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The integration of artificial intelligence (AI) and machine learning (ML) in modern
oncology is rapidly transforming cancer drug discovery and development. These technolo-
gies enable scientists to overcome obstacles in the traditional drug development pipeline,
accelerating the discovery and optimization of new anti-cancer therapies. Al’s ability to
simulate human cognitive processes, in combination with ML, offers new opportunities for
identifying novel drug targets, predicting patient responses, and conquering cancer drug
resistance [1-4].

Al models using deep learning have already shown success in accurately predicting
drug sensitivity and resistance across various cancer types, enabling more personalized
treatment approaches [1]. The role of Al in identifying novel drug targets has also gained
momentum. By mapping biological networks and chartographing intricate molecular cir-
cuits, Al can pinpoint previously undiscovered interactions within cell systems, revealing
new potential therapeutic targets. Despite challenges like high computational costs and
data bias, ML approaches such as graph convolution networks are advancing target identi-
fication and improving drug property predictions by analyzing biomolecular structures
and clinical data [2]. Furthermore, Al has demonstrated success using a deep learning
model, POLYpharmacology Generative Optimization Network (POLYGON), in designing
compounds that can inhibit more than one target simultaneously [3]. In addition, models
like Drug Ranking Using ML (DRUML) have been developed to rank drugs, employing
large-scale “omics” data and predicting their efficacy performance across diverse cancer
types [4]. Deep learning models such as AlphaFold (see below) have further revolutionized
the field by accurately predicting protein structures and interactions, which are essential
for designing drugs that precisely target cancer-related proteins [5,6].

The potential of Al extends to drug screening and the repurposing of drugs. Advanced
Al tools like PockDrug predict “druggable” pockets on proteins, whilst AlphaFold and
other structural biology models further refine these predictions, helping identify new drugs
and repurposing existing ones for cancer treatment [2]. Notwithstanding some limitations,
such as the complexity of protein dynamics and the need for more efficient feature selec-
tion algorithms, Al is steadily ameliorating these predictions and driving drug discovery
forward [2,5]. Moreover, Al has proven valuable in understanding the mechanisms of
drug resistance in cancer. A notable application is in breast cancer research, where deep
learning models have elucidated the mechanisms for resistance to cyclin-dependent kinase
4 and 6 (CDK4/6) inhibitors, providing potential overcoming treatment strategies [7]. Al's
transformative impact is evident in its capacity to accelerate discoveries in unexplored areas.
Crowdsourced efforts have expanded the understanding of kinase inhibitor interactions,
revealing new targets within the human kinome [8]. Similarly, Al models integrated with
multi-scale interactome networks have provided insights into how drugs affect biological
systems, aiding in the prediction of treatment outcomes more accurately [9].
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The development of Al-powered platforms like canSAR, the world’s largest public
cancer drug discovery knowledgebase, has further propelled this field. CanSAR integrates
data from various sources to fuel Al-driven models, enhancing the efficiency and accuracy
of drug discovery efforts [10]. AlphaFold has also made significant contributions to the
structural prediction of proteins, offering critical insights into how cancer-related proteins
(e.g., tumor-cell signal transduction components and effectors) interact with drugs and
open up new pathways for treatment [11]. While these advancements are promising,
several challenges remain. Data quality and biases can affect the accuracy of Al models,
and large datasets are needed to train these algorithms effectively [12]. However, initiatives
aimed at improving data collection and sharing will continue to foster the performance of
Al-driven models [13].

The above findings are emphatically certified by the awarding of the 2023 Albert Lasker
Basic Medical Research Award and the 2024 Nobel Prize in Chemistry to the development of
an Al model, namely AlphaFold, to predict protein structures and design our own proteins,
a colossal achievement that is likely to dramatically expedite cancer drug development
because it will abate the length of the iteration cycle of therapeutic development and decode
the mechanisms of action. Such predictive models will also allow much finer-grained and
more causal interpretation of a patient’s genomic data, revealing how individual genetic
variations impact on cancer cell behavior and possibly suggesting a route toward more
personalized medicine [14].
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