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Simple Summary: When oncogenes, which are genes that can cause cancer, become active, they
disrupt normal cell processes, especially DNA replication. This disruption is known as replication
stress (RS), in which the DNA copying process is stalled or damaged. To prevent cancer, cells usually
have a defense system called the DNA damage response (DDR), which can prevent damaged cells
from turning into cancer. However, some cells manage to survive this stress by developing replication
stress tolerance (RST). These cells can continue to grow, leading to genomic instability (GIN), which
is a key feature of cancer. GIN causes various genetic changes that make cells more likely to become
cancerous and more difficult to treat. This review explains how oncogenes cause RS and how cells
cope with it, leading to the development of cancer. Understanding these processes can help in
developing new cancer treatments.

Abstract: Activation of oncogenes disturbs a wide variety of cellular processes and induces physiolog-
ical dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced
RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA
damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a
small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive,
thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is
a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy.
These alterations increase the probability of oncogenic events and create a heterogeneous cell popula-
tion with an enhanced ability to evolve. This review explores how major oncogenes such as RAS,
cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies
employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate
relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer
cells emerge and to develop potential cancer therapies that target these vulnerabilities.

Keywords: oncogene; RAS; cyclin E; MYC; DNA replication; replication stress tolerance

1. Introduction

Maintaining accurate genetic information and genome stability is a major challenge
in living organisms. Acute and deleterious stresses induced by chemicals, radiation, and
viral infections often cause severe DNA damage and/or disruption of genetic information,
leading to toxic consequences [1,2]. However, we have limited knowledge on how cells
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respond to and tolerate chronic stresses caused by oncogene activations, which promote
precancerous cell viability and clonal expansion.

A substantial body of evidence indicates that genomic instability (GIN) could be a
fundamental driving force behind the acquisition of hallmarks of cancer through the gain
and/or loss of gene function derived from structural variations of genomic DNA and
alternations in genetic and/or epigenetic codes, which are implicated in the development
and progression of cancer [3,4]. In hereditary cancers, the presence of GIN has been linked
to mutations in tumor suppressor genes such as DNA repair genes, strongly supporting the
mutator hypothesis, which states that GIN is present in precancerous lesions and drives
tumor development by increasing the spontaneous mutation rate [5]. In colorectal cancer
(CRC), microsatellite instability (MSI), a hypermutable phenotype, is caused by the loss of
DNA mismatch repair activity, which is detected in approximately 12% of sporadic CRC [6].
However, in various sporadic cancers, the frequency of the inactivation of DNA repair genes
is limited; instead, the activation of oncogenes has been proposed to be attributed to GIN [7].
Oncogene activation during cell proliferation can significantly disrupt the intracellular
environment, leading to alterations in metabolites, transcription, and chromatin state,
frequently resulting in disruptions to normal DNA replication, a phenomenon broadly
referred to as replication stress (RS). Oncogene-induced RS is increasingly recognized as an
early driver of GIN in the initial step of cancer development [8,9], whereas the mechanisms
by which it promotes GIN and how cells fine-tune oncogene-induced RS to prevent cell
death have only recently begun to be understood. Recently, we proposed a model in which
ATR kinase, a key regulator of RS, confers tolerance to oncogene-induced RS, enabling
precancerous cells to survive and proliferate [10]. It is anticipated that acute proliferative
signals induced by oncogene activation perturb cellular homeostasis [8], inducing RS,
whereas GIN is accelerated in RS-tolerated cells [10] (Figure 1). This supports the evidence
that a small subset of the cells accumulating GIN continues to grow as an origin of the
cancer in seemingly noncancerous tissues, causing clonal expansion [11].
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gression under oncogene-induced RS and its potential importance in the early stage of 
cancer development.  

Figure 1. The replication stress tolerance process and cancer progression. Oncogene activation
dysregulates the DNA replication via modifying metabolisms, the cell cycle, and the replicative
environment, leading to replication stress (RS). During the initial response to oncogene-induced RS,
an “anti-tumor barrier”, such as DDR activation and/or OIS, is triggered. A small subset of the cells that
acquire replication stress tolerance (RST) mechanisms by resolving the cause of RS and/or altering the
DNA replication process begins to clonally expand, while RST contributes to genomic instability (GIN).

Here, we provide an overview of the impact of major oncogene activation on DNA
replication and discuss the cause and consequence of oncogene-induced RS, including
RS tolerance (RST) mechanisms. We then illustrate the molecular basis underlying GIN
progression under oncogene-induced RS and its potential importance in the early stage of
cancer development.
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2. The Impact of Oncogene Activation on DNA Replication

For more than a decade, a number of studies have expanded our knowledge of the
mechanisms underlying oncogene-induced RS leading to GIN. These studies have revealed
the intricate molecular underpinnings of this process, in which oncogene activation dis-
rupts the tightly controlled process of DNA replication, by (1) physical disturbances on
the replication fork [12,13], (2) insufficient dNTPs supply limiting the activity of DNA
polymerases [8,14], and (3) base-alternations in DNA by chemical modification (or com-
binations of (1)–(3)) [15]. In the following section, we focus primarily on the activation
of well-known oncogenes, such as oncogenic RAS mutations, cyclin E dysregulation, and
MYC amplification, and discuss their impact on DNA replication.

2.1. RAS-Induced RS
2.1.1. The Function of Oncogenic RAS

The RAS family is composed of three genes (H-, K-, and N-RAS) and encodes a low-
molecular-weight GTPases protein that acts as a molecular switch, cycling between an
inactive guanosine diphosphate (GDP)-bound state and an active guanosine triphosphate
(GTP)-bound state at the plasma membrane [16], regulating cellular proliferation and
survival via the RAS-MAP kinase cascade in response to extracellular stimulations [17].
This cycle is mediated by two other classes of proteins. Guanine nucleotide exchange factors
(GEFs) promote the activation of RAS by aiding in the exchange of GDP for GTP, whereas
GTPase-activating proteins (GAPs) promote RAS-mediated GTP hydrolysis, resulting in
inactivation of RAS [16]. The KRAS protein consists of two domains, termed the G-domain
(guanine nucleotide-binding domain), which is associated with GTPase activity, and the
hypervariable region domain (HVR domain), which is required for membrane localization.
The P-loop region (10-17 AA), located in the G-domain, is highly conserved between
paralogs and is necessary for the binding of GTP and GDP, as well as for interactions with
GEFs and GAPs [18]. Since the GAPs stimulate the GTPase activity of KRAS 100,000-fold
more than the GDP-bound “OFF” state [19], it is evident that the interaction of KRAS
and GAPs via the P-loop is required to prevent constitutive activation of KRAS. Thus,
oncogenic missense mutations in the P-loop region, particularly at residues G12 or G13,
impair the interaction with GAPs or the catalysis of GTP hydrolysis, resulting in the chronic
binding of GTP to KRAS and its consistent activation. The KRAS gene exhibits a high
mutation rate among all cancers [20], and is particularly associated with 78.7% of pancreatic
adenocarcinoma (PAAD), 20.1% of lung adenocarcinoma (LUAD), and 49.7% of colorectal
adenocarcinoma (COAD) [21]. Mutations in the HRAS and NRAS have also been observed
in other cancer types, including head and neck, bladder, and skin cancers [21].

2.1.2. The Entity of Oncogenic-RAS Induced RS

How does oncogenic RAS affect DNA replication in the early stages of tumorigenesis?
In recent years, DNA fiber assays have remarkably opened new avenues for research
into the mechanisms of oncogene-induced RS [22]. In a landmark study, Di Micco and
co-workers showed that retroviral introduction of HRASG12V induces RS in normal human
fibroblasts (BJ cells) by increasing origin firing and generating asymmetric replication forks,
and that oncogene-induced senescence (OIS) results from the enforcement of the DNA dam-
age response (DDR) triggered by oncogene-induced RS [23]. The impact of oncogenic RAS
on DNA replication was further reported in mouse embryonic fibroblasts (MEFs) following
retroviral introduction of KRASG12V. This leads to a reduction in fork speed and subsequent
activation of the ATR pathway [24]. These observed phenotypes are strikingly similar to
those observed in the osteosarcoma cell line, U2OS cells, overexpressing cyclin E [25]. Sub-
sequently, it has been shown that doxycycline-inducible HRASG12V expression in human
fibroblasts (BJ cells) slows fork speed, presumably as a consequence of oxidative stress
caused by cellular metabolic changes including reactive oxygen species (ROS) [26]. Several
studies have proposed a model in which oncogenic RAS induces DNA damage and OIS
by generating ROS, which in some cases leads to nucleotide oxidation [27–31], but direct
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evidence as to whether it is necessary to slow down the fork speed has not been clarified. It
has also been demonstrated that retroviral introduction of oncogenic HRASG12V in primary
human normal fibroblasts (IMR90 cells) interferes with cellular dNTP levels by downregu-
lating ribonucleotide reductase subunit M2 (RRM2), causing dNTP pool depletion and RS,
as indicated by premature termination of replication forks [32] (Figure 2).
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Figure 2. Types and causes of RAS-induced replication stress. RAS-mediated metabolic alternation
reduces the nucleotide supply, attenuating DNA polymerase catalysis and leading to replication stress
(RS). RAS also stimulates the signal cascade, increasing the amount of global RNA synthesis and
inducing transcription replication collision (TRC) associated with R-loop. Alternatively, feedback to
alternations in RNA synthesis results in local chromatin compaction, interfering with DNA replication.

Kotsantis and colleagues have reported that increased transcription can be a mecha-
nism of RAS-induced RS. Elevated RNA synthesis in BJ cells expressing tamoxifen-inducible
HRASG12V causes replication fork slowing and DNA damage through transcription–replication
conflict (TRC) and the subsequent formation of R-loops [9]. TRCs occur when the transcrip-
tion and replication machineries collide on the same DNA template. These collisions can
lead to the formation of R-loops, which are stable RNA–DNA hybrids that can displace
the non-template DNA strand. TRCs impede replication fork progression as a result of
head-on or codirectional collisions between the two machineries or between replication
and R-loops, causing replication stress [12]. RAS-induced enhanced transcription is driven
by the upregulation of transcription factors such as TBP (TATA-box binding protein) [33].
Interestingly, overexpression of TBP alone causes RS, DNA damage, and senescence, sug-
gesting that oncogenic RAS-induced elevated RNA synthesis and/or subsequent TRC
and R-loop formation in normal human fibroblasts may be sufficient to induce RS, which
promotes GIN [34] (Figure 2).

Collectively, these studies indicate not only that oncogenic activation of KRAS or
HRAS in fibroblasts, regardless of their induction mechanisms and species background,
leads to RS by the multiple mechanisms mentioned above and others [8], but also that it
triggers the DDR, followed by cell death or senescence, which functions as an inducible
barrier against progressive GIN [23,25,35,36]. However, this raises the question of how
oncogenic RAS-expressing cells adapt to RS while driving GIN, despite the availability of
the ATR/ATM-mediated tumorigenesis barrier.

2.1.3. The Consequence of RAS-Induced RS During Gaining of GIN

A clue for considering biomolecular regulators adapting oncogenic RAS-induced RS
resides in ATR signaling, which responds to a broad spectrum of RS. Previous studies
have reported that heterozygotes for the ATR gene, which reduce ATR protein expres-
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sion to about half, are tumor-prone because of partial DDR defects leading to GIN that
accelerate the incidence of lung adenocarcinoma induced by oncogenic KRASG12D [37].
Notably, a marked decrease in ATR levels (approximately 1/10th of normal levels) due
to hypomorphic mutations in ATR mimicking Seckel syndrome induces a dramatic in-
crease in DNA damage and suppresses tumor growth in cells experiencing suprathreshold
RS induced by HRASG12V [38]. Therefore, a certain level of ATR expression appears to
be necessary to reduce DNA damage to non-lethal levels and allow tumor cell growth
under oncogenic RAS-induced RS. Furthermore, an extra allele of Chk1 protects mouse
fibroblasts from RS and enhances HRASG12V-induced transformation by reducing DNA
damage-associated apoptosis [39]. Similarly, overexpression of Claspin and Timeless, which
consist of a functional module with Chk1, promotes fork progression and protects cells
from HRASG12V-induced RS in a DDR-independent manner [40]. In these circumstances,
Chk1 activation can be increased by overexpressing Claspin, leading to repriming acti-
vation on the leading-strand template due to the activation of PrimPol, which facilitates
the completion of DNA synthesis when replication forks encounter obstacles that cause
polymerase stalling [41]. A recent study showed that Timeless is essential for the engage-
ment of PARP1 to the replisome to coordinate lagging strand synthesis with replication
fork progression [42]. Moreover, PARP1 functions together with Timeless and Tipin protect
the replisome from TRCs in the early S phase [43]. These studies thoughtfully suggest that
upregulation of the ATR-Chk1 axis is efficient for tolerance to oncogenic RAS-induced RS,
while suppressing DDR-mediated cell death, which is a barrier to tumorigenesis, high-
lighting the dosage-dependent dual function of ATR modules, on one hand as a barrier for
tumor development and on the other hand as a supporter of cell survival in response to
oncogenic-RAS activation during cancer progression (Figure 1).

Recently, we reported that KRASG12V induces RS by decreasing replication fork speed
in normal human lung epithelial cells (SAEC) [10]. Interestingly, the established RS-tolerant
cells (RSTCs) under KRASG12V-induced RS express increased levels of ATR compared to
normal cells and recover their fork speed. Furthermore, normal lung epithelial cells overex-
pressing ATR, mimicking RSTC, also showed unrestrained fork progression in the presence
of KRASG12V expression, suggesting that increased ATR protein expression is required for
RST to ensure replication fork progression under KRASG12V-induced RS. Despite seemingly
normal fork progression in RSTCs contributing to complete genome duplication, PrimPol-
repriming regulated by ATR/Chk1 kinase leads to the accumulation of ssDNA gaps in
nascent DNA, increasing the risk of spontaneous double-strand break (DSB) leading to GIN.
These findings raise the previously unrecognized possibility that ATR-PrimPol plays a role
in enabling cells to complete DNA replication and survive under oncogenic KRAS-induced
RS, in return for which cells accumulate genomic alterations and expand GIN, a driving
force for cancer development and malignancy [10]. Consistently, elevated levels of KRAS,
ATR, and Chk1 correlate with the proliferative potential of tumor cells, aneuploidy and
the appearance of metastasis in endometrial cancer patients with relapse, indicating that
activation of the ATR-Chk1 axis in cooperation with KRAS expression, also increases the
risk of recurrence [44]. Alternatively, in response to HRASG12V induction, human foreskin
fibroblasts trigger RST by increasing Topoisomerase 1 (TOP1) expression to deal with the
cause of RS, namely the TRC-associated R-loop, resulting in the acceleration of replication
fork speed and exacerbation of DNA damage and GIN [45]. Together, RST-dependent GIN
progression may provide new insights into oncogenic RAS-driven tumor development
or its recurrence.

2.1.4. Exploring Causes of Oncogenic RAS-Induced RS

One of unexpected finding of our study is that, consistent with previous reports, RNA
transcription causes reduced replication fork progression, whereas the resulting R-loops
and TRCs are not critical determinants of the reduction in fork progression induced by
KRASG12V in lung epithelial cells [10]. Instead, KRASG12V induces unscheduled transcrip-
tion followed by polycomb repressive complex 2 (PRC2)-mediated chromatin remodeling
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via H3K27me3, leading to locally compacted facultative heterochromatin formation, which
may be an obstacle to DNA replication (Figure 2). The idea that local heterochromatin
formation during DNA replication may be a cause of RS is increasingly recognized [46–48]
and highlights the importance of considering chromatin regulation in how oncogenes or
exogenous stress induces RS. Furthermore, pharmacological suppression of H3K27me3
methyltransferase, such as EZH2, impairs oncogenic KRAS-driven lung tumor growth
in vivo [49], suggesting that chronic RS induced by heterochromatin and its tolerance may
further drive the progression of GIN to promote its malignancy. However, it remains
unclear how oncogenic RAS induces RS via the TRC-associated R-loop or transcription-
associated heterochromatin, and why they are altered in a cell lineage-dependent manner.
Although oncogenic HRAS and KRAS mutations are most frequently found in epithelial
cell-derived adenocarcinomas, their impacts have been discussed primarily on the basis
of the fibroblast phenotype in the field of aging and cancer biology. Perhaps, this discrep-
ancy may stem from the historical background that the oncogenic potential of the HRAS
and KRAS genes was validated by transducing them specifically into murine fibroblast
NIH3T3 cells [50–53]. Given the significant differences between fibroblast and epithelial
cell environments, it is essential to proceed with caution when extending the conclusions
drawn from fibroblast-based RS and GIN studies to the intricate mechanisms of epithelial
cell tumorigenesis.

2.2. Cyclin E-Induced RS
2.2.1. The Function of Cyclin E

Cyclin E is a pivotal protein in the intricate machinery governing the cell cycle. The
cyclin E family is composed of two proteins: cyclin E1 and E2 (CCNE1 and CCNE2). As
a core component of the cyclin-dependent kinase (CDK) complex, specifically with CDK2,
it orchestrates the transition from the G1 to S phase, a critical step in DNA replication [54].
In the G1 phase, the cyclin E/CDK2 complex phosphorylates and promotes degradation
of the cell cycle regulating factor the retinoblastoma protein (RB), leading to the release of
the E2F transcription factor [55,56]. E2F-mediated cyclin E transcription leads to cyclin E
protein accumulation, which peaks at the G1/S transition. The cyclin E/CDK2 complex
then phosphorylates numerous substrates, controlling essential cellular processes including
progression through the restriction point and initiation of DNA replication. By the end of
the S phase, cyclin E is completely degraded by ubiquitin-mediated proteolysis, eliminating
cyclin E/CDK2 activity until the subsequent G1 phase [57,58]. Aberrant cyclin E expression
or function, which results from CCNE1 amplification, overexpression, or impaired protein
degradation, is frequently observed in various cancer types such as ovarian, breast, lung
tumors, and leukemias [57,59–61].

2.2.2. The Entity of Cyclin E-Induced RS

Cells with high cyclin E expression are affected by chronic RS. In an earlier study,
it was shown that overexpression of cyclin E introduced by the adenovirus system in
human nasopharyngeal epidermoid carcinoma cells interferes with the assembly of the
components of the pre-replication complex MCM2, MCM4 and MCM7 into chromatin
during late mitosis and early G1 phase [62], resulting in the abrogation of origin licensing.
In this state, a smaller number of origins fire and the rate of DNA synthesis decreases
around each replication origin (Figure 3) [20,62]. Subsequently, retrovirally overexpressed
cyclin E was shown to impair replication fork progression in U2OS cells [26]. In BJ cells,
retrovirally overexpressed cyclin E promoted cell proliferation with insufficient nucleotide
levels, resulting in reduced fork progression, which was rescued by exogenous nucleoside
supplementation (Figure 3) [63].

Another predominant mechanism for cyclin E-induced RS is interference between
replication and transcription. Impaired replication fork progression induced by the overex-
pression of cyclin E (tetracycline-repressive system) in U2OS cells is recovered by inhibiting
replication initiation factors, indicating that excessive origin firing causes replication slow-
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ing [64]. In the same study, inhibition of transcriptional elongation was shown to alleviate
replication stress and reduce DNA damage caused by cyclin E1 overexpression [64]. These
results indicate that RS in cyclin E-overexpressing cells likely results from increased replica-
tion initiation coupled with conflicts between replication and transcription. This model
is further supported by a recent study in which firing of intragenic origins caused by
premature S phase entry represents a mechanism of overexpression of cyclin E-induced
DNA replication stress [65]. In yeast, the length of G1 is sufficient for transcription to
inactivate origins across the entire length of genes [66]. However, oncogenes greatly reduce
the length of G1 [67], and therefore leave insufficient time for transcription to inactivate all
intragenic origins (Figure 3). These excessive and ectopic origin firings lead to increased
TRCs and R-loops [64,65], which are the major cause of RS induced by cyclin E [68,69].
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Figure 3. Types and causes of excessive cyclin E-induced replication stress. Overexpressed cyclin E
reduces the nucleotide supply and hinders nascent DNA synthesis. Dysregulated cyclin E specifically
shortens the length of the G1 phase. Entry to the premature S phase induces uncompleted transcription
and ectopic origin firing, resulting transcription replication collision (TRC). Cyclin E compromises the
regulation of origin firing. Cyclin E can disrupt the normal control of DNA replication initiation sites,
leading to unscheduled replication and increased TRC, leading to replication stress (RS).

2.2.3. The Consequence of Cyclin E-Induced RS During Gaining of GIN

Deregulated cyclin E-induced RS causes DNA damage which activates checkpoint
responses that regulate anti-tumor barriers (such as cell growth arrest, senescence, and cell
death) and GIN. The ATR/ATM-regulated DNA damage response is activated promptly
in a time-dependent manner (2 to 6 days) after the induction of cyclin E in U2OS cells
and human fibroblasts [25,70]. Consistent with the observation in cultured cells, these
activated DNA damage responses are commonly detected in human tumor tissue from
different stages and early precursor lesions (but not normal tissues) [36,70]. Importantly,
DDR activation precedes GIN, represented by the occurrence of p53 mutations and/or
defects in DNA damage signaling [36,70], indicating that early in tumorigenesis (before
GIN), human cells activate an ATR/ATM-regulated DNA damage response network that
delays or prevents cancer. However, constitutively overexpressing cyclin E (during a 30-day
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growth period) in rat embryo fibroblasts and human breast epithelial cells results in an
increased proportion of aneuploid cells, indicative of chromosome instability (CIN) [71].
These data indicate that changes in cyclin E/Cdk2 kinase activity may affect processes
involved in faithful chromosome replication and segregation.

How do cells overexpressing cyclin E overcome the barrier for GIN and progress
to cancer cells that have acquired tolerances for the RS? Recently, it was reported that
F-box/LRR-repeat protein 12 (FBXL12), a substrate recognition component of the SCF
(SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex, protects replication forks
under cyclin E-induced RS. Chk1-mediated phosphorylation of FANCD2 triggers its
FBXL12-dependent degradation and promotes efficient DNA replication. High FBXL12
expression is associated with poor survival in patients with high CCNE1 expression, indi-
cating that FBX12-dependent RST initiated by ATR-Chk1 axis activation may contribute to
cyclin E-driven tumor malignancy [72]. Alternatively, cyclin E overexpression in RPE cells
causes the transmission of DNA lesions into mitosis, which triggers RAD52-dependent mi-
totic DNA synthesis (MiDAS), supporting cell survival. Moreover, cyclin E1 amplification
is associated with increased RAD52 expression in breast cancers, suggesting that Rad52
mediates RST [73].

Although aneuploidy in cancer genomes strongly correlates with mutations in TP53 [74],
Zeng and colleagues reported that cyclin E-induced RS drives p53-dependent whole-
genome duplication, an important driver of aneuploidy [75]. Cyclin E-induced RS in U2OS
and RPE cells prolongs G2 phase arrest in an ATR/Chk1 checkpoint-dependent manner.
p53, through its downstream target p21, whose accumulation is also dependent upon
checkpoint activation, together with Wee1, sufficiently inhibits mitotic CDK activity to
activate APC/C-Cdh1 and promote mitotic bypass [75]. Cyclin E expression prevents cells
entry into senescence, continues to progress cell cycle and can drive senescent cells to
complete endoreduplication, resulting in cells proliferation while acquiring GIN [75].

2.3. MYC-Induced RS
2.3.1. The Function of MYC

The MYC family of oncogenes contains three well-defined members: MYC (also
known as c-Myc), MYCN, and MYCL, which encode transcription factors that control gene
expression involved in cell proliferation and differentiation, thereby contributing to tumori-
genesis and reprogramming [76]. c-Myc is frequently overexpressed and/or activated in
a wide variety of cancer types, while its two paralogs, N-Myc and L-Myc are associated
with neuroblastoma and small cell lung cancer, respectively. MYC deregulation occurs
through genetic alterations, including amplification and translocation, aberrant signal
transduction leading to the increased MYC expression, or MYC protein stabilization [77,78].
Pancancer analysis across the 33 cancers of The Cancer Genome Atlas (TCGA) identified
focal amplification (28% of the samples) in at least one of the three MYC families, and MYC
antagonists were mutated (MGA, 4% of samples) or deleted (MNT, 10% of samples) [79].
Hence, MYC activation has been implicated in the initiation, progression, and mainte-
nance of most types of cancers [80]. MYC largely functions as a transcription factor that
coordinates many biological processes associated with the features of cancer, including
autonomous proliferation and growth, increased protein biogenesis, and global changes in
cellular metabolism. Accumulating evidence shows that the MYC family is also a major
driver of oncogene-induced RS, as described below.

2.3.2. The Entity of MYC-Induced RS

MYC activation results in dramatic changes in the transcriptional program. MYC
acts as a universal amplifier of expressed genes by directly targeting the promoter regions
of active genes and producing increased levels of transcripts within the cell’s gene ex-
pression program [81,82], providing an explanation for the diverse effects of oncogenic
MYC on gene expression in different tumor cells. In contrast, MYC activates and represses
the transcription of discrete gene sets, leading to indirect transcriptional amplification
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via feedback on global RNA production and turnover [83,84]. These MYC-dependent
transcriptional activations contribute to shaping the gene expression profiles that are es-
sential for tumor initiation and growth. Importantly, increased RNA synthesis causes the
R-loop and TRC, which can cause transcription-associated RS [9,85,86]. Recent studies
have shown that c-Myc expression is associated with R-loop accumulation in breast cancer
cells [87,88], thereby conferring a synthetic lethality by inhibiting TOP1 [88], an enzyme
that relaxes DNA supercoiling and prevents R-loop formation [89,90]. These observations
suggest that MYC potentially induces transcription-associated RS, most likely through
R-loop formations followed by TRCs (Figure 4). However, given recent study showing that
inhibition of RNA polymerase does not rescue replication fork stalling induced by c-Myc
in RPE1 cells [91], direct evidence that MYC-dependent transcription impairs replication
fork progression has not yet been well established.
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Figure 4. Types and causes of oncogenic MYC-induced replication stress. MYC overexpression
and/or activation induces replication stress (RS) through both transcriptional and non-transcriptional
mechanisms. MYC-dependent transcriptional activation causes R-loop accumulation followed by
transcription–replication collisions. In non-transcriptional mechanisms, MYC overexpression pro-
motes Cdc45-MCM-GINS activation leading to unscheduled origin firing with subsequent replication
fork stalling and DNA damage. In addition, MYC overexpression increases cohesion accumulation
on chromatin in a CTCF-dependent manner, interfering with replication fork progression.

By contrast, MYC regulates several mechanisms to prevent transcription-associated
RS. MYC has been shown to physically interact with TOP1/2 and stimulate their activity
in a “topoisome”, suggesting that their enzymatic activities may resolve DNA topological
stress during transcription-associated RS [92]. In addition, MYC multimers, often sphere-
like structures, are formed in response to RS and accumulate on chromatin immediately
adjacent to stalled replication forks and surround the FANCD2, ATR, and BRCA1 proteins,
which limits DNA damage in the S phase [93]. In neuroblastoma cells, N-Myc-dependent re-
cruitment of BRCA1 and USP11 to transcriptional pause sites facilitates mRNA de-capping
and the release of stalled RNA polymerases, thereby suppressing R-loop accumulation [94].
N-Myc also interacts with and activates Aurora A on chromatin, which phosphorylates
histone H3 at serine 10 in the S phase, promotes the deposition of histone H3.3 and sup-
presses R-loop accumulation and TRC [95,96]. Therefore, these results indicate that MYC
family proteins play a role to resolve transcription-mediated problems on DNA, possibly
reducing their contribution as a cause of replication stress induced by MYC activation.
Since MYC-driven cancer cells are vulnerable to inhibition of Aurora A and ATR which
suppress increases in R-loop, TRC, and DNA damage [96], MYC activation may not only
cause transcription-associated RS but also elevate the tolerability for survival and growth
under this stress.
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2.3.3. Non-Transcriptional Role of MYC in RS

The role of MYC in cell cycle progression is generally linked to its transcriptional
regulation of cyclins and CDKs. Since cyclin E overexpression markedly induces RS, as
described above, dysregulation of cell cycle progression may be a cause of MYC-induced RS.
On the other hand, MYC is directly involved in the regulation of DNA replication in a
non-transcriptional manner [97–99]. Notably, Dominguez-Sola and colleagues revealed
that c-Myc interacts with the pre-replicative complex and is required for efficient DNA
replication and proper origin specification in the absence of transcription [100]. In addition,
c-Myc induces the decondensation of higher-order chromatin at targeted sites, promoting
Cdc45/GINS recruitment to resident MCMs and the activation of CMGs [101]. Consistent
with these reports, c-Myc overexpression alters the spatiotemporal program of replication
initiation by increasing the density of early replicating origins, resulting in replication fork
stalling/collapse and subsequent DNA damage [100,102] (Figure 4). c-Myc overexpression
increases cohesins chromatin occupancy at CTCF sites, interfering with the progression
of replication forks and contributing to c-Myc-induced RS [91] (Figure 4). Together, these
results indicate that MYC-driven cancer cells are exposed to diverse causes of RS owing to
their multifunctional roles.

2.3.4. MYC-Mediated RST Mechanisms During Gaining of GIN

As a result of RS, MYC activation leads to DNA damage through direct impairment
of DNA replication dynamics [100,101], followed by DDR activation, which potentially
limits cell proliferation and survival [103]. Nevertheless, MYC is also involved in diverse
RST mechanisms. MYC binds to the promoters of DNA repair genes such as Rad51, and
endogenous MYC protein expression correlates with RAD51 protein expression [104]. The
MRN complex is transcriptionally upregulated by c-Myc [105] and N-Myc [106], and
suppresses N-Myc-mediated RS and DNA damage to support tumor growth [107]. In
fibroblasts, c-Myc directly stimulates the transcription of WRN helicase, whose depletion
results in increased RS levels and senescence induction [108,109]. Importantly, WRN
depletion impaired tumor growth in c-Myc-driven non-small cell lung cancer xenografts
and Eµ-Myc-driven B-cell lymphoma in a mouse model, suggesting that WRN upregulation
by c-Myc promotes tumorigenesis [110]. Thus, MYC, in a transcription-dependent manner,
induces DDR factors associated with DNA repair and their functions contribute to the
establishment of a safeguard system against high RS levels induced by MYC itself.

Furthermore, MYC-driven cancer cells depend on various context-dependent RST mech-
anisms. MYC-driven cancer cells, in which RS is limited and tumor growth is supported by
ATR/Chk1 activation, exhibit higher sensitivity to ATR and Chk1 inhibitors [38,111–113]. In
mouse models of Eµ-Myc-driven B-cell lymphoma, the DNA translocases SMARCAL1 and
ZRANB3 protect replication forks [114]. In U2OS cell models, depletion of Polη, a Y-family
TLS polymerase, enhanced c-Myc-induced replication fork stalling and subsequent DNA
damage, indicating that Polη mediates RST under c-Myc-induced RS [115]. Furthermore,
nucleotide depletion and subsequent RS and DNA damage induced by HPV E6/E7 and
cyclin E oncogenes are rescued by c-Myc expression-dependent increased transcription of
nucleotide biosynthesis genes [63]. Similarly, oncogenic RAS-induced DNA damage can
be rescued by exogenously supplied nucleotides [26]. Considering the interdependency
between RAS, cyclin E, and MYC, MYC upregulation, in a feedback manner, may contribute
to mitigating RAS- and cyclin E-induced RS, generate genome instability at tolerable levels,
and promote cancer development.

3. Conclusions

The interplay between oncogenes, RS, and GIN emerges as a critical factor in cancer
development. Oncogene activation triggers RS by disrupting the DNA replication pro-
cesses, leading to replication fork stalling, collapse, and DNA damage. While the DDR
or OIS initially acts as a barrier, a subset of cells develop RST mechanisms presumably in
an ATR/Chk1 signaling pathway-dependent manner, enabling them to survive or escape
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senescence, and proliferate. Alternatively, DNA damage induced by RS and persisting
during mitosis may be repaired through less accurate repair pathways, such as single-
strand annealing (SSA) or alternative end-joining/microhomology-mediated end-joining
(alt-EJ/MMEJ), promoted by RAD52 and the mutagenic DNA polymerase Pol θ, respec-
tively [116]. Mitotic MMEJ helps prevent cell division from proceeding with unrepaired
DNA damage, thereby contributing to ensuring cell viability [117]. These survival advan-
tages allow for clonal expansion and the accumulation of genetic alterations, contributing
to GIN, a hallmark of cancer (Figure 1). In addition, several studies have proposed a model
in which a subset of cells undergoing OIS acquire a mechanism for re-entry into the cell
cycle [118,119], which would promote tumor development [120]. Collectively, the toler-
ance or escape of genotoxic stress induced by oncogene activation while gaining GIN and
expanding effectively is a crucial matter for cells during the initial step of tumorigenesis.

However, various oncogenes may have different effects on the RS and RST path-
ways depending on the cell type and the time point at which their effects are addressed,
such as before or after cell transformations, which also applies to GIN. Oncogenic KRAS-
induced RST cells exhibit COSMIC signature SBS8, which likely arises from uncorrected
late replication errors [10,121]. In the case of the CDC6 oncogene, early acquired recurrent
chromosomal inversions have been reported at the locus encoding the circadian transcrip-
tion factor BHLHE40 [119]. Thus, it is difficult to predict whether a specific type of GIN
will be induced by oncogene-induced RS, making this a promising area for future research.
Furthermore, the cause of RS may be spontaneously and stochastically induced by unsched-
uled transcription, dysregulated chromatin organization, and perturbed cell cycles despite
the absence of oncogene activations, at an unrecognizably low level in normal cells, leading
to early genome alterations called “bad luck” [122], conceivably through RST according to
the specific circumstances. Indeed, recent high-throughput readouts of the human genome
have demonstrated that GIN arises in noncancerous cells in correlation with aging and
environmental risks [123]. Therefore, further research elucidating the specific molecular
mechanisms underlying RST in different contexts and how GIN arises and evolves in
the early or late stages of tumorigenesis could lead to insights into the identification of
vulnerabilities associated with RS and GIN for the development of novel cancer therapeutic
approaches and potential preventive cancer strategies.
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