Dkk1 as a Prognostic Marker for Neoadjuvant Chemotherapy Response in Breast Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Patients
2.3. Tissue Samples
2.4. Detection of Dkk1 Protein Expression
2.5. Assessment of IHC Staining
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Dkk1-IHC Staining Outcomes
3.3. Correlations between Dkk1-IRSs and Various Tumour Characteristics
3.4. Correlations between Dkk1-IRS Reduction Percentage and Various Tumour Characteristics
3.5. The Impact of Dkk1-IRSs on Regression Grade According to Sinn (R), PFS, and OS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Krebs in Deutschland für 2019/2020. Robert Koch-Institut, Berlin. Zentrum für Krebsregisterdaten. Available online: https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_2023.pdf?__blob=publicationFile (accessed on 7 January 2024).
- Shien, T.; Iwata, H. Adjuvant and neoadjuvant therapy for BC. Jpn. J. Clin. Oncol. 2020, 50, 225–229. [Google Scholar] [CrossRef] [PubMed]
- S3-Leitlinie Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms (Version 4.4). Available online: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Mammakarzinom_4_0/Version_4.4/LL_Mammakarzinom_Langversion_4.4.pdf (accessed on 1 September 2023).
- Zhao, Y.; Chen, L.; Zheng, X.; Shi, Y. Quality of life in patients with breast cancer with neoadjuvant chemotherapy: A systematic review. BMJ Open 2022, 12, e061967. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.U.; Rozeman, E.A.; Fanchi, L.F.; Sikorska, K.; van de Wiel, B.; Kvistborg, P.; Krijgsman, O.; van den Braber, M.; Philips, D.; Broeks, A.; et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 2018, 24, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, M.; Gandhi, S.; Ishikawa, T.; Takabe, K. Neoadjuvant Chemotherapy for Breast Cancer: Past, Present, and Future. Breast Cancer 2020, 14, 1178223420980377. [Google Scholar] [CrossRef] [PubMed]
- Du, X.W.; Li, G.; Liu, J.; Zhang, C.Y.; Liu, Q.; Wang, H.; Chen, T.S. Comprehensive analysis of the cancer driver genes in breast cancer demonstrates their roles in cancer prognosis and tumor microenvironment. World J. Surg. Oncol. 2021, 19, 273. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, L.; Liu, A. Dickkopf-1: Current knowledge and related diseases. Life Sci. 2018, 209, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Clements, W.M.; Lowy, A.M.; Groden, J. Adenomatous polyposis coli/beta-catenin interaction and downstream targets: Altered gene expression in gastrointestinal tumors. Clin. Color. Cancer 2003, 3, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Zhong, R.; Chang, Q.; Teng, J.; Pei, J.; Han, B.; Chu, T. Serum dickkopf-1 as a clinical and prognostic factor in non-small cell lung cancer patients with bone metastases. Oncotarget 2017, 8, 79469–79479. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, A.O.; Elbaz, T.M.; Shousha, H.I.; Ibrahim, M.M.; Rahman El-Shazli, M.A.; Abdelmaksoud, A.H.; Aziz, O.A.; Zaki, H.A.; Elattar, I.A.; Nabeel, M.M. Survival and prognostic factors for hepatocellular carcinoma: An Egyptian multidisciplinary clinic experience. Asian Pac. J. Cancer Prev. 2014, 15, 3915–3920. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, H.E.; Park, D.J.; Kim, H.H.; Kim, W.H.; Park, K.U. Clinical significance of serum and tissue Dickkopf-1 levels in patients with gastric cancer. Clin. Chim. Acta 2012, 413, 1753–1760. [Google Scholar] [CrossRef]
- Kasoha, M.; Dernektsi, C.; Seibold, A.; Bohle, R.M.; Takacs, Z.; Ioan-Iulian, I.; Solomayer, E.F.; Juhasz-Böss, I. Crosstalk of estrogen receptors and Wnt/β-catenin signaling in endometrial cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Mariz, K.; Ingolf, J.B.; Daniel, H.; Teresa, N.J.; Erich-Franz, S. The Wnt inhibitor dickkopf-1: A link between breast cancer and bone metastases. Clin. Exp. Metastasis 2015, 32, 857–866. [Google Scholar] [CrossRef]
- Göbel, A.; Kuhlmann, J.D.; Link, T.; Wimberger, P.; Browne, A.J.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Adjuvant tamoxifen but not aromatase inhibitor therapy decreases serum levels of the Wnt inhibitor dickkopf-1 while not affecting sclerostin in breast cancer patients. Breast Cancer Res. Treat. 2017, 164, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Bojanić, K.; Bilić Ćurčić, I.; Kuna, L.; Kizivat, T.; Smolic, R.; Raguž Lučić, N.; Kralik, K.; Šerić, V.; Ivanac, G.; Tucak-Zorić, S.; et al. Association of Wnt Inhibitors, Bone Mineral Density and Lifestyle Parameters in Women with Breast Cancer Treated with Anastrozole Therapy. J. Clin. Med. 2018, 7, 287. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.A.; Klempner, S.J.; Arend, R.C. The anti-DKK1 antibody DKN-01 as an immunomodulatory combination partner for the treatment of cancer. Expert. Opin. Investig. Drugs 2020, 29, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Sinn, H.P.; Schmid, H.; Junkermann, H.; Huober, J.; Leppien, G.; Kaufmann, M.; Bastert, G.; Otto, H.F. Histologic regression of breast cancer after primary (neo-adjuvant) chemotherapy. Geburtshilfe Frauenheilkd. 1994, 54, 552–558. [Google Scholar] [CrossRef]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987, 8, 138–140. (In German) [Google Scholar]
- Cuppone, F.; Bria, E.; Carlini, P.; Milella, M.; Felici, A.; Sperduti, I.; Nisticò, C.; Terzoli, E.; Cognetti, F.; Giannarelli, D. Taxanes as primary chemotherapy for early breast cancer: Meta-analysis of randomized trials. Cancer 2008, 113, 238–246. [Google Scholar] [CrossRef]
- Klein, J.; Tran, W.; Watkins, E.; Vesprini, D.; Wright, F.C.; Look Hong, N.J.; Ghandi, S.; Kiss, A.; Czarnota, G.J. Locally advanced breast cancer treated with neoadjuvant chemotherapy and adjuvant radiotherapy: A retrospective cohort analysis. BMC Cancer 2019, 19, 306. [Google Scholar] [CrossRef]
- De Mattos-Arruda, L.; Shen, R.; Reis-Filho, J.S.; Cortés, J. Translating neoadjuvant therapy into survival benefits: One size does not fit all. Nat Rev Clin Oncol. 2016, 13, 566–579. [Google Scholar] [CrossRef]
- Radosa, J.C.; Kasoha, M.; Doerk, M.; Cullmann, A.; Kaya, A.C.; Linxweiler, M.; Radosa, M.P.; Takacs, Z.; Tirincsi, A.; Lang, S.; et al. The 3q Oncogene SEC62 Predicts Response to Neoadjuvant Chemotherapy and Regulates Tumor Cell Migration in Triple Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 9576. [Google Scholar] [CrossRef]
- Schmidt, G.; Findeklee, S.; Del Sol Martinez, G.; Georgescu, M.T.; Gerlinger, C.; Nemat, S.; Klamminger, G.G.; Nigdelis, M.P.; Solomayer, E.F.; Hamoud, B.H. Accuracy of Breast Ultrasonography and Mammography in Comparison with Postoperative Histopathology in Breast Cancer Patients after Neoadjuvant Chemotherapy. Diagnostics 2023, 13, 2811. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Song, J.; Chen, W.; Yuan, D.; Wang, W.; Chen, X.; Liu, H.; Su, H.; Zhu, J. Expression and Role of Dickkopf-1 (Dkk1) in Tumors: From the Cells to the Patients. Cancer Manag. Res. 2021, 13, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Kasoha, M.; Bohle, R.M.; Seibold, A.; Gerlinger, C.; Juhasz-Böss, I.; Solomayer, E.F. Dickkopf-1 (Dkk1) protein expression in breast cancer with special reference to bone metastases. Clin. Exp. Metastasis 2018, 35, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Dasgupta, H.; Basu, M.; Roy, A.; Alam, N.; Roychoudhury, S.; Panda, C.K. Downregulation of beta-catenin in chemo-tolerant TNBC through changes in receptor and antagonist profiles of the WNT pathway: Clinical and prognostic implications. Cell Oncol. 2020, 43, 725–741. [Google Scholar] [CrossRef]
- Rosa, M.; Han, H.S.; Ismail-Khan, R.; Allam-Nandyala, P.; Bui, M.M. Beta-catenin expression patterns in matched pre- and post-neoadjuvant chemotherapy-resistant breast cancer. Ann. Clin. Lab. Sci. 2015, 45, 10–16. [Google Scholar] [PubMed]
- Shen, H.; Yan, W.; Yuan, J.; Wang, Z.; Wang, C. Nek2B activates the wnt pathway and promotes triple-negative breast cancer chemotherapy-resistance by stabilizing β-catenin. J. Exp. Clin. Cancer Res. 2019, 38, 243. [Google Scholar] [CrossRef]
- Bernemann, C.; Hülsewig, C.; Ruckert, C.; Schäfer, S.; Blümel, L.; Hempel, G.; Götte, M.; Greve, B.; Barth, P.J.; Kiesel, L.; et al. Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on WNT signaling. Mol. Cancer 2014, 13, 174. [Google Scholar] [CrossRef]
- Han, Z.H.; Xu, C.S.; Han, H.; Wang, C.; Lin, S.G. Value of the level of methylation of RASSF1A and WIF-1 in tissue and serum in neoadjuvant chemotherapeutic assessment for advanced breast cancer. Oncol. Lett. 2017, 14, 4499–4504. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhao, S.; Shi, Z.; Cao, L.; Liu, J.; Pan, T.; Zhou, D.; Zhang, J. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J. Exp. Clin. Cancer Res. 2021, 40, 120. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Number (%) |
---|---|
cT stage (Unknown: seven cases) | |
T1 | 40 (29%) |
T2 | 61 (44%) |
T3 + T4 | 37 (27%) |
cN stage (Unknown: four cases) | |
N0 | 56 (40%) |
N1 | 42 (30%) |
N2 + N3 | 13 (9%) |
N+ | 30 (21%) |
Grading (G) (Unknown: two cases) | |
G1 | 3 (2%) |
G2 | 60 (42%) |
G3 | 80 (56%) |
Receptor status | |
ER+ | 73 (50%) |
PR+ | 39 (27%) |
Her2Neu+ | 44 (30%) |
Ki-67 Index (%) | |
≥15% | 127 (88%) |
<5% | 18 (12%) |
Subtype | |
Luminal A-like | 12 (8%) |
Luminal B-like | 63 (44%) |
HR−/Her2+ | 19 (13%) |
TNBC | 51 (35%) |
ypT stage | |
T0 | 52 (36%) |
T1 | 51 (35%) |
T2 | 25 (17%) |
T3 + T4 | 17 (12%) |
ypN stage (Unknown: seven cases) | |
N0 | 85 (62%) |
N1 | 32 (23%) |
N2 | 21 (15%) |
† Regression grade according to Sinn (R) | |
R0 | 5 (3%) |
R1 | 51 (35%) |
R2 | 36 (25%) |
R3 | 6 (4%) |
R4 | 47 (33%) |
Metastasis status | |
Primaray metastastic (M1) | 12 (9%) |
* Later metastatic | 23 (16%) |
Not metastatic | 109 (75%) |
Percentage of Stained Tumour Cells | Staining Intensity | Immunoreactive Score (IRS) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Core Needle Biopsy Tissues (n = 145) | Core Needle Biopsy Tissues (n = 68) | Δ † Mammary Carcinoma Tissues (n = 68) | Core Needle Biopsy Tissues (n = 145) | Core Needle Biopsy Tissues (n = 68) | Δ † Mammary Carcinoma Tissues (n = 68) | Core Needle Biopsy Tissues (n = 145) | Core Needle Biopsy Tissues (n = 68) | Δ † Mammary Carcinoma Tissues (n = 68) | |||
Quantitative data: | Quantitative data: | Quantitative data: | |||||||||
Mean (Range) | 4 (2–4) | 4 (2–4) | 4 (0–4) | Mean (Range) | 2 (0–3) | 2 (1–3) | 1 (0–3) | Mean (Range) | 8 (0–12) | 8 (0–12) | 4 (0–12) |
Categorical data: | Categorical data: | Categorical data: | |||||||||
<10% (Score 1) | 0 (0%) | 0 (0%) | 3 (4%) | Negative (Score 0) | 1 (1%) | 0 (0%) | 10 (15%) | Negative (IRS = 0–2) | 9 (6%) | 1 (1%) | 20 (29%) |
10–50% (Score 2) | 9 (6%) | 1 (1%) | 12 (18%) | Weak (Score 1) | 39 (27%) | 11 (16%) | 33 (48%) | Weak (IRS = 3–4) | 32 (22%) | 10 (15%) | 25 (37%) |
51–80% (Score 3) | 29 (20%) | 12 (18%) | 13 (19%) | Moderate (Score 2) | 63 (43%) | 30 (44%) | 21 (31%) | Moderate (IRS = 6–8) | 62 (43%) | 30 (44%) | 21 (31%) |
>80% (Score 4) | 107 (74%) | 55 (81%) | 40 (59%) | Strong (Score 3) | 42 (29%) | 27 (40%) | 4 (6%) | Strong (IRS = 9–12) | 42 (29%) | 27 (40%) | 2 (3%) |
Tumour Characteristic | Dkk1-IRSs in Core Needle Biopsy Tissues (n = 145) | p Value | * Binary Logistic Regression | |||
---|---|---|---|---|---|---|
IRS (0–8) | IRS (9–12) | p | OR | 95% CI | ||
Age (years) ≤50 >50 | 39 (68%) 64 (63%) | 18 (32%) 24 (27%) | 0.708 | --- | --- | --- |
BMI ≤25 >25 | 57 (74%) 46 (68%) | 20 (26%) 22 (32%) | 0.464 | --- | --- | --- |
cT stage 1–2 3–4 | 77 (76%) 21 (57%) | 24 (24%) 16 (43%) | 0.034 | 0.062 | 2.393 | 0.957–5.987 |
cN stage 0 1–3 | 43 (77%) 57 (67%) | 13 (23%) 28 (33%) | 0.257 | --- | --- | --- |
Grading (G) 1–2 3–4 | 38 (60%) 63 (79%) | 25 (40%) 17 (21%) | 0.026 | 0.018 | 0.410 | 0.196–0.856 |
Ki-67 Index (%) <15% ≥15% | 8 (44%) 95 (75%) | 10 (56%) 32 (25%) | 0.012 | 0.011 | 0.269 | 0.098–0.742 |
ER status − + | 59 (82%) 44 (60%) | 13 (18%) 29 (40%) | 0.006 | 0.005 | 2.991 | 1.396–6.408 |
PR status − + | 87 (82%) 16 (41%) | 19 (18%) 23 (59%) | <0.001 | <0.001 | 6.582 | 2.933–14.772 |
Her2 status − + | 71 (70%) 32 (74) | 31 (30%) 11 (26) | 0.689 | --- | --- | --- |
Subtype Δ Luminal A-like Luminal B-like HR−/Her2+ TNBC | 6 (50%) 39 (62%) 15 (79%) 43 (84%) | 6 (50%) 24 (38%) 4 (21%) 8 (16%) | 0.017 | 0.015 0.010 0.598 | 5.375 3.308 1.433 | 1.379–20.945 1.331–8.217 0.377–5.454 |
ypT stage 0–1 2–4 | 80 (78%) 23 (55%) | 23 (22%) 19 (45%) | 0.008 | 0.007 | 2.873 | 1.338–6.171 |
ypN stage 0 1–3 | 69 (81%) 29 (55%) | 16 (19%) 24 (45%) | 0.004 | 0.001 | 3.569 | 1.657–7.685 |
Tumour Characteristic | Group 1 | Group 2 | Group 3 | p Value | * † Binary Logistic Regression | ||
---|---|---|---|---|---|---|---|
Reduction Percentage <50% | Reduction Percentage 50–75% | Reduction Percentage >75% | p | OR | 95% CI | ||
Age (years) ≤50 >50 | 10 (46%) 13 (30%) | 6 (27%) 22 (51%) | 6 (27%) 8 (19%) | 0.204 | --- | --- | --- |
BMI ≤25 >25 | 11 (32%) 12 (39%) | 16 (47%) 12 (39%) | 7 (21%) 7 (22%) | 0.810 | --- | --- | --- |
Therapy completed Yes √ No | 20 (40%) 3 (20%) | 20 (40%) 8 (53%) | 10 (20%) 4 (27%) | 0.410 | --- | --- | --- |
cT stage 1 2–4 | 1 (12%) 20 (37%) | 5 (63%) 22 (41%) | 2 (25%) 12 (22%) | 0.384 | --- | --- | --- |
cN stage 0 1–3 | 11 (50%) 10 (25%) | 7 (32%) 21 (51%) | 4 (18%) 10 (24%) | 0.126 | --- | --- | --- |
Grading (G) 1–2 3–4 | 16 (44%) 7 (25%) | 17 (47%) 10 (36%) | 3 (9%) 11 (39%) | 0.012 | 0.006 | 7.118 | 1.748–28.988 |
Ki-67 Index (%) <15% ≥15% | 6 (56%) 17 (32%) | 4 (36%) 24 (44%) | 1 (9%) 13 (24%) | 0.332 | --- | --- | --- |
ER status − + | 7 (26%) 16 (42%) | 10 (37%) 18 (47%) | 10 (37%) 4 (11%) | 0.032 | 0.015 | 0.200 | 0.055–0.732 |
PR status − + | 12 (30%) 11 (44%) | 17 (43%) 11 (44%) | 11 (27%) 3 (12%) | 0.298 | --- | --- | --- |
Her2 status − + | 19 (34%) 4 (40%) | 25 (46%) 3 (30%) | 11 (20%) 3 (30%) | 0.746 | --- | --- | --- |
TNBC Δ No Yes | 18 (42%) 5 (23%) | 20 (47%) 8 (36%) | 5 (11%) 9 (41%) | 0.025 | 0.010 | 5.262 | 1.490–18.579 |
Factor | RC | p | OR | 95% CI |
---|---|---|---|---|
Age | 0.001 | 0.962 | 1.001 | 0.973–1.030 |
BMI | −0.023 | 0.510 | 0.977 | 0.912–1.047 |
Therapy period | 0.291 | 0.319 | 1.338 | 0.754–2.375 |
cT stage | −1.602 −1.749 | <0.001 0.001 | 0.202 0.174 | 0.091–0.445 0.060–0.502 |
cN stage | −0.691 | 0.066 | 0.501 | 0.244–1.030 |
Grading (G) | 0.847 −0.221 | 0.026 0.712 | 2.333 0.801 | 1.109–4.908 0.247–2.601 |
ER expression | −0.134 −0.024 | <0.001 0.704 | 0.875 0.977 | 0.810–0.945 0.865–1.103 |
PR expression | −0.301 −0.206 | 0.002 0.123 | 0.740 0.814 | 0.614–0.892 0.627–1.057 |
Her2 expression | 0.882 1.568 | 0.020 0.008 | 0.202 4.759 | 0.091–0.445 1.516–15.167 |
Ki-67 index (%) | 0.025 0.015 | 0.002 0.238 | 1.025 1.015 | 1.009–1.041 0.990–1.041 |
Dkk1-IRS | −0.401 −1.424 | <0.001 <0.001 | 0.670 0.654 | 0.578–0.776 0.534–0.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasoha, M.; Steinbach, A.K.; Bohle, R.M.; Linxweiler, B.; Haj Hamoud, B.; Doerk, M.; Nigdelis, M.P.; Stotz, L.; Zimmermann, J.S.M.; Solomayer, E.-F.; et al. Dkk1 as a Prognostic Marker for Neoadjuvant Chemotherapy Response in Breast Cancer Patients. Cancers 2024, 16, 419. https://doi.org/10.3390/cancers16020419
Kasoha M, Steinbach AK, Bohle RM, Linxweiler B, Haj Hamoud B, Doerk M, Nigdelis MP, Stotz L, Zimmermann JSM, Solomayer E-F, et al. Dkk1 as a Prognostic Marker for Neoadjuvant Chemotherapy Response in Breast Cancer Patients. Cancers. 2024; 16(2):419. https://doi.org/10.3390/cancers16020419
Chicago/Turabian StyleKasoha, Mariz, Anna K. Steinbach, Rainer M. Bohle, Barbara Linxweiler, Bashar Haj Hamoud, Merle Doerk, Meletios P. Nigdelis, Lisa Stotz, Julia S. M. Zimmermann, Erich-Franz Solomayer, and et al. 2024. "Dkk1 as a Prognostic Marker for Neoadjuvant Chemotherapy Response in Breast Cancer Patients" Cancers 16, no. 2: 419. https://doi.org/10.3390/cancers16020419
APA StyleKasoha, M., Steinbach, A. K., Bohle, R. M., Linxweiler, B., Haj Hamoud, B., Doerk, M., Nigdelis, M. P., Stotz, L., Zimmermann, J. S. M., Solomayer, E. -F., Kaya, A. C., & Radosa, J. C. (2024). Dkk1 as a Prognostic Marker for Neoadjuvant Chemotherapy Response in Breast Cancer Patients. Cancers, 16(2), 419. https://doi.org/10.3390/cancers16020419