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Simple Summary: Grade 2 and 3 and dedifferentiated chondrosarcomas represent rare malignant
bone neoplasms. These tumors are often associated with isocitrate dehydrogenase (IDH) mutations.
Unfortunately, treatment options are limited for advanced disease and at the present time both IDH
mutant and WT tumors are treated similarly. This study compares differential gene expression in
IDH mutant and WT chondrosarcomas with RNA sequencing and stratifies clinical outcome by IDH
status and tumor grade.

Abstract: Background: Grade 2 and 3 and dedifferentiated chondrosarcomas (CS) are frequently
associated with isocitrate dehydrogenase (IDH) mutations and often exhibit a poor clinical outcome.
Treatment is limited mainly to surgery. Defining IDH status (wild type (WT) and mutant) and the
associated transcriptome may prove useful in determining other therapeutic options in these neo-
plasms. Methods: Formalin-fixed paraffin-embedded material from 69 primary and recurrent grade
2, 3 and dedifferentiated CS was obtained. DNA sequencing for IDH1 and IDH2 mutations (n = 47)
and RNA sequencing via Nextseq 2000 (n = 14) were performed. Differentially expressed genes
(DEGs) were identified and used to predict aberrant biological pathways with Ingenuity Pathway
Analysis (IPA) software (Qiagen). Gene Set Enrichment Analyses (GSEA) using subsets C3, C5 and C7
were performed. Differentially expressed genes were validated by immunohistochemistry. Outcome
analysis was performed using the Wilcoxon test. Results: A set of 69 CS (28 females, 41 males),
average age 65, distributed among femur, pelvis, humerus, and chest wall were identified from
available clinical material. After further selection based on available IDH status, we evaluated 15 IDH
WT and 32 IDH mutant tumors as part of this dataset. Out of 15 IDH WT tumors, 7 involved the chest
wall/scapula, while 1 of 32 mutants arose in the scapula. There were far more genes overexpressed
in IDH WT tumors compared to IDH mutant tumors. Furthermore, IDH WT and IDH mutant tumors
were transcriptomically distinct in the IPA and GSEA, with IDH mutant tumors showing increased
activity in methylation pathways and endochondral ossification, while IDH WT tumors showed more
activity in normal matrix development pathways. Validation immunohistochemistry demonstrated
expression of WT1 and AR in IDH WT tumors, but not in IDH mutants. SATB2 was expressed in
IDH mutant tumors and not in WT tumors. Outcome analysis revealed differences in overall survival
between mutant and WT tumors (p = 0.04), dedifferentiated mutant and higher-grade (2, 3) mutant
tumors (p = 0.03), and dedifferentiated mutant and higher-grade (2, 3) WT tumors (p = 0.03). The
longest survival times were observed in patients with higher-grade WT tumors, while patients with
dedifferentiated mutant tumors showed the lowest survival. Generally, patients with IDH WT tumors
displayed longer survival in both the higher-grade and dedifferentiated groups. Conclusions: Grade
2, 3 and dedifferentiated chondrosarcomas are further characterized by IDH status, which in turn
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informs transcriptomic phenotype and overall survival. The transcriptome is distinct depending on
IDH status, and implies different treatment targets.

Keywords: chondrosarcoma; RNA sequencing; isocitrate dehydrogenase; genomics

1. Introduction

Conventional chondrosarcoma is the second most common primary malignancy of
bone [1–4]. Approximately 50% to 70% of these tumors harbor isocitrate dehydrogenase
(IDH) 1 or IDH2 mutations [5–7]. IDH mutations are thought to represent an early driver
event of oncogenesis in conventional chondrosarcoma [5,8].

Clinical outcome is stratified by grade, based on cellularity, increasing nuclear pleo-
morphism, and mitoses. Dedifferentiated chondrosarcoma (DDCS) is characterized by a
biphasic histology; an area with cartilage matrix is juxtaposed to a highly cellular, pleo-
morphic sarcoma devoid of matrix. Similar mutations are present in both components,
supporting a common origin [9]. However, histologic features do not inform IDH status
in these malignancies. Approximately 10% of conventional chondrosarcomas undergo
dedifferentiation and are associated with the worst prognosis [10]. Treatment options are
limited because chondrosarcoma is resistant to adjuvant therapies and represents a mainly
surgically treated disease [11].

National Comprehensive Cancer Network (NCCN 1.2024) guidelines for chondrosar-
coma recommend wide excision with negative margins in surgically resectable cases [12].
However, unresectable, locally advanced, and widely metastatic chondrosarcoma require
systemic therapy in an effort to control disease progression. Post-operative radiation ther-
apy may be offered for conventional chondrosarcomas in select situations. Dedifferentiated
chondrosarcoma may be treated with cytotoxic drug regimens similar to those used in
osteosarcoma [12,13]. Conventional chondrosarcoma is typically resistant to chemotherapy
and there are no uniformly established protocols [12,14]. Other novel therapies include
tyrosine kinase inhibition by agents such as dasatinib [15] and pazopanib [16], and IDH1
inhibition with application of ivosidenib in patients with susceptible mutations [11]. Com-
prehensive molecular testing may be considered to determine potential treatment targets in
individual patients [12].

In this work, we compared the genomic and transcriptomic characteristics of IDH
mutant to wild type dedifferentiated and higher-grade (2, 3) chondrosarcomas. The results
obtained may impact potential therapeutic options for these aggressive neoplasms.

2. Methods
2.1. Case Material

Formalin-fixed paraffin-embedded (FFPE) material from 69 primary and recurrent
conventional higher-grade (2, 3) and dedifferentiated chondrosarcomas from 1999–2021
was obtained from the UPMC Department of Pathology under IRB approval (IRB 20050109).
Hematoxylin and eosin slides were reviewed by a senior musculoskeletal pathologist (KS)
and regions of interest were selected for tissue microarray construction (2 mm cores).

2.2. IDH Analysis

DNA was extracted from FFPE material and targeted amplification Sanger sequencing
was performed for IDH1 and IDH2 mutations using ampliTAQ Gold360 PCR Master
Mix (Applied Biosystems, Waltham, MA, USA) and capillary gel electrophoresis on the
ABI3730xl (Applied Biosystems) [17].

Interpretable results were obtained in 47 cases.
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2.3. RNA Sequencing

RNA was extracted from FFPE material (8 IDH-mutant, 6 IDH wild-type) after qual-
ity control (Tape Station HSD1000). Samples were sequenced via Nextseq 2000. The
reverse-stranded paired-end RNA-Seq reads were checked for the presence of adapters
and high-quality bases using FastQC (v 0.11.7). These high-quality reads were trimmed
for the TruSeq adapters using Cutadapt (v 1.18). The trimmed reads were later mapped
against the Ensembl human reference genome (GRCh38 v 107) using the STAR (v 2.7.9a)
mapping tool. For better mapping outcomes, the STAR parameters were modified to utilize
outFilterScoreMinOverLread and outFilterMatchNminOverLread, where both parameters
were set to 0.3 instead of the standard. The output file from STAR was converted from
SAM format to BAM format using SAMtools (v 1.9). Counts for expressed genes were
generated using HT-Seq (v 0.11.2) and output was generated in text format. These count
text files were then imported into the Bioconductor R package, edgeR (v 3.38.4). After
importing the counts text files, ComBat seq was performed from the sva package (v 3.44.0)
to compensate for the different sequencing batches without removing biological differences
between samples. The edgeR package was then again utilized to identify differentially
expressed genes based on the criteria of the genes having an expression count of absolute
value log base 2 greater than 1 between two experimental conditions and a false discovery
rate of less than 0.05 using an Exact test. Based on this standard, a single comparison of
6 wild type vs. 8 IDH mutant samples produced 743 differentially expressed genes.

After the differentially expressed genes were identified each list of genes along with
their differential expression values were uploaded to Ingenuity Pathway Analysis (IPA)
and used to identify aberrant biological pathways (FDR 0.05). Gene Set Enrichment Anal-
yses (GSEA) were performed using the GSEA software (v 4.2.1 [build 5]) from the Broad
Institute. Subsets C3, C5 and C7 were utilized in the GSEA. Immunohistochemistry: Dif-
ferentially expressed genes (Wilms Tumor 1, WT1, Androgen Receptor, AR) and (Special
AT-rich sequence-binding protein 2, SATB2 suggested by the GSEA) were validated on
tissue microarrays (TMAs), and whole tumor sections using monoclonal antibodies (WT1
predilute, Ventana-Roche Oro, Valley, AZ, USA,; AR 1:100, Dako Santa Clara, CA, USA;
SATB2 predilute, Cell Marque, Rocklin, CA, USA).

2.4. RT-qPCR Analysis

A subset of 5 IDH mutant samples of fresh frozen tissue were analyzed for the presence
of SATB2, MMP13, and COL10A1 using commercially available primers. Briefly, RNA
was extracted from a subset of 5 IDH mutant fresh frozen tissue samples according to the
manufacturer’s protocol (Qiagen RNeasy Mini Kit, 74106 Germantown, MD, USA). RNA
was analyzed using a one-step RT-qPCR protocol (Bio-Rad iTaq Universal SYBR Green
One-Step Kit, 1725151) at a total reaction volume of 20 µL. GAPDH and SYMPK were used
as housekeeping gene references. Each reaction was setup according to the manufacturer’s
protocol using 150 ng RNA input for each respective sample reaction. Reactions were set up
in a 384-well hard-shell plate and loaded on a CFX Opus 384 RT-qPCR instrument (Bio-Rad,
Cat #12011452 Hercules, CA, USA). Expression data were analyzed using CFX Maestro
Software (version 2.3).

2.5. Outcome Analysis

Clinical outcome data were obtained from UPMC electronic medical records and
the UPMC Network Cancer Registry. Kaplan–Meier plots were generated and statistical
analyses were performed using Wilcoxon tests and Prism9.

3. Results
3.1. Patients

Sixty-nine primary and recurrent conventional higher-grade (2, 3) and dedifferentiated
conventional chondrosarcomas from 28 females and 41 males, average age 65 (range 14–91),
were collected from the UPMC Department of Pathology archives. The primary sites
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included mainly the femur, pelvis, humerus, and chest wall (Table 1). All patients were
treated surgically. Histologically, the dedifferentiated chondrosarcomas appeared similar
to each other with an absent chondroid matrix, spindled-to-epithelioid and occasionally
rhabdoid cells, mitotic activity, and necrosis.

Table 1. Demographics of Grade 2, 3 and dedifferentiated chondrosarcomas with site, size and IDH
status (- indicates data not available).

IDH

Case Age Sex Site Size cm Grade Status

1 37 M Arm 22.5 dd Mut
2 81 M Prox femur 17.6 dd Mut
3 82 F Thorax 24.1 2 WT
4 57 M Pelvis 9.8 3 Mut
5 70 M Sternum - 2 WT
6 85 F Humerus - dd Mut
7 72 M Femur - dd Mut
8 83 F Humerus 7.2 dd -
9 77 M Humerus 9.2 dd Mut

10 56 M Femur - 2 Mut
Scapula

11 62 F Chest 5.8 dd Mut
12 44 M Prox femur 21.2 dd Mut
13 76 M Chest wall 12.5 3 WT
14 65 M Pelvis 6.3 3 -
15 76 M Pelvis - 2 Mut
16 91 M Chest wall 10 dd WT
17 58 M Femur - 2 Mut
18 38 M Neck - 3 Mut
19 56 F Femur 33 dd Mut
20 74 M Pelvis 13.2 dd WT
21 61 F Pelvis - 3 Mut
22 84 F Hand - 2 Mut
23 54 F Femur 9 2 -
24 79 M Prox femur 17.5 dd Mut
25 70 F Femur - 2 Mut
26 72 F Rib 7 2 WT
27 62 M Pelvis 9 dd Mut
28 72 F Pelvis 13.5 2 -
29 67 M Femur 27 dd WT
30 74 M Sacrum 6.2 dd -
31 57 M Humerus 9.7 2 -
32 71 M Chest wall 4.5 2 -
33 88 F Humerus - 2 Mut
34 14 F Pelvis 6 2 -
35 62 F Chest wall - 2 -
36 83 F Femur 6 3 Mut
37 80 M Pelvis - dd WT
38 63 F Talus 11 dd -
39 70 M Humerus 7 dd -
40 18 F Femur - 2 -
41 74 M Chest wall 2 2 -
42 83 M Rib 6 dd WT
43 88 M Pelvis 5.1 2 -
44 64 M Pelvis 10.6 dd Mut
45 65 F Femur 16 dd -
46 66 M Sternum 8 2 -
47 70 F Humerus - dd Mut
48 50 M Femur 5.5 2 Mut
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Table 1. Cont.

IDH

Case Age Sex Site Size cm Grade Status

49 88 F Femur 11 dd Mut
50 51 M Scapula - 2 WT
51 34 F Humerus 5.5 2 -
52 49 F Thigh - 3 -
53 43 M Pelvis 25 2 WT
54 74 F Femur - dd WT
55 56 M Pelvis 18 2 -
56 84 M Pelvis 9 2 Mut
57 64 M Femur 11.5 dd WT
58 82 F Femur 3.5 2 WT
59 68 M Pelvis 5.5 2 Mut
60 70 M Tibia 9.5 dd WT
61 67 F Humerus 14 dd Mut
62 56 M Femur 10 dd Mut
63 71 F Femur 20.5 dd Mut
64 32 M Pelvis 18 dd Mut
65 74 F Femur 6 dd -
66 49 M Pelvis 10.5 dd -
67 75 M Humerus 9.5 dd -
68 57 M Pelvis 12 dd Mut
69 56 F Pelvis - dd Mut

Abbreviations: dd, dedifferentiated; Mut, IDH mutant; WT, wild type; Prox, proximal.

3.2. IDH Analysis

DNA analysis of FFPE tissue from 47 high-grade and dedifferentiated chondrosarco-
mas revealed 15 WT and 32 mutant tumors. Of the mutants, 20 were IDH1, and 12 were
IDH2. Correlation with the site of disease demonstrated chest wall/scapula involvement in
7 of 15 WT tumors, while only 1 of 32 mutant tumors was located in the scapula, and none
in the chest wall (Table 1).

3.3. RNA Sequencing

Differentially expressed genes were entered into the Qiagen IPA to predict associated
pathways (IPA, FDR 0.05) and showed that IDH WT and mutant tumors were transcrip-
tomically distinct (Figure 1). Furthermore, IDH mutant tumors were associated with DNA
methyltransferase pathways. Genes implicated in malignant behavior included increased
expression of collagen 10 alpha 1 (COL10A1), matrix metalloproteinase 13 (MMP13), TP53,
and WRAP53. By contrast, the IPA implicated long non-coding RNAs such as Braveheart
(BvHT) in WT tumors. RNA-sequencing exhibited higher differentially expressed genes
(DEGs) in WT tumors than in the mutants. Several development-associated genes such as
SRY-box 2 (SOX2), insulin-like growth factor-2 (IGF2) and the Homeobox family of genes
revealed increased expression in the WT tumors. The data were also interrogated via GSEA
using subsets C3, C5 and C7. Selected differentially expressed genes (DEGs) correlating
with pathways highlighted in the IPA are listed in Table 2. The complete lists of DEGs are
included in the Supplementary Materials (Data S1 and S2).

Table 2. Selected differentially expressed genes in IDH WT vs. mutant chondrosarcomas (grades 2, 3
and dedifferentiated).

DEG Higher in IDH WT DEG Higher in IDH Mut

GREM1 COL10A1

TMEM52 MMP13

FOXA1 HHIP
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Table 2. Cont.

DEG Higher in IDH WT DEG Higher in IDH Mut

ALX Homeobox 1, 3 IBSP

HOXA2 COL26A1

WT1 WRAP53

BMP7 TP53

SOX2

IGF2

MAGEA1

NES

ERG

FGF18

DKK2
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Figure 1. Qiagen IPA diagram demonstrating differences in gene expression between IDH WT
(indicated by BvHT in blue) and IDH mutant (indicated by DNA methyltransferase 3 alpha, DNMT3A
in an orange diamond rimmed by purple) tumors. Implicated pathways are generated by Qiagen IPA
software based on DEG data input and suggest that endothelin-converting enzyme-like 1 (ECEL1)
and phospholipase A2 group VII (PLA2G7) may mediate cell death (solid arrows) in the IDH mutant
tumors. Dashed lines are suggested pathways.

Immunohistochemical stains were performed for WT1, AR, and SATB2. Immunohis-
tochemical stains were chosen based on gene expression or highlighted in the GSEA and
ease of interpretation (nuclear staining). WT1 and AR were associated with the WT tumors.
Although SATB2 did not meet defined cutoffs for a differentially expressed gene, it was
identified in the GSEA and immunohistochemistry revealed positivity only in the mutant
tumors (Figures 2 and 3 and Supplementary Materials Data S3). Additionally, a subset of
IDH mutant tumors was subjected to RT-qPCR testing for MMP13, Col10A1 and SATB2
expression (Table 3).
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Figure 2. Immunohistochemical validation of SATB2, WT1 and AR in IDH mutant and wild type
chondrosarcoma: (A) SATB2 shows nuclear positivity in IDH mutant CS. (B) SATB2 immunostaining
is negative in WT CS. (C) WT1 immunostaining is negative in dedifferentiated IDH mutant CS;
(D) WT1 cytoplasmic and focal nuclear positivity in an IDH WT dedifferentiated CS; (E) AR negative
IDH mutant CS; and (F) AR positive IDH WT CS. All photomicrographs 400×.
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endochondral ossification are increased in the IDH mutant population compared to WT. Transcripts
highlighted in red pass abs log2FC > 1 and FDR < 0.05; genes in the green zone pass only abs
log2FC > 1; and transcripts highlighted in grey zone do not meet either FC or FDR thresholds. The
gene expression used for validation by immunohistochemistry includes WT1 (red zone), AR (green
zone) and SATB2 (grey zone). SATB2 was highlighted by a GSEA gene set (C3) in the IDH mutant
tumors (see Supplementary Materials Data S3).

Table 3. Relative expression of genes of interest (compared to housekeeping genes) in IDH mutant
fresh frozen chondrosarcomas using qPCR.

Case COL10A1 MMP13 SATB2 IDH
Mutation Grade

9 Expressed Expressed Expressed IDH1 R132S Dedifferentiated

6 Expressed Low
Expression Expressed IDH2 R172S Dedifferentiated

17 Expressed Expressed Expressed IDH1 R132L 2

4 High
Expression

High
Expression

High
Expression IDH1 R132C 3

2 High
Expression

High
Expression

High
Expression IDH1 R132C Dedifferentiated

Outcome analysis was performed and Kaplan–Meier plots were generated (Figure 4).
The difference in survival between IDH mutant and WT tumors was statistically significant
(p = 0.04). Statistically significant differences were also seen between dedifferentiated
mutant and high-grade mutant (p = 0.03), and dedifferentiated mutant and high-grade WT
tumors (p = 0.03) In general, wild-type tumors showed a survival advantage.Cancers 2024, 16, x FOR PEER REVIEW  9  of  14 
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4. Discussion

Histologic grading of conventional chondrosarcoma is correlated with outcome, with
high-grade tumors demonstrating greater metastatic potential and mortality than lower-
grade disease [1,5]. Dedifferentiated chondrosarcomas (DDCS) are thought to derive from
conventional chondrosarcoma, and rarely from enchondroma or osteochondroma [10], and
represent a clinically aggressive form of chondrosarcoma. DDCS is associated with a 7–24%
5-year survival [1]. In the majority of cases, treatment is limited mainly to surgery, leaving
those with advanced disease without effective therapeutic options. In order to develop
new therapies for higher-grade and dedifferentiated CS, the genomic and transcriptomic
landscape of these tumors must be understood.

It is known that IDH status plays important prognostic and therapeutic roles in several
malignancies such as acute myeloid leukemia, cholangiocarcinoma, and glioma [18], among
others. In the central nervous system, IDH mutant infiltrating gliomas (oligodendroglioma
and IDH mutant astrocytoma) show significantly longer survival and better clinical out-
comes than their IDH wild type counterparts (glioblastoma, IDH wild type) [19]. The clinical
outcomes are so divergent that IDH mutational status now defines these diagnostic entities
in the most recent WHO classifications [20]. It is interesting to note that in the current study,
IDH mutational status has the opposite prognostic impact in chondrosarcoma. IDH mutant
gliomas additionally have distinct morphology and co-occurring molecular alterations;
1p/19q-codeletion and TERT promoter mutation in oligodendroglioma and p53/ATRX
mutations in IDH mutant astrocytoma. By contrast, IDH mutant and WT chondrosarcomas
are histologically identical, and at present are treated as a single disease entity.

IDH mutations affect 38–86% of conventional chondrosarcomas [21]. IDH status
appeared to inform the prognosis of higher-grade CS and DDCS in our series. IDH WT
cases demonstrated prolonged survival in comparison to IDH mutants. That IDH mutations
in chondrosarcoma confer a worse outcome was also seen in Nakegawa’s study of 38 cases
in 2022 [2]. In our study, IDH1 and IDH2 mutant cases were combined for outcome
analysis due to a small number of IDH2 mutant chondrosarcomas in our series. This is
commensurate with the literature, as it is known that chondrosarcomas are affected more
often by IDH1 mutations than IDH2 [5]. Differentially expressed genes derived from RNA
sequencing delineate differences between the IDH mutant and WT chondrosarcoma cohorts.
They suggest that the molecular pathways utilized for tumor growth, maintenance, and
malignant phenotype could be different between the two groups. In a study of 350 cases of
chondrosarcoma by Cross et al., it was proposed that IDH mutant and wild type tumors
utilized different molecular pathways and, furthermore, that IDH2 mutant and high-grade
chondrosarcomas were more often associated with TERT mutations [5]. TERT mutations
were also identified in approximately 35% of dedifferentiated chondrosarcomas in Nacev’s
study [22]. We did not assess for TERT promoter mutations in our cohort.

Mutations in IDH1/2 are thought to be oncogenic through the aberrant production of
D2-hydroxyglutarate (D2-HG) [7]. D2-HG is an oncometabolite that leads to DNA and
histone hypermethylation and associated genome-wide alterations in gene expression [23].
Hypermethylation of IDH mutant chondrosarcomas activates proliferation and glycoly-
sis [24], and is associated with higher histologic grade [25]. Amary et al. reported that
D2-HG levels were elevated in patients with IDH mutated chondrosarcomas arising in the
setting of Ollier and Maffucci syndromes [26], and Mohammad et al. showed increased
2-HG levels due to IDH1 mutations in chondrosarcoma [27].

IDH mutant chondrosarcoma demonstrated increased expression of collagen 10 al-
pha 1 (COL10A1) and matrix metalloproteinase 13 (MMP13) in our study. The elevated
MMP13 expression suggested that extracellular matrix breakdown may promote aggressive
behavior [28]. Vascular invasion may also be facilitated by MMP13 [29]. Furthermore,
COL10A1 and MMP13 are involved in endochondral ossification, a process conserved in
matrix-producing chondrosarcoma, and downregulated in dedifferentiated chondrosar-
coma [24]. The Hedgehog pathway was also implicated in our study, by higher expression
of HHIP (Table 2). Hedgehog signaling was noted in a study of chondrosarcomas by
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Isenlys et al., and Tiet et al. showed increased expression of PTCH1 and GlI1, target genes
of the Hedgehog pathway [30,31]. TP53 showed increased expression in the mutant tu-
mors. TP53 overexpression has been previously reported in chondrosarcoma by several
authors [2,5,6,22,32].

Additionally, WRAP53 was overexpressed in the IDH-mutant tumors, suggesting that
the tumor cells may achieve immortality by telomere lengthening [33].

Furthermore, fewer genes showing increased expression were seen in the IDH mutant
cohort, suggesting loss of genetic material and/or increased chromosomal instability as
compared to the WT group. Special AT-rich sequence-binding protein 2 (SATB2) was
expressed only in the IDH mutants by immunohistochemistry, corroborating its presence
in the GSEA, and possibly representing post-translational mechanisms for increased ex-
pression. Confirmation of MMP13, COL10A1 and SATB2 was attempted by RT-qPCR in
the IDH mutant samples, and expression of these three genes was detected in all samples
tested (n = 5). Furthermore, higher expression of MMP13, COL10A1 and SATB2 was found
in two IDH mutant samples, both demonstrating an IDH1 R132C mutation, suggesting
that a specific IDH1 mutation involving R132C may play a role in the expression of these
genes. However, the case numbers were too small to form a conclusion. This finding would
require a multi-center large chondrosarcoma cohort to study.

With regard to the IDH WT tumors, more differentially expressed developmental
genes and pathways appeared to play roles in their genesis than seen in the mutants.
These included SRY-box 2 (SOX2), Bone morphogenetic protein 7 (BMP7), Homeobox A2
(HOXA2), Gremlin 1 (GREM1), Forkhead box protein A1 (FOXA1), Transmembrane protein
52 (TMEM52), Insulin-like growth factor 2 (IGF2), melanoma antigen (MAGEA1), and ALX1
and ALX3 Homeobox genes. Braveheart (BvHT) was implicated by the IPA analysis. These
suggested the involvement of long non-coding RNAs in tumor development, as well as
in promotion of tumor cell survival and proliferation. Several of these genes participate
in normal embryonic development [34–36]. Long non-coding RNAs are involved in car-
diovascular disease and many cancers [37]. That MAGEA1 is expressed in the WT tumors
and not in the mutants suggests that MAGEA1 is epigenetically silenced in the mutants,
possibly by DNA methyltransferase 1 (DNMT1) and histone deacetylation [38]. MAGEA1
expression may contribute to malignancy in the WT tumors. WT1 and AR expression were
identified in the WT cases and were used as immunohistochemical validation markers.

Interestingly, IDH WT tumors were identified more often than IDH mutant tumors
in the chest wall and scapula, a finding also reported by Cross et al. [5]. This finding may
be related to reduced endochondral ossification involved in chest wall development as
compared to the long bones. This hypothesis requires further investigation.

Incorporating differential gene expression in IDH WT and mutant chondrosarcomas
to inform present and future treatment strategies represents a substantial and potentially
exciting challenge. With respect to current systemic therapy, while dedifferentiated chon-
drosarcoma is often treated along an osteosarcoma paradigm using cytotoxic drugs [12,13],
chemotherapy in conventional chondrosarcoma has poor activity [14]. However, tyrosine
kinase inhibition by dasatinib [15] or pazopanib [16] may offer benefit in terms of disease
control and occasional responses in conventional chondrosarcoma. A phase I trial demon-
strated the promising activity of an IDH1 inhibitor, ivosidenib, particularly in conventional
chondrosarcoma, where the progression-free survival was greater than in dedifferenti-
ated chondrosarcoma, although the study was not powered to specifically compare those
groups [11]. Ivosidenib is currently listed on the National Comprehensive Cancer Network
(NCCN) guidelines for conventional and dedifferentiated chondrosarcoma patients with
susceptible mutations [12].

Based on the RNA-seq data generated as part of this study, anti-methylation drugs
such as Decitabine could be explored pre-clinically in IDH mutant tumors, as well as
inhibitors of IDH1 [11,18,21] or IDH2 [8]. ARL4C expression in the IDH mutants (Sup-
plementary Materials Data S4) could represent a target for ASO-1316 [39]. For IDH WT
tumors, Isotretinoin targeting SOX2 may be considered. Chemotherapeutic regimens in-
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cluding Doxorubicin, Carboplatin, Cyclophosphamide or Doxetaxel could be used to target
WT1 [40]. Most likely, due to the complexity of pathways and number of genes involved,
combination therapy should be tested preclinically.

Our findings are not without limitations because of a small sample size; however, our
study uncovered an intriguing survival advantage of IDH wild type chondrosarcomas.
The analysis of larger patient cohorts may uncover unique characteristics of IDH2 mutant
tumors that our analysis was not able to capture. In addition, work in the future may
be improved by better methods of extracting high-quality RNA from FFPE samples with
chondroid matrix present. These methods may decrease the sample extraction batch effect
that impacted our bioinformatic analysis.

5. Conclusions

In summary, dedifferentiated and higher-grade chondrosarcomas demonstrate genetic
and probable epigenetic changes attributed in part to IDH status. The mutant and wild-type
tumors utilize different molecular pathways which likely correlate with malignant behavior.
In our admittedly small series, clinical outcomes are significantly different between IDH
wild type and mutant groups. The combination of IDH mutated and dedifferentiated
chondrosarcomas demonstrates the worst prognosis. However, dedifferentiated wild type
tumors confer a better prognosis, which could be used in counseling patients. Future
studies should explore whether targeting specific IDH mutations can be used to effectively
inform therapeutic strategies for this aggressive disease with few options besides surgery.
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https://www.mdpi.com/article/10.3390/cancers16020247/s1, Data S1: Upregulated IDH Differen-
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with ARL4C; Webpage Details for gene set CTCTATG_MIR368 (C3 GSEA with SATB2); Webpage
Details for gene set KAZMIN PBM (C7 GSEA with ARL4C).
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