Magnetic Resonance Elastography for the Detection and Classification of Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection Criteria
2.2. Magnetic Resonance Imaging
2.3. Magnetic Resonance Elastography
2.4. Image Analysis
2.5. Reference Standard
2.6. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Comparison of Stiffness Values among Three Groups
3.3. Comparison of Stiffness Values According to Tumor Location
3.4. Comparison of Stiffness Values According to ISUP Grade Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Gupta, R.T.; Spilseth, B.; Patel, N.; Brown, A.F.; Yu, J. Multiparametric prostate MRI: Focus on T2-weighted imaging and role in staging of prostate cancer. Abdom. Radiol. 2016, 41, 831–843. [Google Scholar] [CrossRef]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. A contemporary prostate cancer grading system: A validated alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef]
- Park, H.; Kim, S.H.; Lee, Y.; Son, J.H. Comparison of diagnostic performance between diffusion kurtosis imaging parameters and mono-exponential ADC for determination of clinically significant cancer in patients with prostate cancer. Abdom. Radiol. 2020, 45, 4235–4243. [Google Scholar] [CrossRef]
- Park, H.; Kim, S.H.; Kim, J.Y. Dynamic contrast-enhanced magnetic resonance imaging for risk stratification in patients with prostate cancer. Quant. Imaging Med. Surg. 2022, 12, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Baek, T.W.; Kim, S.H.; Park, S.J.; Park, E.J. Texture analysis on bi-parametric MRI for evaluation of aggressiveness in patients with prostate cancer. Abdom. Radiol. 2020, 45, 4214–4222. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, J.M.; Han, J.K.; Choi, B.I. MR elastography of healthy liver parenchyma: Normal value and reliability of the liver stiffness value measurement. J. Magn. Reson. Imaging 2013, 38, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Lee, J.M.; Yoon, J.H.; Han, J.K.; Choi, B.I.; Yoon, J.H.; Lee, K.B.; Lee, K.W.; Yi, N.J.; Suh, K.S. Liver fibrosis staging with MR elastography: Comparison of diagnostic performance between patients with chronic hepatitis B and those with other etiologic causes. Radiology 2016, 280, 88–97. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, J.M.; Park, S.; Joo, I.; Yoon, J.H.; Chang, W.; Kim, H. Diagnostic Performance of Spin-Echo Echo-Planar Imaging Magnetic Resonance Elastography in 3T System for Noninvasive Assessment of Hepatic Fibrosis. Korean J. Radiol. 2022, 23, 180–188. [Google Scholar] [CrossRef]
- Hoyt, K.; Castaneda, B.; Zhang, M.; Nigwekar, P.; di Sant’agnese, P.A.; Joseph, J.V.; Strang, J.; Rubens, D.J.; Parker, K.J. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 2008, 4, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Nigwekar, P.; Castaneda, B.; Hoyt, K.; Joseph, J.V.; di Sant'Agnese, A.; Messing, E.M.; Strang, J.G.; Rubens, D.J.; Parker, K.J. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med. Biol. 2005, 34, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.; Majumdar, S.; Kearney, S.; Kajdacsy-Balla, A.; Macias, V.; Crivellaro, S.; Caldwell, B.; Abern, M.; Royston, T.J.; Klatt, D. Prostate cancer assessment using MR elastography of fresh prostatectomy specimens at 9.4 T. Magn. Reson. Med. 2020, 84, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Chopra, R.; Arani, A.; Huang, Y.; Musquera, M.; Wachsmuth, J.; Bronskill, M.; Plewes, D. In vivo MR elastography of the prostate gland using a transurethral actuator. Magn. Reson. Med. 2009, 62, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Arani, A.; Plewes, D.; Krieger, A.; Chopra, R. The feasibility of endorectal MR elastography for prostate cancer localization. Magn. Reson. Med. 2011, 66, 1649–1657. [Google Scholar] [CrossRef]
- Sahebjavaher, R.S.; Baghani, A.; Honarvar, M.; Sinkus, R.; Salcudean, S.E. Transperineal prostate MR elastography: Initial in vivo results. Magn. Reson. Med. 2013, 69, 411–420. [Google Scholar] [CrossRef]
- Dittmann, F.; Reiter, R.; Guo, J.; Haas, M.; Asbach, P.; Fischer, T.; Braun, J.; Sack, I. Tomoelastography of the prostate using multifrequency MR elastography and externally placed pressurized-air drivers. Magn. Reson. Med. 2018, 79, 1325–1333. [Google Scholar] [CrossRef]
- Asbach, P.; Ro, S.R.; Aldoj, N.; Snellings, J.; Reiter, R.; Lenk, J.; Köhlitz, T.; Haas, M.; Guo, J.; Hamm, B.; et al. In Vivo Quantification of Water Diffusion, Stiffness, and Tissue Fluidity in Benign Prostatic Hyperplasia and Prostate Cancer. Investig. Radiol. 2020, 55, 524–530. [Google Scholar] [CrossRef]
- Li, M.; Guo, J.; Hu, P.; Jiang, H.; Chen, J.; Hu, J.; Asbach, P.; Sack, I.; Li, W. Tomoelastography Based on Multifrequency MR Elastography for Prostate Cancer Detection: Comparison with Multiparametric MRI. Radiology 2021, 299, 362–370. [Google Scholar] [CrossRef]
- Silva, M.M., Jr.; Matheus, W.E.; Garcia, P.V.; Stopiglia, R.M.; Billis, A.; Ferreira, U.; Favaro, W.J. Characterization of reactive stroma in prostate cancer: Involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int. Braz. J. Urol. 2015, 41, 849–858. [Google Scholar] [CrossRef]
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef] [PubMed]
- Bonollo, F.; Thalmann, G.N.; Kruithof-de Julio, M.; Karkampouna, S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers 2020, 12, 1887. [Google Scholar] [CrossRef] [PubMed]
- Luthold, C.; Hallal, T.; Labbé, D.P.; Bordeleau, F. The extracellular matrix stiffening: A trigger of prostate cancer progression and castration resistance? Cancers 2022, 14, 2887. [Google Scholar] [CrossRef]
- Heidegger, I.; Frantzi, M.; Salcher, S.; Tymoszuk, P.; Martowicz, A.; Gomez-Gomez, E.; Blanca, A.; Cano, G.L.; Latosinska, A.; Mischak, H.; et al. Prediction of Clinically Significant Prostate Cancer by a Specific Collagen-related Transcriptome, Proteome, and Urinome Signature. Eur. Urol. Oncol. 2024, 7, 969–1158. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Cho, S.B.; Lee, J.K.; Kim, J.S.; Oh, C.H.; Kim, H.J.; Yoon, H.; Ahn, H.K.; Kim, M.; Hwang, Y.G.; et al. The feasibility of MR elastography with transpelvic vibration for localization of focal prostate lesion. Sci. Rep. 2024, 14, 3864. [Google Scholar] [CrossRef] [PubMed]
- Lambregts, D.M.; Beets, G.L.; Maas, M.; Curvo-Semedo, L.; Kessels, A.G.; Thywissen, T.; Beets-Tan, R.G. Tumour ADC measurements in rectal cancer: Effect of ROI methods on ADC values and interobserver variability. Eur. Radiol. 2011, 21, 2567–2574. [Google Scholar] [CrossRef]
- Reiter, R.; Majumdar, S.; Kearney, S.; Kajdacsy-Balla, A.; Macias, V.; Crivellaro, S.; Abern, M.; Royston, T.J.; Klatt, D. Investigating the heterogeneity of viscoelastic properties in prostate cancer using MR elastography at 9.4T in fresh prostatectomy specimens. Magn. Reson. Imaging 2022, 87, 113–118. [Google Scholar] [CrossRef]
- Peng, Y.C.; Joyner, A.L. Hedgehog signaling in prostate epithelial-mesenchymal growth regulation. Dev. Biol. 2015, 400, 94–104. [Google Scholar] [CrossRef]
Parameter | T2WI (Axial, Sagittal, and Coronal) | DWI (b = 0, 100, 1000 and 2000 s/mm2) | MR Elastography |
---|---|---|---|
TR | 4680~4930 | 5260 | 2000 |
TE | 75~100 | 88.5 | 70.5 |
ETL | 15 | 2 | 2 |
Slice thickness | 3.0 mm | 3.0 mm | 3.0 mm |
Slice gap | 0.3 mm | 0.3 mm | 0.3 mm |
Matrix size (axial) | 400 × 320 | 120 × 120 | 80 × 80 |
NEX | 1 | 2, 2, 4, 8 | 8 |
FOV (mm) | 220 × 220 | 240 × 240 | 240 × 240 |
Acquisition time | 1 min 28 s~1 min 51 s | 7 min 53 s | 2 min 16 s |
Parameter | Study Population (n = 75) |
---|---|
Mean age, years [range] | 70 (56–86) |
Mean PSA, ng/mL [range] | 21.0 (0.25–527) |
Mean interval from MRI to radical prostatectomy, days [range] | 58 (7–137) |
Gleason score of prostate cancer | |
6 | 18 |
7 | 43 |
3 + 4 | 24 |
4 + 3 | 19 |
8 | 4 |
9 | 4 |
High grade prostatic intraepithelial neoplasia | 6 |
Tumor location | |
Peripheral zone | 35 |
Transition zone | 22 |
Anterior fibromuscular stroma | 2 |
Diffuse | 10 |
Location | PZ Cancer | TZ Cancer | ||
---|---|---|---|---|
Stiffness Value | p Value | Stiffness Value | p Value | |
Prostate cancer | 4.6 ± 1.1 | 0.3350 * | 5.2 ± 1.0 | 0.1400 * |
BPH | 4.4 ± 1.2 | 0.0005 † | 4.5 ± 1.6 | 0.0035 † |
Normal parenchyma | 3.6 ± 0.3 | 0.0001 ‡ | 0.7 ± 0.3 | 0.0001 ‡ |
ISUP Grade | Stiffness Value (unit, kilopascal) | p Value |
---|---|---|
Grade 1 (GS 6) | 4.5 ± 0.8 | 0.5821 * |
Grade 2 (GS 3 + 4) | 4.7 ± 1.0 | 0.2574 † |
Grade 3 (GS 4 + 3) | 5.2 ± 1.4 | 0.9147 ‡ |
Gr.4 (GS8) & Gr.5(GS9) | 5.1 ± 1.0 | 0.2243 § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Kim, J.Y.; Hwang, M.J. Magnetic Resonance Elastography for the Detection and Classification of Prostate Cancer. Cancers 2024, 16, 3494. https://doi.org/10.3390/cancers16203494
Kim SH, Kim JY, Hwang MJ. Magnetic Resonance Elastography for the Detection and Classification of Prostate Cancer. Cancers. 2024; 16(20):3494. https://doi.org/10.3390/cancers16203494
Chicago/Turabian StyleKim, Seung Ho, Joo Yeon Kim, and Moon Jung Hwang. 2024. "Magnetic Resonance Elastography for the Detection and Classification of Prostate Cancer" Cancers 16, no. 20: 3494. https://doi.org/10.3390/cancers16203494
APA StyleKim, S. H., Kim, J. Y., & Hwang, M. J. (2024). Magnetic Resonance Elastography for the Detection and Classification of Prostate Cancer. Cancers, 16(20), 3494. https://doi.org/10.3390/cancers16203494