.S. population |
Xiong et al. [25] | 2018 | Retrospective hospital-based case–control | 136 iCCA and 167 eCCA | 2002–2014 | iCCA (aOR = 2.68) eCCA (aOR = 1.79) ** | MetS is significantly linked to CCA risk |
Park et al. [34] | 2021 | Nationwide population-based cohort study | 7506 CCA | Median follow-up of 5.1 years | (aHR = 1.07) *** | MetS can increase the risk of CCA if it persists ≥ 2 years |
Zhan et al. [59] | 2024 | Meta-analyses of 31 prospective studies | N.A. | N.A. | (RR = 1.37) | Lifestyle changes/medical interventions targeting MetS may prevent GBC |
Authors | Year | Study Type | N Patients | Study Period/ Follow Up Period (If Applicable) | Risk of BTC | Conclusions |
---|---|---|---|---|---|---|
He et al. [15] | 2014 | Case–control study | 181 patients and 905 controls | 2006–2010 | Ampullary adenoma (OR = 2.27) Ampullary cancer (OR = 1.98) | DM may contribute to benign ampullary adenomas progressing into cancer |
Welzel et al. [18] | 2007 | Population-based case–control study |
535 iCCA 549 eCCA and 102,782 controls | 1993–1999 | iCCA (OR = 1.8) eCCA (OR = 1.5) * | iCCA and eCCA share some risk factors (including T2DM). |
Ren et al. [20] | 2011 | Meta-analysis of 21 studies (8 case–control and 13 cohort studies) | 1974–2010 | (summary RRs = 1.43) | There is a link between diabetes and an increased risk of BTC and its subtypes: GBC or eCCA, but not AVC | |
Schlesinger et al. [21] | 2013 | Prospective analysis (EPIC-cohort study) | 204 BTC (75 GBC and 129 other subtypes) | Mean follow-up of 8.5 years | BTC (RRs = 1.77) GBC (RRs = 2.72) | The research supports the hypothesis that DM increases the risk of BTC (especially GBC and HCC) |
Park et al. [22] | 2021 | Cohort study | 13,022 BTC | Median follow-up of 7.2 years | (aHR = 1.31) [newly diagnosed diabetes] (aHR = 1.35) [diabetes duration < 5 years] (aHR = 1.47) [diabetes duration ≥ 5 years] ** |
Both IFG and DM independently increase the likelihood of BTC (CCA and GBC) A longer duration of DM is associated with a further increase in BTC risk |
Petrick et al. [23] | 2017 | Retrospective study | 2092 iCCA 2981 eCCA 323,615 controls | 2000–2011 | iCCA (OR = 1.54) eCCA (OR = 1.45) | Metabolic conditions are associated with both iCCA and eCCA |
Xiong et al. [25] | 2018 | Retrospective hospital-based case–control | 136 iCCA and 167 eCCA | 2002–2014 | iCCA (aOR = 4.59) eCCA (aOR = 0.97) *** | DM is only related to iCCA |
Li et al. [52] | 2015 | Meta-analysis of twenty studies (fifteen case–control studies and five cohort studies) | 1996–2014 | CCA (pooled OR 1.74) iCCA (summary RR = 1.93) eCCA (summary RR = 1.66) | DM may increase the risk of CCA | |
Petrick et al. [54] | 2019 | Pooled analysis of individual-level data from 13 US-based cohort studies Liver Cancer Pooling Project) and subsequent meta-analysis | (RR = 1.53) | Obesity and DM are associated with increased iCCA risk | ||
Gu et al. [62] | 2016 | Meta-analysis of 20 studies (8 case–control studies and 12 cohort studies) | (sRR = 1.56) | Compared to non-DM individuals, both men and women with T2DM have a higher risk of GBC |
Authors | Year | Study Type | N Patients | Study Period/Follow Up Period (If Applicable) | Risk of BTC | Conclusions |
---|---|---|---|---|---|---|
Jackson et al. [14] | 2019 | Pooled data from 27 prospective cohorts with over 2.7 million adults | 1343 GBC 1194 eCCA 784 iCCA 623 AVC | 37,883,648 person-years of follow-up | GBC (HR = 1.72, 95% CI = 1.41–2.08) iCCA (HR = 2.06) eCCA (HR = 1.33) GBC (HR = 3.32) iCCA (HR = 2.16) No evidence of an association between BMI classification and AVC | There is a correlation between adiposity and BTC |
Welzel et al. [18] | 2007 | Population-based case–control study |
535 iCCA 549 eCCA and 102,782 controls | 1993–1999 | iCCA (OR = 1.7) eCCA (OR = 1.1) * | iCCA and eCCA share some common risk factors (including T2DM). Since MASLD, obesity, and HCV infection were linked to iCCA and are on the rise, they may account for the differing trends in iCCA and eCCA rates. |
Grainge et al. [19] | 2009 | Case–control study | 611 BTC (372 CCA, 184 GBC, 55 unspecified BTC) | 1987–2002 | CCA (OR = 1.52) GBC (OR = 1.51) | DM and obesity increase the risks for BTC |
Petrick et al. [23] | 2017 | Retrospective study | 2092 iCCA 2981 eCCA 323,615 controls | 2000–2011 | iCCA (OR = 1.42) eCCA (OR = 1.17) | Metabolic conditions are associated with both iCCA and eCCA |
Xiong et al. [25] | 2018 | Retrospective hospital-based case–control | 136 iCCA and 167 eCCA | 2002–2014 | iCCA (aOR = 2.13) eCCA (aOR = 1.78) ** | Obesity is related to both iCCA and eCCA |
Petrick et al. [54] | 2019 | Pooled analysis of individual-level data from 13 US-based cohort studies Liver Cancer Pooling Project) and subsequent meta-analysis | N.A. | N.A. | (RR = 1.49) | Obesity and DM are associated with increased iCCA risk |
Larsoon et al. [57] | 2007 | Meta-analysis of eight cohort studies and three case–control studies | 3288 GBC | 1966–2007 | (RR = 1.66) | Excess body weight is associated with an increased risk of GBC |
Authors | Year | Study Type | N Patients | Study Period/Follow Up Period (If Applicable) | Risk of BTC | Conclusions |
---|---|---|---|---|---|---|
Welzel et al. [18] | 2007 | Population-based case–control study |
535 iCCA 549 eCCA and 102,782 controls | 1993–1999 | iCCA (OR = 3.0) eCCA (OR = 2.4) * | MASLD, obesity, and HCV infection are associated with increasing iCCA incidence, potentially explaining the divergent iCCA/eCCA rate trends |
Petrick et al. [23] | 2017 | Retrospective study | 2092 iCCA 2981 eCCA 323,615 controls | 2000–2011 | iCCA (OR = 3.52) eCCA (OR = 2.93) | Metabolic conditions are associated with both iCCA and eCCA |
Wongjarupong et al. [65] | 2017 | Meta-analysis (7 case–control studies) | 5067 iCCA 4035 eCCA 129.111 controls | Studies published up to April 2017 | All CCAs (Pooled OR = 1.97) iCCA (Pooled OR = 2.09) eCCA (Pooled OR = 2.05) | MASLD may increase the risk of CCA progression MASLD has a greater impact on the risk of iCCA compared to eCCA, suggesting a shared pathogenesis between iCCA and HCC |
Park et al. [74] | 2021 | Nationwide cohort study | 8,120,674 adults of which 13,043 patients were with newly diagnosed BTC | Median follow-up of 7.2 year | CCA (aHR 1.33) GBC (aHR 1.14) | MASLD is linked to a higher risk of CCA and GBC |
Corrao et al. [75] | 2021 | Meta-analysis | N.A. | N.A. | All CCAs (OR = 1.88) iCCA (OR= 2.19) eCCA (OR= 1.48) | MASLD is only associated with developing iCCA, not eCCA |
Liu et al. [79] | 2022 | Retrospective analysis of large-scale cohort study | 352,911 individuals (37.2% with MAFLD), among whom 23,345 developed different types of cancers | N.A. | GBC (HR = 2.20) Liver cancers (HR = 1.81) | Compared with non-MASLD, MASLD is significantly associated with GBC and liver cancers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stasi, V.; Contaldo, A.; Birtolo, L.I.; Shahini, E. Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights. Cancers 2024, 16, 3432. https://doi.org/10.3390/cancers16193432
Di Stasi V, Contaldo A, Birtolo LI, Shahini E. Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights. Cancers. 2024; 16(19):3432. https://doi.org/10.3390/cancers16193432
Chicago/Turabian StyleDi Stasi, Vincenza, Antonella Contaldo, Lucia Ilaria Birtolo, and Endrit Shahini. 2024. "Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights" Cancers 16, no. 19: 3432. https://doi.org/10.3390/cancers16193432
APA StyleDi Stasi, V., Contaldo, A., Birtolo, L. I., & Shahini, E. (2024). Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights. Cancers, 16(19), 3432. https://doi.org/10.3390/cancers16193432