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Simple Summary: Predictions of survival in patients with localized breast cancer base their models
on data from the time the patients are diagnosed. These survival curves have an inherent inaccuracy
because they do not take into consideration events that occur after initial diagnosis. We used eep
learning, a type of artificial intelligence, to model the survival of Medicare patients with stage
I–III breast cancer from the SEER-Medicare dataset from 1991 to 2016. In addition to considering
patient and cancer variables from the time of diagnosis, we included variables that occurred later,
including treatment, adverse events, other medical conditions, and progressive age of the patient.
Our predictions improved significantly, with the inaccuracy rate dropping from around 30% to less
than 10% when the time-varying data were added to the time-fixed data. We also developed our
models to generate individual patient predicted survival based on their unique circumstances made
up of the patient, cancer, treatment, and treatment-related adverse events that occurred over time.
This approach will be a powerful tool that can advise oncology caregivers and patients on the factors
that impact their predicted survival.

Abstract: Background and objectives: Deep learning (DL)-based models for predicting the survival of
patients with local stages of breast cancer only use time-fixed covariates, i.e., patient and cancer data at
the time of diagnosis. These predictions are inherently error-prone because they do not consider time-
varying events that occur after initial diagnosis. Our objective is to improve the predictive modeling
of survival of patients with localized breast cancer to consider both time-fixed and time-varying
events; thus, we take into account the progression of a patient’s health status over time. Methods:
We extended four DL-based predictive survival models (DeepSurv, DeepHit, Nnet-survival, and
Cox-Time) that deal with right-censored time-to-event data to consider not only a patient’s time-fixed
covariates (patient and cancer data at diagnosis) but also a patient’s time-varying covariates (e.g.,
treatments, comorbidities, progressive age, frailty index, adverse events from treatment). We utilized,
as our study data, the SEER-Medicare linked dataset from 1991 to 2016 to study a population of
women diagnosed with stage I–III breast cancer (BC) enrolled in Medicare at 65 years or older as
qualified by age. We delineated time-fixed variables recorded at the time of diagnosis, including age,
race, marital status, breast cancer stage, tumor grade, laterality, estrogen receptor (ER), progesterone
receptor (PR), and human epidermal receptor 2 (HER2) status, and comorbidity index. We analyzed
six distinct prognostic categories, cancer stages I–III BC, and each stage’s ER/PR+ or ER/PR−
status. At each visit, we delineated the time-varying covariates of administered treatments, induced
adverse events, comorbidity index, and age. We predicted the survival of three hypothetical patients
to demonstrate the model’s utility. Main Outcomes and Measures: The primary outcomes of the
modeling were the measures of the model’s prediction error, as measured by the concordance index,
the most commonly applied evaluation metric in survival analysis, and the integrated Brier score,
a metric of the model’s discrimination and calibration. Results: The proposed extended patients’
covariates that include both time-fixed and time-varying covariates significantly improved the deep
learning models’ prediction error and the discrimination and calibration of a model’s estimates. The
prediction of the four DL models using time-fixed covariates in six different prognostic categories all
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resulted in approximately a 30% error in all six categories. When applying the proposed extension to
include time-varying covariates, the accuracy of all four predictive models improved significantly,
with the error decreasing to approximately 10%. The models’ predictive accuracy was independent of
the differing published survival predictions from time-fixed covariates in the six prognostic categories.
We demonstrate the utility of the model in three hypothetical patients with unique patient, cancer,
and treatment variables. The model predicted survival based on the patient’s individual time-fixed
and time-varying features, which varied considerably from Social Security age-based, and stage and
race-based breast cancer survival predictions. Conclusions: The predictive modeling of the survival
of patients with early-stage breast cancer using DL models has a prediction error of around 30% when
considering only time-fixed covariates at the time of diagnosis and decreases to values under 10%
when time-varying covariates are added as input to the models, regardless of the prognostic category
of the patient groups. These models can be used to predict individual patients’ survival probabilities
based on their unique repertoire of time-fixed and time-varying features. They will provide guidance
for patients and their caregivers to assist in decision making.

Keywords: deep learning; survival models; breast cancer; SEER-Medicare linked dataset

1. Introduction

Many factors affect long-term survival from localized breast cancer (BC) in women.
Covariates that impact predictive survival modeling can be both time-fixed and time-
varying, and each have been incorporated in generating the predicted survival of BC patient
populations. Time-to-event modeling aims to predict the patients’ survival function. Factors
that correlate with survival from localized breast cancer are covariates that characterize the
patients and their cancer at the time of diagnosis. These factors, referred to as time-fixed
covariates, include the cancer stage (I–III), laterality, tumor size (T), number of lymph nodes
(N), estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (Her2) status, tumor grade, Ki67 staining, lymphovascular invasion, perineural
invasion, androgen receptor (AR) status, molecular signature and recurrence score, stem
cell frequency, the presence of circulating tumor cells and bone marrow micrometastases,
patient race, location of residence, age, menopausal status, relationship status, health, and
comorbidity status [1–22].

However, much happens during patients’ lives after the initial diagnosis that affects
their survival. These factors are referred to as time-varying covariates, and their impact
on survival is less well-characterized, more complex, and often as important as the impact
of time-fixed covariates. Time-varying covariates that affect survival include the adminis-
tration of neoadjuvant therapy, timing and type of initial surgery, the timing of initiation,
amount, type, and completion of adjuvant chemotherapy, biotherapy, hormone therapy,
radiotherapy, or prolonged hormone or Her2 blockade [14,19,23,24]. Multiple life events
that occur at irregularly variable periods have been implicated in decreased survival [25].
They include changes in health status, adverse events from treatment, comorbidities, post
adjuvant reconstruction [26] or other non-cancer surgery, angiogenesis and wound heal-
ing, hypercoagulable states, persistence of bone marrow disseminated tumor cells [27],
aging, estrogen deprivation, infection, inflammation, exposure to toxic chemicals, seden-
tary lifestyle, weight gain, obesity, smoking, alcohol consumption [28–30], anxiety, stress,
and depression [25]. These events shorten survival independently or by abrogating the
microenvironment’s ability to suppress the awakening of dormant micrometastases [25].

Given the proven impact of both time-fixed and time-varying covariates on predicted
survival in population-averaged models, we hypothesized that taking them both into
consideration would improve the accuracy of predictive modeling. We focused our study
on prediction models that use time-to-event data, including the time a patient is observed
for the event of interest, death in our case, and whether they experienced it before the study
follow-up ended. Some patients are said to be right-censored, i.e., are lost to the study
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before experiencing the event and before the study follow-up ends or did not experience the
event before the study follow-up ends. Over the past five decades, statistical methods for
analyzing time-to-event data, especially right-censored survival data, have been developed.
Unlike traditional prediction models, survival prediction models account for censoring;
ignoring the censoring leads to biased and inefficient predictions [31,32]. Additional
shortcomings of population-based predictions are that they provide highly inadequate
predictions of individual patient outcomes due to the virtually unlimited combination of
both time-fixed and time-varying features of each patient that impact survival.

Parametric survival models assume a specific distribution, e.g., Weibull, for the sur-
vival times. These models, however, lead to biased estimates when the assumed survival
time distribution is violated [33]. The semiparametric Cox Proportional Hazards (CPH)
regression model [34] is the most common time-to-event analysis approach in the medical
literature. Most survival models, including the CPH model, are designed for data with con-
tinuous failure time distributions. In real life, patient follow-up visits occur on a given day
with irregular gaps between two consecutive visits. Applying standard continuous-time
models on discrete-time data without adequate adjustments can lead to biased estima-
tors [35,36]. Further, the CPH model’s proportionality hazard assumption, i.e., the effect of
each patient covariate is the same at all values of the follow-up time, is unrealistic for most
clinical situations [37].

As a nonlinear extension to CPH, Faraggi–Simon’s network [38] was an early attempt
to extend CPH with a neural network. Since the state of development of neural networks
was not as advanced as it is today, the results did not show improvement beyond the
linear CPH model. Given the modern era of high-performance computing and available
datasets of hundreds of thousands of patients and hundreds of millions of patient records,
deep learning (DL) models, an artificial intelligence (AI) subfield, are increasingly common
approaches to developing survival prediction using time-to-event data. AI-based survival
models, specifically DL models, capture the complex nonlinear relationships among the
patient’s characteristics, cancer characteristics, treatments, adverse events, comorbidity, etc.
These models help achieve precision medicine, providing guidance for treatment that is
personally tailored to individual patients with stage I–III BC.

2. Methods
2.1. Deep Learning Predictive Modeling
2.1.1. Discrete Time-to-Event Data

DeepSurv. The first successful attempt to extend the Cox regression model with
neural networks (NNs) was proposed in [39], where the patient’s covariates are input to
the network, and the single node out of the network uses a linear activation function to
estimate the log-risk function in the Cox model. Their results demonstrated that NNs were
able to outperform classical Cox models.

DeepHit. Lee et al. [40] were the first to apply NNs to the discrete-time likelihood for
right-censored time-to-event data [41]. Their DL-based model, DeepHit, treated survival
time as discrete and the time horizon as finite. The model makes no assumptions about
the underlying stochastic process by directly learning the joint distribution of survival
times and events and allowing for the possibility that the relationship between covari-
ates and risk(s) changes over time. Their results showed that DeepHit outperformed
previous models.

Nnet-survival. In [37], a discrete-time survival model, Nnet-survival, was proposed.
Given input data of n patients, each with covariate vector xi, we can fit the model by
minimizing the loss given by the mean negative log-likelihood. Their result showed “good”
discrimination and calibration performance with simulated and real data.

Cox-Time. To overcome the proportionality assumption of the Cox model, Kvam-
meet al.’s [41] proposal was to consider time as a regular covariate and modify the rel-
ative risk function to have it dependent on time, resulting in h(t|x) = h0(t)eg(t,x). Thus,
g(t, x) model interactions between time and the other covariates are considered. This
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model, Cox-Time, although no longer a proportional hazard model, is still a relative risk
model with the same partial likelihood as the Cox model with the following loss function,
loss = 1

n ∑
i:Di=1

log ∑
jϵ

∼
Ri

e[g(Ti ,xj)−g(Ti ,xi)]. The model is trained on continuous-time data but

produces discrete-time predictions.
To summarize, DeepSurv is limited by the proportionality assumption of the CPH

model, whereas DeepHit, Nnet-Survival, and Cox-Time are not restricted by the proportion-
ality assumption. DeepSurv is designed for data with continuous failure time distributions;
Cox-Time, on the other hand, is trained on continuous-time data but produces discrete-time
predictions. Nnet-Survival is a discrete-time model where the baseline hazard rate and the
effect of the input data on hazard probability can vary with follow-up time.

2.1.2. Time-Varying Covariates: Proposed Extension

A patient has two sets of covariates: time-fixed covariates (e.g., age at diagnosis)
and time-varying covariates (e.g., current age, current comorbidity index, treatments
administered at this visit and earlier visits, and adverse events). A patient’s survival status
is recorded at each visit while the patient is at risk, i.e., has not yet experienced the event
(death in our case) of interest.

The above methods, while dealing with discrete-time data, assume that the xi covari-
ates of a patient, i, are time-fixed. A realistic prediction of the patient’s survival needs to
consider not only the patient’s covariates at the time of diagnosis but also the administered
treatments, induced adverse events, comorbidity index, and the age at each visit.

To achieve this objective, we extended a patient covariate vector, xi, to include not
only time-fixed covariates but also covariates that summarize the patient’s history from
previous visits. Specifically, for a given treatment, TRj f or j = 1, 2, . . . , 46, TRij is a
tally of the number of times TRj was administered to this patient, i, from the time of
the diagnosis to the time of death/end of the study. Similarly, for a given adverse event
induced, AEk f or k = 1, 2, . . . , 18, AEik is a tally of the number of times the patient, i,
experienced AEk, from the time of the diagnosis to the time of death/end of the study.
We divide the age of a patient into 6 bins: bin1 ≤ 65, 65 < bin2 ≤ 70, 70 < bin3 ≤ 75,
75 < bin4 ≤ 80, 80 < bin5 ≤ 85, bin6 > 85. AGEib is a tally of the number of times the age of
patient, i, falls within the binb f or b = 1, 2, . . . , 6, from the time of the diagnosis to the time
of death/end of the study. We handle a patient comorbidity index similar to a patient’s age.
We divide the comorbidity index of a patient into 6 bins: bin1 ≤ 2, 2 < bin2 ≤ 4, 4 < bin3
≤ 6, 6 < bin4 ≤ 8, 8 < bin5 ≤ 10, bin6 > 10. COMBib is a tally of the number of times the
comorbidity index of the patient, i, falls within the 6 comorbidity bins: 1, 2, . . . , 6 from the
time of the diagnosis to the time of death/end of the study.

2.2. Experiments

We compared the performance of the four predictive models discussed above when
using the patients’ time-fixed covariates versus when using our proposed extended pa-
tients’ covariate vectors to include time-fixed covariates and covariates that summarize the
patient’s history from previous visits.

2.2.1. Study Data: SEER-Medicare Linked Dataset

We utilized the SEER-Medicare linked dataset, which provides information on can-
cer care and outcomes of Medicare beneficiaries with cancer [42]. Medicare data have a
patient Entitlement and Diagnosis Summary File, a person-level file that provides SEER
demographic and clinical information for up to 10 primary cancer diagnoses, treatments,
and mortality. Medicare files capture the fee-for-service claims from hospitals, outpatient
facilities, National Claims History, hospice care, home health agencies, and Part D Prescrip-
tion Drug Event claims. The CCflag file includes, for every patient, the date the patient
was diagnosed with one of twenty-two chronic conditions. We used these data to com-
pute a time-varying patient’s comorbidity index. There were 883,053 BC patients during
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1991–2016. We fused the data in the various files based on the Observational Medical
Outcomes Partnership (OMOP) common data model. These data within those disparate
files are transformed into a common format (data model) and a common representation
(terminologies, vocabularies, coding schemes).

2.2.2. Cohort Selection

In our study, we included women with the diagnosis of stage I–III breast cancer who
have not had any other malignancy history except non-melanoma skin and eyelid cancer,
as a standard in NCI clinical trials [43], included all comorbidities recorded at every visit
from the date of diagnosis, averaged over the course of all the treatments assessed for
each patient, all prior treatments, delineated age, race, marital status, breast cancer stage,
tumor grade, laterality, and ER status, PR, and HER2 status. We only included patients
whose age at enrollment was 65 or older and qualified by age, not disability. The enrolled
population was, therefore, skewed by age and only represented an elderly subset of the
breast cancer patient population. We included patients who were enrolled in both Parts
A and B of Medicare with no HMO enrollment from 1 month prior to diagnosis through
20 years following diagnosis, hospice, or death to ensure that subjects were continuously
enrolled in the proper parts of Medicare during the study period.

For our analysis, we divided the patient population into groups of patients with
ER/PR + and − cancers, which are diseases with different genetic, behavioral, and survival
characteristics [9], and patients with stages I, II, and III cancers, which have vastly different
prognoses from each other [16]. Treatment affects patients with these different classifications
differently according to guidelines developed based on clinical investigations [19,44,45].

2.2.3. Data Cleaning, Standardization, Encoding, and Embedding

We removed duplicate records and included alid data, e.g., ICD and HCPCS codes,
dates, etc. We performed data transformation and standardization. We categorized treat-
ments into 46 mechanistic categories and adverse events into 18 categories reported in the
BC treatment literature. We applied embeddings, which resulted in the efficient computa-
tion and discovery of complex patterns, reduced overfitting, and captured the underlying
structure of the data to better generalize new, unseen data [46].

2.2.4. Performance Metrics

The concordance index (C-index) is the most commonly applied discriminative evalu-
ation metric in survival analysis [41]. The cause-specific time-dependent C-index, which
explicitly accounts for censoring, estimates the model’s prediction error [47]. We also
measured the model’s performance using the integrated Brier score (IBS) [48–50], a discrim-
ination metric, and a calibration metric of a model’s estimates.

2.2.5. Model Hyperparameters

These neural network parameters are fixed by design and not tuned by training; they
should be optimized. We applied Amazon SageMaker Python SDK 2.232.2 (software devel-
opment kit), an open-source library, to fine-tune the model by identifying optimal values
of the network’s hyperparameters. We used a Bayesian optimization search scheme [51].
Table 1 includes the list of the hyperparameters and their ranges. Figure 1 depicts the
correlation between the performance metric, time-dependent concordance, and each of the
model’s hyperparameters for the case of stage I and ER+.
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Table 1. Hyperparameters.

Hyperparameter Type Range

Batch size Categorical [32, 64, 128, 256, 512]

Epochs Categorical [100, 200, 300, 500]

Dropout rate Categorical [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

Number of layers Integer values [2, 5]

Number of nodes Categorical [32, 64, 128, 256, 512]

Alpha Categorical [0.0, 0.001, 0.1, 0.2, 0.5, 0.8, 0.9, 0.99, 1.0]

Sigma Categorical [0.01, 0.1, 0.25, 0.5, 1.0, 10, 100]

Learning rate Continuous [0.0001, 0.1]
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2.2.6. Models Validation

We used the pycox package [41]. To validate our implementation, we applied the four
models, DeepSurv, DeepHit, Nnet-survival, and Cox-Time, to the real datasets METABRIC [52]
and SUPPORT [53]. The experiments were conducted using five-fold cross-validation. As
shown in Table 2, our results confirm that “all methods perform quite similarly” [54] and are
aligned with published results of each of these models using these datasets [54].

Table 2. Validation of applied models.

Model Time-Dependent Concordance Integrated Brier Score

Support Metabric Support Metabric

As Reported
in the

Literature

Our
Results

Reported in
the

Literature

Our
Results

Reported in
the

Literature

Our
Results

Reported in
the

Literature

Our
Results

Cox-Time 0.630 0.647 0.664 0.683 0.212 0.182 0.173 0.150

DeepHit 0.639 0.646 0.675 0.676 0.227 0.196 0.186 0.103

DeepSurv 0.615 0.630 0.640 0.710 0.213 0.231 0.175 0.136

Nnet-Survival
(Logistic Hazard) 0.625 0.617 0.658 0.674 0.184 0.205 0.172 0.142
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3. Results

The patient characteristics, including the number of entries and patients in the category,
mean age, and comorbidity indices at the time of initial diagnosis, are presented in Table 3.
The data concur with our prior observations with the SEER-Medicare file that ER− patients
represent 17.3% of the patients. In the ER+ category, 59.7% of the patients had stage I cancer,
and only 9.6% of patients had stage III cancer, while in the ER− group, only 42.8% of the
patients had stage I disease, while 18.4% had stage III disease. These data show later-stage
distributions in more aggressive ER− tumors than ER+ tumors [16].

Table 3. Patient characteristics.

Stage Number of
Entries

Number of
Patients Age ± SD Comorbidity

Index ± SD
Number of

Entries
Number of

Patients Age ± SD Comorbidity
Index ± SD

ER/PR+ ER/PR−
I 17,400,569 92,467 74.7 ± 6.8 2.9 ± 2.9 2,741,780 13,880 74.0 ± 6.7 2.8 ± 2.9

II 8,828,801 47,469 75.7 ± 7.5 2.9 ± 3.1 2,292,617 12,560 75.2 ± 7.5 2.6 ± 3.0

III 2,604,115 14,825 75.8 ± 7.6 2.5 ± 3.0 979,047 5966 75.7 ± 7.7 2.1 ± 2.9

The recurrence rates and survival of patients with ER+/PR+ cancers and ER−/PR−
cancers vary with well-described characteristics [9,16]. To assess the degree of sensitivity of
the model’s predictive accuracy and the model’s calibration to the ER/PR status of the pa-
tient population, we considered the following six scenarios of BC patients: scenario 1: stage I,
ER/PR+; scenario 2: stage II, ER/PR+; scenario 3: stage III, ER/PR+; scenario 4: stage I,
ER/PR−; scenario 5: stage II, ER/PR−; and Scenario 6: stage III, ER/PR−.

Table 4 demonstrates the predictive performance of the four models when considering
only the time-fixed covariates versus when considering the time-fixed and the time-varying
covariates. In terms of concordance, we observe the significant improvement of the model
with the proposed extended patients’ covariates compared with that of the patients’ time-
varying covariates. For example, the DeepSurv model’s prediction error is 4% when using
the proposed extended patients’ covariates versus over 32% when using the patients’
time-fixed covariates.

Our results demonstrate that the performance of each of the models considered is rela-
tively insensitive to the patient’s ER/PR status, both when considering only the patient’s
covariates at diagnosis, or the patient’s time-varying covariates in addition to the patient’s
covariate at diagnosis. The predictive capacity of the models improves significantly regard-
less of ER/PR status or stage when time-varying covariates are considered together with
the time-fixed covariates.

To illustrate the practical application of the prediction models to clinical scenarios,
we selected three hypothetical patients with unique individual patient, cancer treatment,
adverse events features, and progressive age and comorbidity indices, and generated pre-
dicted survival curves based on their time-fixed and their time-varying variables (Figure 2).
These data demonstrate the potential application of the model to individual patients with
their unique characteristics to predict their own individual survival probabilities. We com-
pared each of these hypothetical patient’s median predicted survival probability and the
population-averaged predicted survival probability by age from Social Security tables [55],
and stage and race [16]. Our data demonstrate that both sets of population-averaged
predicted values are vastly different from the predicted median survival of each patient
generated by the models. Our model-predicted survivals are influenced by the standard
time-fixed variables of age, race, stage, hormone and Her2 status, tumor grade, as out-
lined in countless prior studies referenced above, as well as by the impact of treatments,
treatment-associated adverse events, age and comorbidity progression with treatment,
which collectively have positive and negative impacts on the relationship of the model-
based survival and population-averaged survival.
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Table 4. Time-dependent concordance and integrated Brier score.

Model Time-Dependent
Concordance Integrated Brier Score Time-Dependent

Concordance Integrated Brier Score

SM_Time-
Fixed

Patients’
Covariates

± SD

SM_Time-
Fixed &
Varying
Patients’

Covariates
± SD

SM_Time-
Fixed

Patients’
Covariates

± SD

SM_Time-
Fixed &
Varying
Patients’

Covariates
± SD

SM_Time-
Fixed

Patients’
Covariates

± SD

SM_Time-
Fixed &
Varying
Patients’

Covariates
± SD

SM_Time-
Fixed

Patients’
Covariates

± SD

SM_Time-
Fixed &
Varying
Patients’

Covariates
± SD

ER/PR+ ER/PR−

Stage I

Cox-Time 0.679 ± 0.001 0.987 ± 0.001 0.112 ± 0.002 0.009 ± 0.003 0.690 ± 0.005 0.987 ± 0.002 0.120 ± 0.002 0.011 ± 0.001

DeepHit 0.667 ± 0.002 0.958 ± 0.001 0.110 ± 0.003 0.013 ± 0.001 0.671 ± 0.003 0.960 ± 0.003 0.127 ± 0.001 0.042 ± 0.003

DeepSurv 0.682 ± 0.001 0.969 ± 0.002 0.110 ± 0.003 0.030 ± 0.009 0.670 ± 0.006 0.996 ± 0.001 0.117 ± 0.001 0.018 ± 0.003

Nnet-
Survival
(Logistic
Hazard)

0.668 ± 0.001 0.976 ± 0.001 0.131 ± 0.003 0.037 ± 0.002 0.642 ± 0.005 0.980 ± 0.001 0.110 ± 0.002 0.042 ± 0.002

Stage II

Cox-Time 0.689 ± 0.003 0.988 ± 0.001 0.106 ± 0.001 0.007 ± 0.003 0.676 ± 0.006 0.978 ± 0.003 0.110 ± 0.002 0.011 ± 0.001

DeepHit 0.722 ± 0.001 0.988 ± 0.001 0.122 ± 0.001 0.080 ± 0.007 0.724 ± 0.003 0.842 ± 0.005 0.129 ± 0.002 0.001 ± 0.003

DeepSurv 0.672 ± 0.003 0.965 ± 0.003 0.105 ± 0.001 0.029 ± 0.001 0.663 ± 0.006 0.993 ± 0.001 0.104 ± 0.001 0.026 ± 0.002
Nnet-

Survival
(Logistic
Hazard)

0.661 ± 0.001 0.977 ± 0.001 0.110 ± 0.001 0.038 ± 0.003 0.618 ± 0.002 0.984 ± 0.001 0.118 ± 0.001 0.024 ± 0.001

Stage III

Cox-Time 0.642 ± 0.001 0.981 ± 0.002 0.091 ± 0.003 0.008 ± 0.001 0.709 ± 0.005 0.968 ± 0.004 0.080 ± 0.001 0.011 ± 0.001
DeepHit 0.621 ± 0.002 0.981 ± 0.001 0.094 ± 0.001 0.052 ± 0.003 0.703 ± 0.004 0.973 ± 0.001 0.085 ± 0.001 0.089 ± 0.007

DeepSurv 0.660 ± 0.004 0.984 ± 0.006 0.089 ± 0.003 0.024 ± 0.002 0.666 ± 0.014 0.993 ± 0.002 0.079 ± 0.002 0.024 ± 0.001
Nnet-

Survival
(Logistic
Hazard)

0.627 ± 0.002 0.944 ± 0.009 0.091 ± 0.003 0.005 ± 0.002 0.604 ± 0.005 0.944 ± 0.003 0.087 ± 0.002 0.064 ± 0.007
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Figure 2. Predicted survival curves for three hypothetical patients. Details of data used to produce
these hypothetical predicted survival curves are not permitted by NCI SEER-Medicare because they
were derived from individual patient-identifying information.

Model Interpretability

AI-based model understanding, an active area of research, helps provide insights
into the models’ decision-making process. Examples of methods that attempt to break
the “black-box” characterization of AI-based models are LIME (Local Interpretable Model-
agnostic Explanations) [56], SHAP (SHapley Additive exPlanations) [57], and Captum,
which is a state-of-the-art open-source, comprehensive library for deep learning PyTorch
model explainability [58]. Limitations of these methods include computational complexity
and instability, i.e., different runs may produce different explanations for the same instance.

In addition, interpreting the resulting covariate importance is a challenge, especially,
as is the case in our environment, when the input covariates interact in a complex manner,
resulting in computed attribution scores that do not capture the nonlinear dependencies
between the network inputs and outputs.
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4. Discussion

Our findings present a unique and compelling opportunity to improve the prediction
performance of the four DL models that handle discrete-time distributions by extending
the patients’ covariates vectors to include both time-fixed covariates and covariates that
summarize the patient’s history from previous visits. The IBS can be viewed as the mean
square error of prediction; lower values of the IBS indicate better predictive performance.

Our analyses using time-fixed covariates in six different prognostic categories all
demonstrated an error rate ranging from approximately 28% to 37%. When we combined
time-varying covariates that included treatments, adverse events, aging, and comorbidities,
the accuracy of all four predictive models improved significantly, with error rates decreasing
to 0.4–16%. Although published survival predictions derived from time-fixed covariates
vary significantly between stage I, II, and III cancers and between ER/PR+ and ER/PR−
cancers, all four of the predictive models demonstrated the same narrow range of inaccuracy
when trained on time-fixed covariates and all improved relatively equally to highly accurate
estimates when we incorporated time-varying covariates into the modeling.

We can hypothesize that these trends result from our proposed extension to combine
multiple time-varying events in the modeling. Indeed, survival from localized breast
cancer is the result of the cumulative effects of multiple covariates that have a collective
impact on time to death. These time-varying events include wide-ranging treatment
categories [14,19,23,24], adverse events from treatment [59–61], patient health and mental
health events [62–64], progressive age, and frailty [65]. Studies generally investigate
treatments individually or in combination on their impact on recurrence and survival,
which are linked nonlinearly based on a number of factors [19,44,66,67]. Most of the time-
varying events have an impact individually on recurrence and survival, factors that depend
on the initial cancer stage and hormonal status [15,68]. However, the totality of these
time-varying events and their nuanced impact on individual scenarios resulted in a global
improvement of predictability nearing unity.

There are several potential limitations to this study. Our patient population consisted
of Medicare-enrolled patients over 65 who qualified by age and not for other medical
conditions. Their age range, therefore, is not representative of the general population, and
their overall expected survival may be less than that of patients with stage I–III BC at a
younger age. They may also not be necessarily representative of patients with private
insurance coverage. Due to the enrollment criteria, patients may have been diagnosed with
BC and potentially received treatment before enrollment in Medicare, potentially skewing
the results based on Medicare claims. To generalizthe applicability of our conclusions of
significant improvements in the accuracy of survival predictions by combining time-varying
covariates with time-fixed covariates, we will recapitulate these approaches in the Medicaid
datasets that are composed of younger patients more representative in age of the general
population. The limitations of the older ICD-9 diagnosis codes and the lack of recurrence
data will need to be addressed using additional datasets [69]. Nevertheless, the predictive
modeling accuracies were highly concurrent among the four models in all disease scenarios,
suggesting a similar efficacy when considering these additional confounding variables.

DL-based prediction models exhibit outstanding performance; predictive models for
BC recurrence and survival often focus on limited covariates related to tumor, treatment,
molecular, and clinical covariates. As part of a follow-up investigation, we plan to conduct
an in-depth study that builds on our preliminary experimentation with Captum, where we
applied the integrated gradient-based method. We plan to study Camptum’s performance
when applying DeepLift, FeatureAblation, and ArchDetect methods. Future investigations
will focus on molecular characteristics and gene expression characteristics of different
cancers to incorporate their impact on predictive probabilities. Future investigations
of these models will also be conducted using datasets that record recurrence as well to
address additional time-to-event endpoints, including time-to-recurrence and recurrence-
free survival.
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5. Conclusions

Our data demonstrate that predicting the survival of stage I–III BC patients using only
time-fixed variables suffers from a significant error rate of around 30%. However, adding
time-varying covariates to the time-fixed covariates in predictive modeling using four DL
models significantly decreases the error rate to around 10%, regardless of the prognostic
category of the patient prognostic groups with widely differing predicted survival hazard
curves based on time-fixed data. The application of these models of individual patients
led to predicted survival probabilities that are vastly different and more accurate than
population-averaged data based on time-fixed variables based on race, stage, patient
overall health, and activity. This approach will have a significant impact on improving the
faithfulness of survival estimates based on the unique variables of individual patients and
can be applied as an adjunct tool in the clinical care of stage I–III BC patients.

Author Contributions: Conceptualization, N.A. and R.W.; methodology, N.A. and R.W.; software,
N.A. and R.W.; validation, N.A. and R.W.; formal analysis, N.A. and R.W.; investigation, N.A. and
R.W.; resources, N.A. and R.W.; data curation, N.A. and R.W.; writing—original draft, N.A. and R.W.;
writing—review and editing, N.A. and R.W.; visualization, N.A. and R.W.; project administration,
N.A. and R.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by 1. Northeast Big Data Innovation Hub, USA, GG014586-02
(N.A. and R.W.); 2. 2020 Busch Biomedical Grant Program, USA (N.A. and R.W.); 3. Amazon Web
Services Health Equity Initiative (“HEI”) Program, USA, CC ADV 00011104 2023 TR. (N.A. and R.W.).
This study used the linked SEER-Medicare database. The interpretation and reporting of these data
are the sole responsibility of the authors. The authors acknowledge the efforts of the National Cancer
Institute; Information Management Services (IMS), Inc.; and the Surveillance, Epidemiology, and
End Results (SEER) Program tumor registries in the creation of the SEER-Medicare database and
wish to thank them for their advice and review of the datasets designating the different treatment
venues. The collection of cancer incidence data from the California Cancer Registry used in this
study was supported by the California Department of Public Health pursuant to California Health
and Safety Code Section 103885; Centers for Disease Control and Prevention’s (CDC) National
Program of Cancer Registries, under cooperative agreement 1NU58DP007156; the National Cancer
Institute’s Surveillance, Epidemiology and End Results Program under contract HHSN261201800032I
awarded to the University of California, San Francisco, contract HHSN261201800015I awarded to the
University of Southern California, and contract HHSN261201800009I awarded to the Public Health
Institute. The ideas and opinions expressed herein are those of the author(s) and do not necessarily
reflect the opinions of the State of California, Department of Public Health, the National Cancer
Institute, and the Centers for Disease Control and Prevention or their Contractors and Subcontractors.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Rutgers Institutional Review Board under Exempt Review study
number Pro20140000175.

Informed Consent Statement: Not applicable.

Data Availability Statement: Original data were obtained from SEER-Medicare under a two-tiered
review process. SEER-Medicare data are available to investigators upon review.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Braun, S.; Vogl, F.D.; Naume, B.; Janni, W.; Osborne, M.P.; Coombes, R.C.; Schlimok, G.; Diel, I.J.; Gerber, B.; Gebauer, G.; et al. A

pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 2005, 353, 793–802. [CrossRef] [PubMed]
2. Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A.

Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [CrossRef]
[PubMed]

3. Cheng, L.; Swartz, M.D.; Zhao, H.; Kapadia, A.S.; Lai, D.; Rowan, P.J.; Buchholz, T.A.; Giordano, S.H. Hazard of recurrence
among women after primary breast cancer treatment—A 10-year follow-up using data from SEER-Medicare. Cancer Epidemiol.
Biomark. Prev. 2012, 21, 800–809. [CrossRef] [PubMed]

4. Castellano, I.; Chiusa, L.; Vandone, A.M.; Beatrice, S.; Goia, M.; Donadio, M.; Arisio, R.; Muscarà, F.; Durando, A.; Viale, G.; et al.
A simple and reproducible prognostic index in luminal ER-positive breast cancers. Ann. Oncol. 2013, 24, 2292–2297. [CrossRef]

https://doi.org/10.1056/NEJMoa050434
https://www.ncbi.nlm.nih.gov/pubmed/16120859
https://doi.org/10.1158/1078-0432.CCR-06-3045
https://www.ncbi.nlm.nih.gov/pubmed/17671126
https://doi.org/10.1158/1055-9965.EPI-11-1089
https://www.ncbi.nlm.nih.gov/pubmed/22426147
https://doi.org/10.1093/annonc/mdt183


Cancers 2024, 16, 3527 11 of 13

5. Silber, J.H.; Rosenbaum, P.R.; Clark, A.S.; Giantonio, B.J.; Ross, R.N.; Teng, Y.; Wang, M.; Niknam, B.A.; Ludwig, J.M.; Wang,
W.; et al. Characteristics associated with differences in survival among black and white women with breast cancer. JAMA 2013,
310, 389–397. [CrossRef]

6. Vera-Badillo, F.E.; Templeton, A.J.; de Gouveia, P.; Diaz-Padilla, I.; Bedard, P.L.; Al-Mubarak, M.; Amir, E. Androgen receptor
expression and outcomes in early breast cancer: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, djt319.
[CrossRef]

7. Daly, B.; Olopade, O.I. A perfect storm: How tumor biology, genomics, and health care delivery patterns collide to create a racial
survival disparity in breast cancer and proposed interventions for change. CA Cancer J. Clin. 2015, 65, 221–238. [CrossRef]

8. Shi, R.; Taylor, H.; McLarty, J.; Liu, L.; Mills, G.; Burton, G. Effects of payer status on breast cancer survival: A retrospective study.
BMC Cancer 2015, 15, 211. [CrossRef]

9. Colleoni, M.; Sun, Z.; Price, K.N.; Karlsson, P.; Forbes, J.F.; Thürlimann, B.; Gianni, L.; Castiglione, M.; Gelber, R.D.; Coates,
A.S.; et al. Annual Hazard Rates of Recurrence for Breast Cancer During 24 Years of Follow-Up: Results From the International
Breast Cancer Study Group Trials I to V. J. Clin. Oncol. 2016, 34, 927–935. [CrossRef]

10. Giuliani, J.; Mercanti, A.; Bonetti, A. Late recurrence (more than 10 years) in early (tumors equal to or smaller than 2 cm) breast
cancer patients. Clin. Transl. Oncol. 2016, 18, 859–862. [CrossRef]

11. Miyoshi, Y.; Shien, T.; Ogiya, A.; Ishida, N.; Yamazaki, K.; Horii, R.; Horimoto, Y.; Masuda, N.; Yasojima, H.; Inao, T.; et al.
Collaborative Study Group of Scientific Research of the Japanese Breast Cancer Society. Differences in expression of the cancer
stem cell marker aldehyde dehydrogenase 1 among estrogen receptor-positive/human epidermal growth factor receptor type
2-negative breast cancer cases with early, late, and no recurrence. Breast Cancer Res. 2016, 18, 73. [PubMed]

12. Janni, W.J.; Rack, B.; Terstappen, L.W.; Pierga, J.Y.; Taran, F.A.; Fehm, T.; Hall, C.; de Groot, M.R.; Bidard, F.C.; Friedl, T.W.;
et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin. Cancer Res. 2016,
22, 2583–2593. [CrossRef] [PubMed]

13. Geurts, Y.M.; Witteveen, A.; Bretveld, R.; Poortmans, P.M.; Sonke, G.S.; Strobbe, L.J.A.; Siesling, S. Patterns and predictors of first
and subsequent recurrence in women with early breast cancer. Breast Cancer Res. Treat. 2017, 165, 709–720. [CrossRef] [PubMed]

14. Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. EBCTCG.
20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836–1846.
[CrossRef]

15. Sestak, I.; Zhang, Y.; Schroeder, B.E.; Schnabel, C.A.; Dowsett, M.; Cuzick, J.; Sgroi, D. Cross-Stratification and Differential Risk by
Breast Cancer Index and Recurrence Score in Women with Hormone Receptor-Positive Lymph Node-Negative Early-Stage Breast
Cancer. Clin. Cancer Res. 2016, 22, 5043–5048. [CrossRef]

16. Wieder, R.; Shafiq, B.; Adam, N. African American race is an independent risk factor in survival form initially diagnosed localized
breast cancer. J. Cancer 2016, 7, 1587–1598. [CrossRef]

17. Tjensvoll, K.; Nordgård, O.; Skjæveland, M.; Oltedal, S.; Janssen, E.A.M.; Gilje, B. Detection of disseminated tumor cells in bone
marrow predict late recurrences in operable breast cancer patients. BMC Cancer 2019, 19, 1131. [CrossRef]

18. Wieder, R.; Shafiq, B.; Adam, N. Greater Survival Improvement in African American vs. Caucasian Women with Hormone
Negative Breast Cancer. J. Cancer 2020, 11, 2808–2820. [CrossRef]

19. Dar, H.; Johansson, A.; Nordenskjöld, A.; Iftimi, A.; Yau, C.; Perez-Tenorio, G.; Benz, C.; Nordenskjöld, B.; Stål, O.; Esserman,
L.J.; et al. Assessment of 25-Year Survival of Women With Estrogen Receptor-Positive/ERBB2-Negative Breast Cancer Treated
With and Without Tamoxifen Therapy: A Secondary Analysis of Data From the Stockholm Tamoxifen Randomized Clinical Trial.
JAMA Netw. Open. 2021, 4, e2114904. [CrossRef]

20. Prakash, O.; Hossain, F.; Danos, D.; Lassak, A.; Scribner, R.; Miele, L. Racial disparities in triple negative breast cancer: A review
of the role of biologic and non-biologic factors. Front. Public Health 2020, 8, 576964. [CrossRef]

21. Hoskins, K.F.; Danciu, O.C.; Ko, N.Y.; Calip, G.S. Association of Race/Ethnicity and the 21-Gene Recurrence Score With Breast
Cancer-Specific Mortality Among US Women. JAMA Oncol. 2021, 7, 370–378. [CrossRef] [PubMed]

22. Hoskins, K.F.; Calip, G.S.; Huang, H.C.; Ibraheem, A.; Danciu, O.C.; Rauscher, G.H. Association of social determinants and tumor
biology with racial disparity in survival from early-stage, hormone-dependent breast cancer. JAMA Oncol. 2023, 9, 536–545.
[CrossRef] [PubMed]

23. Gagliato Dde, M.; Gonzalez-Angulo, A.M.; Lei, X.; Theriault, R.L.; Giordano, S.H.; Valero, V.; Hortobagyi, G.N.; Chavez-
Macgregor, M. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J. Clin. Oncol. 2014,
32, 735–744. [CrossRef] [PubMed]

24. Sheppard, V.B.; Oppong, B.A.; Hampton, R.; Snead, F.; Horton, S.; Hirpa, F.; Brathwaite, E.J.; Makambi, K.; Onyewu, S.; Boisvert,
M.; et al. Disparities in breast cancer surgery delay: The lingering effect of race. Ann. Surg. Oncol. 2015, 22, 2902–2911. [CrossRef]
[PubMed]

25. Wieder, R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers 2023, 15, 3021. [CrossRef]
26. Dillekås, H.; Demicheli, R.; Ardoino, I.; Jensen, S.A.H.; Biganzoli, E.; Straume, O. The recurrence pattern following delayed breast

reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases. Breast
Cancer Res. Treat. 2016, 158, 169–178. [CrossRef]

https://doi.org/10.1001/jama.2013.8272
https://doi.org/10.1093/jnci/djt319
https://doi.org/10.3322/caac.21271
https://doi.org/10.1186/s12885-015-1228-7
https://doi.org/10.1200/JCO.2015.62.3504
https://doi.org/10.1007/s12094-015-1433-5
https://www.ncbi.nlm.nih.gov/pubmed/27368476
https://doi.org/10.1158/1078-0432.CCR-15-1603
https://www.ncbi.nlm.nih.gov/pubmed/26733614
https://doi.org/10.1007/s10549-017-4340-3
https://www.ncbi.nlm.nih.gov/pubmed/28677011
https://doi.org/10.1056/NEJMoa1701830
https://doi.org/10.1158/1078-0432.CCR-16-0155
https://doi.org/10.7150/jca.16012
https://doi.org/10.1186/s12885-019-6268-y
https://doi.org/10.7150/jca.39091
https://doi.org/10.1001/jamanetworkopen.2021.14904
https://doi.org/10.3389/fpubh.2020.576964
https://doi.org/10.1001/jamaoncol.2020.7320
https://www.ncbi.nlm.nih.gov/pubmed/33475714
https://doi.org/10.1001/jamaoncol.2022.7705
https://www.ncbi.nlm.nih.gov/pubmed/36795405
https://doi.org/10.1200/JCO.2013.49.7693
https://www.ncbi.nlm.nih.gov/pubmed/24470007
https://doi.org/10.1245/s10434-015-4397-3
https://www.ncbi.nlm.nih.gov/pubmed/25652051
https://doi.org/10.3390/cancers15113021
https://doi.org/10.1007/s10549-016-3857-1


Cancers 2024, 16, 3527 12 of 13

27. Janni, W.; Vogl, F.D.; Wiedswang, G.; Synnestvedt, M.; Fehm, T.; Jückstock, J.; Borgen, E.; Rack, B.; Braun, S.; Sommer, H.; et al.
Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—A
European pooled analysis. Clin. Cancer Res. 2011, 17, 2967–2976. [CrossRef]

28. Kwan, M.L.; Kushi, L.H.; Weltzien, E.; Tam, E.K.; Castillo, A.; Sweeney, C.; Caan, B.J. Alcohol consumption and breast cancer
recurrence and survival among women with early-stage breast cancer: The life after cancer epidemiology study. J. Clin. Oncol.
2010, 28, 4410–4416. [CrossRef]

29. Simapivapan, P.; Boltong, A.; Hodge, A. To what extent is alcohol consumption associated with breast cancer recurrence and
second primary breast cancer? A systematic review. Cancer Treat. Rev. 2016, 50, 155–167. [CrossRef]

30. Nechuta, S.; Chen, W.Y.; Cai, H.; Poole, E.M.; Kwan, M.L.; Flatt, S.W.; Patterson, R.E.; Pierce, J.P.; Caan, B.J.; Ou Shu, X. A pooled
analysis of post-diagnosis lifestyle factors in association with late estrogen-receptor-positive breast cancer prognosis. Int. J. Cancer
2016, 138, 2088–2097. [CrossRef]

31. Suresh, K.; Severn, C.; Ghosh, D. Survival prediction models: An introduction to discrete-time modeling. BMC Med. Res. Methodol.
2022, 22, 207. [CrossRef] [PubMed]

32. Kattan, M.W. Comparison of cox regression with other methods for determining prediction models and nomograms. J. Urol. 2003,
170, 6–10. [CrossRef] [PubMed]

33. Kleinbaum, D.G.; Klein, M. Survival Analysis; Springer: New York, NY, USA, 2010; Volume 3.
34. Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–202. [CrossRef]
35. Meir, T.; Gutman, R.; Gorfine, M. PyDTS: A Python Package for Discrete Time Survival Analysis with Competing Risks. arXiv

2022, arXiv:2204.05731.
36. Meir, T.; Gorfine, M. Discrete-time Competing-Risks Regression with or without Penalization. arXiv 2023, arXiv:2303.01186.
37. Gensheimer, M.F.; Narasimhan, B. A scalable discrete-time survival model for neural networks. PeerJ 2019, 7, e6257. [CrossRef]
38. Faraggi, D.; Simon, R. A neural network model for survival data. Stat. Med. 1995, 14, 73–82. [CrossRef]
39. Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system

using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [CrossRef]
40. Lee, C.; Zame, W.R.; Yoon, J.; van der Schaar, M. DeepHit: A deep learning approach to survival analysis with competing risks.

Proc. AAAI Conf. Artif. Intell. 2018, 32, 2314–2321. [CrossRef]
41. Kvamme, H.; Borgan, Ø.; Scheel, I. Time-to-event prediction with neural networks and Cox regression. J. Mach. Learn. Res. 2019,

20, 1–30.
42. Enewold, L.; Parsons, H.; Zhao, L.; Bott, D.; Rivera, D.R.; Barrett, M.J.; Virnig, B.A.; Warren, J.L. Updated overview of the

SEER-Medicare data: Enhanced content and applications. JNCI Monogr. 2020, 2020, 3–13.
43. Perez, M.; Murphy, C.C.; Pruitt, S.L.; Rashdan, S.; Rahimi, A.; Gerber, D.E. Potential Impact of Revised NCI Eligibility Criteria

Guidance: Prior Malignancy Exclusion in Breast Cancer Clinical Trials. J. Natl. Compr. Cancer Netw. 2022, 20, 792–799. [CrossRef]
[PubMed]

44. Goldvaser, H.; Ribnikar, D.; Majeed, H.; Ocana, A.; Amir, E. Absolute benefit from adjuvant chemotherapy in contemporary
clinical trials: A systemic review and meta-analysis. Cancer Treat. Rev. 2018, 71, 68–75. [CrossRef] [PubMed]

45. Hayes, D.F. Disease related indicators for a proper choice of adjuvant treatments. Breast 2011, 20 (Suppl. S3), S162–S164. [CrossRef]
46. Guo, C.; Berkhahn, F. Entity embeddings of categorical variables. arXiv 2016, arXiv:1604.06737.
47. Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [CrossRef]
48. Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [CrossRef]
49. Graf, E.; Schmoor, C.; Sauerbrei, W.; Schumacher, M. Assessment and comparison of prognostic classification schemes for survival

data. Stat. Med. 1999, 18, 2529–2545. [CrossRef]
50. Gerds, T.A.; Schumacher, M. Consistent estimation of the expected goldvbrier score in general survival models with right-censored

event times. Biom. J. 2006, 48, 1029–1040. [CrossRef]
51. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process.

Syst. 2012, 25, 1–9.
52. Mucaki, E.J.; Baranova, K.; Pham, H.Q.; Rezaeian, I.; Angelov, D.; Ngom, A.; Rueda, L.; Rogan, P.K. Predicting Outcomes of

Hormone and Chemotherapy in the: Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by
Biochemically-inspired Machine Learning. F1000Research 2016, 5, 2124. [CrossRef] [PubMed] [PubMed Central]

53. Connors, A.F.; Dawson, N.V.; Desbiens, N.A.; Fulkerson, W.J.; Goldman, L.; Knaus, W.A.; Lynn, J.; Oye, R.K.; Bergner, M.;
Damiano, A.; et al. A controlled trial to improve care for seriously iII hospitalized patients: The study to understand prognoses
and preferences for outcomes and risks of treatments (SUPPORT). JAMA 1995, 274, 1591–1598. [CrossRef]

54. Kvamme, H.; Borgan, Ø. Continuous and discrete-time survival prediction with neural networks. Lifetime Data Anal. 2021,
27, 710–736. [CrossRef] [PubMed]

55. Social Security Period Life Table, 2021, As Used in the 2024 Trustees Report. Available online: https://www.ssa.gov/oact/
STATS/table4c6.html (accessed on 8 April 2024).

56. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the
KDD ‘16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016. [CrossRef]

57. Lundberg, S.M.; Lee, S.I. Consistent feature attribution for tree ensembles. arXiv 2017, arXiv:1706.06060.

https://doi.org/10.1158/1078-0432.CCR-10-2515
https://doi.org/10.1200/JCO.2010.29.2730
https://doi.org/10.1016/j.ctrv.2016.09.010
https://doi.org/10.1002/ijc.29940
https://doi.org/10.1186/s12874-022-01679-6
https://www.ncbi.nlm.nih.gov/pubmed/35883032
https://doi.org/10.1097/01.ju.0000094764.56269.2d
https://www.ncbi.nlm.nih.gov/pubmed/14610404
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.7717/peerj.6257
https://doi.org/10.1002/sim.4780140108
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1609/aaai.v32i1.11842
https://doi.org/10.6004/jnccn.2022.7017
https://www.ncbi.nlm.nih.gov/pubmed/35830895
https://doi.org/10.1016/j.ctrv.2018.10.010
https://www.ncbi.nlm.nih.gov/pubmed/30366201
https://doi.org/10.1016/S0960-9776(11)70317-4
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2
https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18%3C2529::AID-SIM274%3E3.0.CO;2-5
https://doi.org/10.1002/bimj.200610301
https://doi.org/10.12688/f1000research.9417.3
https://www.ncbi.nlm.nih.gov/pubmed/28620450
https://www.ncbi.nlm.nih.gov/pmc/PMC5461908
https://doi.org/10.1001/jama.1995.03530200027032
https://doi.org/10.1007/s10985-021-09532-6
https://www.ncbi.nlm.nih.gov/pubmed/34618267
https://www.ssa.gov/oact/STATS/table4c6.html
https://www.ssa.gov/oact/STATS/table4c6.html
https://doi.org/10.48550/arXiv.1602.04938


Cancers 2024, 16, 3527 13 of 13

58. Miglani, V.; Yang, A.; Markosyan, A.H.; Garcia-Olano, D.; Kokhlikyan, N. Using captum to explain generative language models.
arXiv 2023, arXiv:2312.05491.

59. Russo, A.; Autelitano, M.; Bisanti, L. Re: Frequency and cost of chemotherapy-related serious adverse effects in a population
sample of women with breast cancer. J. Natl. Cancer Inst. 2006, 98, 1826–1827. [CrossRef]

60. Nyrop, K.A.; Damone, E.M.; Deal, A.M.; Wheeler, S.B.; Charlot, M.; Reeve, B.B.; Basch, E.; Shachar, S.S.; Carey, L.A.; Reeder-Hayes,
K.E.; et al. Patient-reported treatment toxicity and adverse events in Black and White women receiving chemotherapy for early
breast cancer. Breast Cancer Res. Treat. 2022, 191, 409–422. [CrossRef]

61. Rosenzweig, M.Q.; Mazanec, S.R. Racial differences in breast cancer therapeutic toxicity: Implications for practice. Cancer
Epidemiol. Biomark. Prev. 2023, 32, 157–158. [CrossRef]

62. Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health
care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [CrossRef]

63. Freid, V.M.; Bernstein, A.B.; Bush, M.A. Multiple chronic conditions among adults aged 45 and over: Trends over the past 10
years. NCHS Data Brief 2012, 100, 1–8. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9
&NEWS=N&AN=23101759 (accessed on 8 April 2024).

64. McGrath, J.J.; Al-Hamzawi, A.; Alonso, J.; Altwaijri, Y.; Andrade, L.H.; Bromet, E.J.; Bruffaerts, R.; de Almeida, J.M.C.; Chardoul,
S.; Chiu, W.T.; et al. Age of onset and cumulative risk of mental disorders: A cross-national analysis of population surveys from
29 countries. Lancet Psychiatry 2023, 10, 668–681. [CrossRef] [PubMed]

65. Schoenborn, N.L.; Blackford, A.L.; Joshu, C.E.; Boyd, C.M.; Varadhan, R. Life expectancy estimates based on comorbidities and
frailty to inform preventive care. J. Am. Geriatr. Soc. 2022, 70, 99–109. [CrossRef] [PubMed]

66. Jatoi, I.; Anderson, W.F.; Jeong, J.H.; Redmond, C.K. Breast cancer adjuvant therapy: Time to consider its time-dependent effects.
J. Clin. Oncol. 2011, 29, 2301–2304. [CrossRef] [PubMed]

67. Hudis, C.A.; Dickler, M. Increasing precision in adjuvant therapy for breast cancer. N. Engl. J. Med. 2016, 375, 790–791. [CrossRef]
[PubMed]

68. Chan, N.; Toppmeyer, D.L. The Final Verdict: Chemotherapy Benefits Estrogen Receptor-Negative Isolated Local Recurrence.
J. Clin. Onc. 2018, 36, 1058–1059. [CrossRef]

69. El Haji, H.; Souadka, A.; Patel, B.N.; Sbihi, N.; Ramasamy, G.; Patel, B.K.; Ghogho, M.; Banerjee, I. Evolution of Breast Cancer
Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning-Based Models. JCO Clin. Cancer Inform.
2023, 7, e2300049. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/jnci/djj492
https://doi.org/10.1007/s10549-021-06439-6
https://doi.org/10.1158/1055-9965.EPI-22-1111
https://doi.org/10.1016/S0140-6736(12)60240-2
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9&NEWS=N&AN=23101759
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9&NEWS=N&AN=23101759
https://doi.org/10.1016/S2215-0366(23)00193-1
https://www.ncbi.nlm.nih.gov/pubmed/37531964
https://doi.org/10.1111/jgs.17468
https://www.ncbi.nlm.nih.gov/pubmed/34536287
https://doi.org/10.1200/JCO.2010.32.3550
https://www.ncbi.nlm.nih.gov/pubmed/21555693
https://doi.org/10.1056/NEJMe1607947
https://www.ncbi.nlm.nih.gov/pubmed/27557306
https://doi.org/10.1200/JCO.2017.77.4877
https://doi.org/10.1200/CCI.23.00049

	Introduction 
	Methods 
	Deep Learning Predictive Modeling 
	Discrete Time-to-Event Data 
	Time-Varying Covariates: Proposed Extension 

	Experiments 
	Study Data: SEER-Medicare Linked Dataset 
	Cohort Selection 
	Data Cleaning, Standardization, Encoding, and Embedding 
	Performance Metrics 
	Model Hyperparameters 
	Models Validation 


	Results 
	Discussion 
	Conclusions 
	References

