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Simple Summary: Biochemical recurrence (BCR) of prostate cancer (PCa) after surgery is marked
by an increase in prostate-specific antigen. BCR is associated with the risk of metastatic disease
and/or death. This review evaluates the ability of artificial intelligence (AI) to predict BCR in PCa
post-operatively. AI demonstrated high accuracy, especially when radiological features are utilised in
its development. AI occasionally outperforms traditional methods of BCR prediction. However, due
to the limited number of high-quality studies and insufficient external validation, further research is
necessary to confirm the reliability and effectiveness of these AI techniques before they can be widely
used in clinical practice.

Abstract: Background/Objectives: Biochemical recurrence (BCR) after radical prostatectomy (RP)
is a significant predictor of distal metastases and mortality in prostate cancer (PCa) patients. This
systematic review aims to evaluate the accuracy of artificial intelligence (AI) in predicting BCR post-RP.
Methods: Adhering to PRISMA guidelines, a comprehensive literature search was conducted across
Medline, Embase, Web of Science, and IEEE Xplore. Studies were included if they utilised AI to predict
BCR in patients post-RP. Studies involving patients who underwent radiotherapy or salvage RP were
excluded. This systematic review was registered on PROSPERO (International prospective register of
systematic reviews) under the ID CRD42023482392. Results: After screening 9764 articles, 24 met
the inclusion criteria. The included studies involved 27,216 patients, of whom 7267 developed BCR.
AI algorithms developed using radiological parameters demonstrated higher predictive accuracy
(median AUROC of 0.90) compared to algorithms based solely on pathological variables (median
AUROC of 0.74) or clinicopathological variables (median AUROC of 0.81). According to the Prediction
Model Risk of Bias Assessment Tool (PROBAST), the overall risk of bias was unclear in three studies
due to ambiguous inclusion criteria and the exclusion of many patients because of missing follow-up
data. In seven studies, the developed AI outperformed or was at least equivocal to traditional
methods of BCR prediction. Conclusions: AI shows promise in predicting BCR post-RP, particularly
when radiological data were used in its development. However, the significant variability in AI
performance and study methodologies highlights the need for larger, standardised prospective
studies with external validation prior to clinical application.

Keywords: artificial intelligence; biochemical recurrence; convolutional neural network; deep
learning; machine learning; prostatic neoplasm; prostate cancer

Cancers 2024, 16, 3596. https://doi.org/10.3390/cancers16213596 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16213596
https://doi.org/10.3390/cancers16213596
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-5520-2011
https://orcid.org/0000-0002-1138-6389
https://orcid.org/0000-0001-8553-5618
https://doi.org/10.3390/cancers16213596
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16213596?type=check_update&version=1


Cancers 2024, 16, 3596 2 of 15

1. Introduction

Radical prostatectomy (RP) is one of the main curative treatment options for prostate
cancer (PCa). Up to 40% of patients develop biochemical recurrence (BCR) post-RP, which
is characterised by elevated levels of prostate-specific antigen (PSA) [1]. BCR is a predictor
of the development of distal metastases, PCa-specific mortality, and overall mortality [2,3].
However, there is a lack of consensus regarding the exact numerical cut-off point for
defining BCR post-RP. Various tools, including nomograms, have been developed to predict
BCR, which often includes risk factors such as the Gleason score, extraprostatic extension
(EPE), seminal vesical invasion (SVI), and positive surgical margins (PSM) [4–6].

BCR in the absence of radiological and/or histological recurrence of PCa is also
termed PSA-only recurrence. The natural history of PSA-only recurrence can be protracted
and does not always lead to clinically apparent metastatic disease [7]. Management of
PSA-only recurrence remains a dilemma as there is no clear threshold to determine the
initiation of salvage treatment to delay the development of metastatic disease [8]. To further
complicate matters, it is unclear when to repeat imaging during the management of PSA-
only recurrence. Prostate-specific membrane antigen positron emission tomography (PSMA
PET) scans have shown potential in detecting early recurrence; however, the likelihood
of a positive PSMA PET scan is correlated with the level of PSA elevation [9]. If a PSMA
PET scan is done too early, imperceivable metastatic disease may be missed. Existing
studies have illustrated the ability of artificial intelligence (AI) to assess intraprostatic
cancer and metastatic disease [10,11]. However, there is no review to date examining the
role of AI in BCR. This systematic review aims to evaluate the ability of AI in evaluating
clinicopathological and radiological factors to predict BCR post-RP.

2. Materials and Methods
2.1. Literature Search Strategy

This systematic review was registered on PROSPERO (International prospective regis-
ter of systematic reviews) under the ID CRD42023482392. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines was used. A comprehensive
literature search was performed on Medline, Embase, Web of Science, and Institute of
Electrical and Electronics Engineers (IEEE) Xplore. Key search terms used include artificial
intelligence, prostate neoplasm, and biochemical recurrence.

2.2. Eligibility Criteria

The eligibility criteria were guided by the population, intervention, comparator, out-
come (PICO) framework. The population included all patients who underwent RP and
a subset of those who developed BCR post-RP. Studies were excluded if they included
patients who developed BCR after radiotherapy, or if RP was performed as salvage ther-
apy. The intervention in question was the use of AI to evaluate clinicopathological and
radiological factors to predict BCR post-RP. Examples of clinicopathological factors include
age, PSA, digital rectal examination (DRE), family history, prostate biopsy histology, and
prostatectomy histology. Radiological modalities could include prostate ultrasound, MRI,
and PSMA PET scans. The use of AI for evaluating serum genetic factors was excluded. The
predictive capabilities of the AI algorithm may be compared against traditional methods
of predicting BCR. Traditional methods of predicting BCR include conventional statistical
regression models and validated BCR calculators such as the Cancer of the Prostate Risk As-
sessment Postsurgical (CAPRA-S) score, Memorial Sloan Kettering Cancer Center (MSKCC)
nomogram, or Partin cancer nomogram [12]. The primary endpoint of this systematic
review was to evaluate the ability of AI in predicting BCR post-RP.

All English language original research articles published from inception to Decem-
ber 2023 were considered. The following types of studies were excluded: case reports,
case series, feasibility studies, reviews, letter to journals, conference abstracts, conference
proceedings, and non-peer reviewed articles.
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2.3. Screening and Study Selection

Title, abstract, and full-text screening were performed independently by two authors
(J.L and H.Z), and any unresolved conflicts were resolved by the senior author. The
only automation tool used was Covidence (Veritas Health Innovation, Melbourne, VIC,
Australia) to assist in the screening process and the removal of duplicate articles.

Data were manually extracted to Excel 2013 (Microsoft Corporation, Redmond, CA,
USA). Independent checks of the data were performed by the co-authors. Missing data
were reported in the results.

2.4. Quality and Risk of Bias Assessment

The quality of each article was evaluated using the 26-item checklist from the Standard-
ized Reporting of Machine Learning Applications in Urology (STREAM-URO) [13]. The
STREAM-URO framework aims to ensure the quality of studies, enhance reproducibility
and the interpretation of results, and promote engagement with and understanding of
machine learning within the urological community. Additionally, the Prediction Model
Risk of Bias Assessment Tool (PROBAST) was utilised to evaluate the risk of bias and the
applicability of prediction model studies [14]. Assessments using the STREAM-URO and
PROBAST checklists were performed independently by two authors (J.L and H.Z), and any
unresolved conflicts were resolved by the senior author.

3. Results
3.1. Screening Process

The search yielded 9764 articles, of which 2410 were duplicates (see Figure 1). After
the exclusion of 7294 articles during title and abstract screening, 60 studies remained for
full-text review. Only 24 studies were included in this systematic review After 36 studies
were excluded during full-text review due to inclusion of the wrong study population
(n = 14), wrong study design (n = 12), and wrong endpoints (n = 10).

3.2. Characteristics of Included Studies

Of the included studies, 21 were retrospective [15–35] and 3 were prospective [36–38].
The majority of the studies involved only a single centre [17,19,20,23–28,30–34,36–38],
and seven were multicentre [15,16,18,21,22,29,35]. The broad categories of AI tech-
niques used were as follows: machine learning (ML) (n = 2) [18,37], deep learning (DL)
(n = 4) [15,16,27,35], neural network (NN) (n = 6) [17,19,25,28,33,34], and random forest
classifier (RFC) (n = 1) [22]. The remaining 11 studies used and compared various forms
of AI techniques [20,21,23,24,26,29–32,36,38].

Two studies did not provide a clear definition of BCR [23,33]. The remaining studies
used the following definitions of BCR: two consecutive rises in PSA above 0.2 ng/mL
post-RP (n = 10) [15–18,21,27,29–31,35,37], any rise in PSA post-RP with a single value
above 0.2 ng/mL (n = 8) [19,20,22,26,28,32,36,38], a rise in PSA post-RP above 0.1 ng/mL
(n = 2) [24,34], and PSA rise post-RP above 0.3 (n = 1) [25].

3.3. Characteristics of Patients in Included Studies

Across the 24 studies, a total of 27,216 patients were included, of which 7267 de-
veloped BCR. The median age ranged between 58.9 and 70 years old (not reported in six
studies) [15,17,22,26,33,37], and the median PSA before RP ranged between 7 and 13.7 ng/mL
(not reported in seven studies) [15,17–19,26,33,37]. The median duration of follow-up ranged
between 28 and 114 months (not reported in nine studies) [17,20,22,23,26,28,31,33,38], and
the median time to BCR was between 11.5 to 48 months (not reported in eighteen stud-
ies) [16–18,20–29,31,33,34,37,38].
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Figure 1. PRISMA flow diagram.

3.4. Quality and Risk of Bias Assessment of Included Studies

The mean STREAM-URO score was 23 out of 26 (See Figure 2). The top three
STREAM-URO criteria that were missing were as follows: availability of code used
(n = 12) [20–25,31–34,36,38], absence of bias assessment (n = 3) [17,23,33], and absence
of eligibility criteria (n = 3) [17,29,33]. On assessment with PROBAST, the overall risk of
bias was unclear in three studies due to the following: an absence of explanation regarding
the selection of patients for analysis (n = 2) [17,29], or a large amount of follow-up data be-
ing unavailable for BCR analysis (n = 1) [26] (See Figure 3). The overall concerns regarding
applicability using PROBAST were high in eight studies due to the following: unconven-
tional definitions of BCR (n = 3) [24,25,34], absence of definition of BCR (n = 2) [23,33], only
including patients with certain Gleason scores (n = 2) [19,26], and the inclusion of patients
with persistent PSA post-RP (n = 1) [15].
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3.5. AI Developed Using Histological Variables Only

Five of the included studies developed their AI algorithm utilising histological vari-
ables only (see Supplementary Table S1). Both Eminaga et al. [15] and Pinckaers et al. [16]
developed DL models using RP histology slides to predict BCR. The BCR score in the
Eminaga et al. study was closely related to the 10-year BCR-free survival rate on a calibra-
tion plot [15]. On external validation using multicentre international data, the DL model
developed by Eminaga et al. could predict BCR with an area under the receiver operating
characteristic curve (AUROC) of 0.71 (95% CI: 0.67–0.75), sensitivity of 0.5, and specificity
of 0.83 [15]. However, it should be noted that the dataset used by Eminaga et al. included
patients with persistent PSA post-RP [15]. Although the DL model developed by Pinckaers
et al. used a smaller sample of Hematoxylin and Eosin (H&E)-stained microarray cores,
the included sample adhered to strict inclusion criteria [16]. Specifically, patients were
selected based on two consecutive PSA rises above 0.2 ng/mL after having previously unde-
tectable levels post-radical prostatectomy (RP). Additionally, the patients who experienced
BCR were case-matched to those who did not develop BCR. The DL model by Pinckaers
et al. was strongly associated with BCR on univariable and multivariable analysis with a
Hazard Ratio (HR) of 5.78 (95% CI 2.44–13.72; p < 0.005) and 3.02 (CI 1.10–8.29; p = 0.03),
respectively [16].

Leo et al. [18] developed an ML model using a large multicentre dataset to detect
invasive cribriform adenocarcinoma (ICC) on post-RP H&E-stained slides. Patients with
a significant amount of ICC had a much higher risk of BCR (HR 1.65, 95% CI 1.13–2.40;
p = 0.003). The correlation with BCR was strongest in patients with international society
of urological pathology grade group (ISUP GG) 2. The association of ICC with BCR was
strongest in patients with ISUP GG 2. This ML model may be helpful in identifying patients
who may not be suitable for active surveillance.

Huang et al. [17] and Potter et al. [19] developed an NN using single-centre retro-
spective data. The convolutional NN (CNN) developed by Huang et al. extracted visual
and subvisual morphologic features from whole slide images identifying adverse patterns
predictive of early recurrence even in low to intermediate ISUP GG PCa [17]. The CNN was
able to predict 3-year BCR with an AUROC of 0.78. Potter et al. developed a genetically
engineered NN (GENN) using a small sample size involving only patients with a Gleason
score of 5 to 7 [19]. Various pathological variables were used to develop this GENN, includ-
ing the Gleason score, EPE, PSM, nuclear morphometric descriptors (NMDs), and DNA
ploidy. The GENN performed the best when developed using NMD and DNA ploidy, with
an AUROC of only 0.74, accuracy of 0.8, sensitivity of 0.75, and specificity of 0.85. The
GENN outperformed logistic regression (LR) modelling and Cox regression analysis in
the prediction of BCR. One of the limitations is that there may have been variations in the
reporting of histopathology between pathologists [39].

3.6. AI Developed Using Clinical and Histological Variables

Eight of the included studies developed AI algorithms using a combination of clinico-
pathological inputs (see Supplementary Table S2). These studies used different combina-
tions of age, pre-RP PSA, clinical tumour stage, prostate volume, diagnostic biopsy Gleason
score, and prostatectomy histopathology (Gleason score, EPE, SVI, PSM). Five of these
studies compared NNs against other types of AI algorithms [20,21,23,24,26]. Han et al. [26]
found that an artificial NN (ANN) outperformed LR in 3-year and 5-year BCR prediction
with AUROCs of 0.81 and 0.75, respectively. Hu et al. [24] compared an ANN against LR
for 10-year BCR prediction and found no statistically significant difference in performance
(p = 0.53), with AUROCs of 0.75 and 0.76, respectively. It is worth noting that Hu et al. used
a lower cut-off for BCR (two consecutive rises in PSA greater than 0.1 ng/mL) [24]. Porter
et al. [25] also developed an ANN for 10-year BCR prediction using a smaller sample size
and found an AUROC of 0.8, sensitivity of 0.74, and specificity of 0.78.

Kim et al. [20] developed a partial correlation NN (PCNN) which outperformed
other types of ML algorithms. The usage of partial correlation also helped improve the
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interpretability of the NN. The PCNN had an accuracy of 0.87, sensitivity of 0.91, and
specificity of 0.86. Sargos et al. [21] compared the 3-year BCR predictive capability of a
K-nearest neighbour (KNN), RFC, Cox regression analysis, and a densely connected feed-
forward NN (DNN). Sargos et al. [21] found that all models performed best when post-RP
variables were added to the models as compared to using CAPRA score variables alone
(AUROCs of 0.55, 0.64, 0.64, and 0.7 increased to 0.77, 0.74, 0.75, and 0.84, respectively).
Lee et al. [23] utilised data from the Korean Prostate Cancer Registry (KPCR) database and
comparatively tested 13 different AI models which included subtypes of RFC, NN, survival
regression, and LR. LR performed the best at 5-year BCR prediction, with an AUROC of
0.81, sensitivity of 0.73, and specificity of 0.73.

Tan et al. [36] developed and evaluated three ML models (Naïve Bayes (NB), RFC, and
support vector machine (SVM)) using a large sample size. All three ML models showed
comparable and strong predictive performance in regard to BCR at 1, 3, and 5 years, with
all AUROCs reaching above 0.8. The RFC developed by Park et al. [22] predicted BCR
post-RP with an AUROC of 0.99. However, it should be noted that out of the 1130 patients
included, only 176 developed BCR.

3.7. AI Developed Using Radiological Variables

Eleven of the included articles incorporated radiological variables into the develop-
ment of their AI algorithm (see Supplementary Table S3). Wong et al. [38] included size of
prostate on ultrasound together with 18 other clinicopathological features (such as age, PSA,
Gleason score on RP, number of lymph nodes obtained) to develop three AI algorithms
(KNN, LR, and RFC). All three AI algorithms outperformed classic Cox regression analysis
in predicting 1-year BCR. LR had the highest AUROC when compared to Cox regression
analysis (0.98 versus 0.87). The study by Wong et al. was excellent as it compared between
various AI techniques and traditional methods of predicting BCR, but the model is only
applicable to patients who have early BCR (at 1 year) [38]. Poulakis et al. [34] developed
an artificial NN (ANN) using clinicopathological factors together with transrectal ultra-
sound findings of EPE, SVI, and tumour staging, and achieved an AUROC of 0.77. The
performance of the ANN improved to an AUROC of 0.90 when radiological parameters
extracted from pelvic MRI were incorporated. It should be noted that Poulakis et al. only
included patients who had PSA elevation above 0.1 ng/mL after RP with pelvic lymph
node dissection [34].

Four of the studies used MRI parameters to develop and compare different AI algo-
rithms. Ekşi et al. [30] utilised conventional mpMRI parameters (such as prostate volume,
PIRADS score, SVI, EPE, and lymph node involvement) from a small sample size to develop
their AI. Ekşi et al. demonstrated that their KNN (AUROC of 0.93), LR (AUROC of 0.93),
and RFC (AUROC of 0.95) all outperformed classic Cox regression analysis (AUROC of
0.92) in predicting BCR [30]. Park et al. [31] used a small sample size and similar mpMRI
parameters to compare four AI algorithms. They found that an auto-encoder (AUROC
of 0.64) had the highest predictive ability in terms of 1-year BCR as compared to KNN
(AUROC of 0.60), decision tree (AUROC of 0.53), and multilayer perceptron (AUROC of
0.61). Using similar parameters, Zhang et al. [32] developed an SVM (AUROC of 0.96)
which outperformed LR (AUROC of 0.89) and D’Amico risk stratification (AUROC of
0.86) in 3-year BCR prediction. Shiradkar et al. [29] extracted prostate shape distension
descriptors from MRI to develop an RFC and ML algorithm. Although the sample size was
relatively small at 133 patients, a strength of Shiradkar et al.’s study was its comprehensive
comparison of various AI algorithms [29]. They found that an integrated model (AUROC
of 0.75) performed the best as compared to RFC (AUROC of 0.7) or ML (AUROC of 0.69)
alone. Although the integrated model had a higher concordance index (C-index of 0.76)
when compared to CAPRA (c-index of 0.69) or Decipher risk (c-index of 0.59), it was only
comparable to post-RP CAPRA-S (c-index of 0.75).

One limitation of developing AI models based on traditional MRI parameters is the
potential variability in reporting, particularly among less-experienced readers [40]. A
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potential method for navigating around this is the usage of standardised methods of
extracting radiomics from prostate MRI [41]. Two of the studies developed DL algorithms
using radiomics extracted from MRI. Lee et al. [27] found that the DL model outperformed
the radiomics model in predicting 10-year BCR (AUROC of 0.93 versus 0.68). The DL model
developed by Yan et al. [35] performed well in predicting 3-year BCR and 5-year BCR, with
AUROCs of 0.84 and 0.83, respectively. Some of the strengths of the study by Yan et al.
are the robust sample obtained utilising a multicentre design with strict inclusion criteria
requiring two consecutive PSA increases above 0.2 ng/mL, and their minimum follow-up
period of three years [35].

Two of the included studies developed distinct types of AI algorithms using MRI.
Hou et al. [28] developed a deep survival network (DSN) using MRI radiomics which
predicted 3-year BCR with an AUC of 0.79. The BCR definition used in this study was
not conventional, and BCR was considered present when there were three consecutive
postoperative PSA increases above 0.1 ng/mL over at least 6 weeks, with a final PSA above
0.2 ng/mL, or a single PSA measurement of ≥0.4 ng/mL at least 6 weeks after surgery.
Goyal et al. developed a neuro-fuzzy system which predicted BCR well, with a coefficient
of correlation of 0.99 [33]. However, the study by Goyal et al. was limited by a sample size
of 26 patients [33]. Papp et al. [37] was the only study which utilised PSMA PET/MRI to
develop an ML model to predict BCR, and they found an AUROC of 0.90. Although their
study was prospective, it was limited by a small sample size.

3.8. Comparing AI Models

Eleven of the included studies compared various AI algorithms that were trained on
a combination of clinicopathological and radiological data (see Table 1). Kim et al. [20]
developed multiple AI algorithms, and the top three best-performing were PCNN, RF, and a
tree-based algorithm, with the accuracy of all three models averaging 0.87. Sargos et al. [21]
found that the DNN had the best performance in predicting 3-year BCR as compared
to KNN, RFC, and Cox regression analysis, with AUROCs of 0.84, 0.77, 0.74, and 0.75,
respectively. Lee et al. [23] developed thirteen various AI algorithms, and the top three at
predicting 5-year BCR were LR, NN, and RF (AUROCs of 0.81, 0.80, and 0.80, respectively).
Park et al. [31] employed a different set of AI algorithms and demonstrated that an auto-
encoder outperformed KNN, decision tree, and multilayer perceptron (AUROCs of 0.64,
0.60, 0.53, and 0.61, respectively). The three ML models developed by Tan et al. [36]
showed strong predictive performance in terms of BCR at 1, 3, and 5 years, with AUROCs
of NB at 0.89, 0.88, and 0.89, RFC at 0.85, 0.88, and 0.89, and SVM at 0.84, 0.85, and
0.86, respectively. In the study by Wong et al. [38], LR appeared to perform the best
when compared to RFC and KNN (AUROCs of 0.94, 0.92, 0.90, respectively), whereas the
study by Ekşi et al. [30] demonstrated that RFC outperforms KNN and LR (AUROCs of
0.95, 0.93, and 0.93, respectively). In the study by Zhang et al. [32], SVM outperformed
LR (AUROCs of 0.96 and 0.89, respectively). Shiradkar et al. [29] demonstrated that an
integrated model performed the best as compared to individual algorithms of RFC and ML
(AUROCs of 0.75, 0.70, and 0.69, respectively). Hu et al. [24] was one of the few studies
that performed statistical comparison between their AI models and found no statistically
significant differences between the performance of ANN and LR in 10-year BCR prediction.
Interestingly, in the study by Han et al. [26], they found that ANN outperformed LR in
3-year and 5-year BCR prediction. It is worth noting that the study by Han et al. [26] only
included patients with Gleason 3+4 or 4+3 prostate cancer. Overall, there was no agreement
on which algorithm was superior for predicting BCR.
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Table 1. Included studies which compared AI models or compared them against traditional methods
of BCR prediction.

Author and
Year Data Input

AI Models and/or Traditional
Methods of BCR
Prediction Used

Findings

Kim
2023 [20]

Clinicopathological
variables PCNN vs. SVM vs. RFC

Top three best-performing were PCNN, RF, and a
tree-based algorithm, with the accuracy of all three

models averaging 0.87.

Lee
2020 [23]

Clinicopathological
variables

RFC vs. NN vs. LR vs.
decision tree vs. gradient

boosting classifier

Top three at predicting 5-year BCR were LR, NN,
and RF (AUROCs of 0.81, 0.80, and 0.80,

respectively).

Hu
2014 [24]

Clinicopathological
variables ANN vs. LR

The AUROCs of ANN (0.75) and LR (0.76)
outperformed the Gleason score (0.71) and T-stage or

PSA (0.62) in predicting 10-year BCR.

Han
2000 [26]

Clinicopathological
variables ANN vs. LR The ANN outperformed LR in predicting 3-year

BCR with an AUROC of 0.81 versus 0.68.

Park
2020 [31]

Clinicopathological
variables and MRI

KNN vs. MLP vs. DT vs.
auto-encoder

Auto-encoder showed the highest prediction ability
in 1-year BCR after RP (AUC = 0.638), followed by

MLP (AUC = 0.61), KNN (AUC = 0.60), and DT
(AUC = 0.53).

Zhang
2016 [32]

Clinicopathological
variables and MRI SVM vs. LR

When compared to LR, SVM had significantly
higher AUROC (0.96 vs. 0.89; p =0.007), sensitivity
(93.3% vs. 83.3%; p = 0.025), specificity (91.7% vs.
77.2%; p =0.009), and accuracy (92.2% vs. 79.0%;

p = 0.006) in predicting 3-year BCR.

Wong
2019 [38]

Clinicopathological
variables, prostate

ultrasound size, and
operative variables

KNN vs. RFC vs. LR vs.
conventional statistical

regression model

KNN, RFC, and LR outperformed the conventional
statistical regression model in predicting 1-year BCR.
Respectively, the AUCs were 0.90, 0.92, and 0.94, and

the accuracy values were 0.98, 0.95, and 0.98.

Ekşi
2021 [30]

Clinicopathological
variables and mpMRI

RFC vs. KNN vs. LR vs.
conventional statistical

regression model

All ML models outperformed the conventional
statistical regression model in the prediction of BCR.
The AUROCs for RFC, KNN, and LR were 0.95, 0.93,

and 0.93, respectively.

Tan
2021 [36]

Clinicopathological
variables

Naive Bayes vs. RFC vs. SVM
vs. traditional regression
analyses vs. nomograms

AUCs for the prediction of BCR at 1, 3, and 5 years
for Naive Bayes were 0.894, 0.876, and 0.894, for RFC
were 0.846, 0.875, and 0.888, and for SVM were 0.835,
0.850, and 0.855, respectively. Although all three ML

models were equivocal to traditional regression
analyses, they outperformed existing nomograms

(Kattan, John Hopkins [JHH], CAPSURE).

Sargos
2021 [21]

Clinicopathological
variables

KNN vs. RFC vs. DNN vs.
CAPRA score

The DNN model showed the highest AUC, 0.84, in
predicting 3-year BCR when compared to LR, KNN,

RF, and Cox regression, with AUC values of 0.77,
0.58, 0.74, and 0.75, respectively. The DNN

developed based on CAPRA variables (AUROC of
0.7) outperformed the CAPRA score itself (AUROC

of 0.63).

Hou
2023 [28]

Clinicopathological
variables and mpMRI

radiomics

Deep survival network vs.
CAPRA score

The deep survival network could match a
histopathological model (Concordance index 0.81 to
0.83 vs. 0.79 to 0.81, p > 0.05) and has a maximally
5.16-fold, 12.8-fold, and 2.09-fold (p < 0.05) benefit
compared to the conventional D’Amico score, the
CAPRA score, and the CAPRA Postsurgical score.
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Table 1. Cont.

Author and
Year Data Input

AI Models and/or Traditional
Methods of BCR
Prediction Used

Findings

Shiradkar
2023 [29] Biparametric MRI RFC and ML vs. CAPRA score

Integration of RFC and ML performed the best at
predicting BCR, with an AUC of 0.75 as compared to
random forest classifier (0.70, p = 0.04) or ML (0.69,

p = 0.01) alone.

Yan 2021 [35] Quantitative features
of MRI

DL vs. CAPRA score vs.
NCCN model vs. Gleason

grade group systems

The DL model (C-index of 0.80) developed
outperformed Gleason grade group systems

(C-index of 0.58), NCCN model (C-index of 0.59),
and the CAPRA-S score (C-index of 0.68).

Poulakis
2004 [34]

clinicopathological
variables, ultrasound,

and MRI

ANN vs. Cox regression
analysis vs. Kattan nomogram

ANN was comparable to Cox regression analysis
and Kattan nomogram in terms of predicting 5-year
BCR (AUROCs of 0.77, 0.74, and 0.73, respectively).

With the addition of MRI findings, ANN
outperformed Cox regression and Kattan nomogram,

with an AUC of 0.897, in predicting 5-year BCR.

Abbreviations: ANN (Artificial Neural Network), AUROC (Area Under the Receiver Operating Characteristic
Curve), BCR (Biochemical Recurrence), CAPRA (Cancer of the Prostate Risk Assessment), DNN (Deep Neural
Network), DT (Decision Tree), DL (Deep Learning), KNN (K-Nearest Neighbor), LR (Logistic Regression), ML
(Machine Learning), MLP (Multilayer Perceptron), NCCN (National Comprehensive Cancer Network), NN
(Neural Network), PCNN (Probabilistic Convolutional Neural Network), PSA (Prostate-Specific Antigen), RFC
(Random Forest Classifier), RP (Radical Prostatectomy), SVM (Support Vector Machine).

3.9. Comparing AI against Traditional Methods of Predicting BCR

Seven of the included studies compared their AI algorithm against traditional methods
of predicting BCR (see Table 1). In the studies by Wong et al. [38] and Ekşi et al. [30],
all AI techniques employed (LR, RFC, and KNN) outperformed a conventional statistical
regression model. Although all three ML models developed by Tan et al. [36] were equivocal
to traditional regression analyses, they outperformed existing nomograms (Kattan, John
Hopkins [JHH], CAPSURE) (p < 0.001). The ANN developed by Poulakis et al. [34] was
comparable to Cox regression analysis and Kattan nomogram in terms of predicting 5-year
BCR (AUROCs of 0.77, 0.74, and 0.73, respectively). When pelvic MRI parameters were
incorporated into the ANN, it performed significantly better as compared to Cox regression
analysis and Kattan nomogram (AUROCs of 0.9, 0.78, and 0.73, respectively). When
compared to the CAPRA-S score (C-index range between 0.68 and 0.75), AI appears to
outperform in most instances (C-index range between 0.76 and 0.83) [28,29,35]. The DL
model (C-index of 0.80) developed by Yan et al. [35] outperformed Gleason grade group
systems (C-index of 0.58), the National Comprehensive Cancer Network (NCCN) model
(C-index of 0.59), and the CAPRA-S score (C-index of 0.68). The DSN developed by Hou
et al. [28] also outperformed the conventional D’Amico score, CAPRA, and CAPRA-S score.
Sargos et al. [21] demonstrated that a DNN developed based on CAPRA variables (AUROC
of 0.7) outperformed the CAPRA score itself (AUROC of 0.63).

4. Discussion

BCR after RP is often the first sign preceding recurrent disease and has been shown to
be a predictor of distal metastasis and cancer-specific mortality [3]. Accurately predicting
a patient’s risk of BCR post-RP can help with the decision-making process between early
adjuvant therapy and a “wait and see” approach [42]. This systematic review highlights
the growing role of AI in predicting BCR following RP.

There were two common observations among the studies. Firstly, the integration of
radiological parameters improved the AI’s predictive capabilities. The majority of the stud-
ies incorporating radiological parameters utilised radiomics extracted from pre-operative
prostate MRI scans. These AI algorithms achieved a higher median AUROC of 0.9 as
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compared to algorithms that were developed based solely on pathological variables (me-
dian AUROC of 0.74) or clinicopathological variables (median AUROC of 0.81). Previous
research has shown that MRI-based tumour characteristics, such as EPE, SVI, and maxi-
mum diameter of index lesion, are predictive of BCR post-RP [43,44]. Radiomics, which
involves extracting a large number of complex quantitative features, has also proven to be
effective in predicting BCR [45,46]. In one study, the DL algorithm (AUROC of 0.93) was
tested against a standard radiomics model (AUROC of 0.68) and demonstrated superior
performance [27]. Future studies should continue to integrate radiological parameters with
clinicopathological variables during the development of AI models for BCR prediction.

Secondly, in the majority of the studies, the AI algorithms outperformed or at least
were equivocal to established PCa risk assessment tools, conventional statistical regres-
sion models, and nomograms [21,28,30,34–38]. One of the limitations of traditional BCR
prediction tools is the inability to integrate quantitative radiomics. The use of AI offers
the advantage of incorporating large amounts of data into predictive models, including
MRI-based tumour characteristics and radiomics. This has the potential to improve the
accuracy of BCR prediction post-RP.

PSMA PET scans have revolutionised the management of PCa with their high sensitiv-
ity and specificity in detecting metastatic PCa [47]. There is growing evidence supporting
the use of PSMA PET scans and PSMA-based radiomics for predicting BCR post-RP; in
some instances, they outperform clinical prediction models [48–50]. However, only one of
the included studies developed their AI algorithm using PSMA PET/MRI, demonstrating
an AUROC of 0.89 [37]. Further research into this area may be beneficial, as intraprostatic
maximum standardised uptake values (SUVmax) have been shown to be prognostic and to
correlate with the aggressiveness of PCa [51,52].

Three of the most commonly used models were KNN, LR, and RFC. However, among
the eleven included studies that compared AI algorithms, there were no consistent results
regarding which algorithm was best for predicting BCR. Theoretically, RFC is the most
robust for this task due to its ability to manage complex, non-linear relationships and
interactions between a large number of features, making it well suited for datasets with
numerous features and diverse types of data. Its ensemble approach, utilising multiple
decision trees, provides a strong advantage in generalisation and accuracy. KNN, while
useful in scenarios with irregular decision boundaries, can be less effective with complex
data and is computationally intensive. LR, though straightforward and interpretable,
may not capture complex interactions as effectively as RFC. Despite these theoretical
advantages, these three AI algorithms appear to have similar performance [30,38]. No
conclusion can be drawn at this stage regarding the best AI algorithm for BCR prediction
given the heterogeneity of the studies and the usage of other subtypes of AI algorithms such
as auto-encoders and multilayer perceptrons. Further research with more standardised
methodologies is needed to identify the most effective approach.

This systematic review was limited by the heterogeneity of the included studies, which
precluded a meta-analysis. There were substantial differences in the definitions of BCR,
included variables, and outcome measures. Additionally, inclusion criteria were not stan-
dardised, with some studies including patients with PSA persistence post-RP [53]. There
was also a large variation in endpoints, ranging from 1-year to 10-year BCR predictions,
further exacerbating this issue. Given that the mean time to BCR post-RP is approximately
8 years, future studies should consider longer follow-up periods [7]. Additionally, most
studies involved small single-centre study cohorts and lacked external validation of their
AI algorithms, limiting the generalisability of their findings.

A major limitation of current AI models for BCR prediction is the reliance on post-
RP data, such as prostatectomy histopathology, which limits their pre-operative utility.
Additionally, many AI models suffer from the “black box” issue, where their decision-
making processes are not transparent [54]. This lack of transparency complicates the clinical
utility of AI, as clinicians cannot provide clear explanations of how predictions are made,
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which hinders their ability to offer meaningful information about patient risk and the
rationale behind treatment recommendations.

To improve the accuracy and clinical applicability of AI models for predicting BCR,
future studies could focus on several areas. Firstly, ensemble AI approaches which combine
multiple AI algorithms could improve performance by reducing bias and variance [55].
This was demonstrated in the study by Shiradkar et al. [29]. Additionally, the incorporation
of a more explainable AI algorithm such as RFC or DT may help navigate the “black box”
issue [56]. Secondly, a standardised definition of BCR should be used. The definition
endorsed by the American Urological Association (AUA), European Association of Urology
(EAU), and National Comprehensive Cancer Network (NCCN) is two consecutive rises in
PSA above 0.2 ng/mL post-RP [57–59]. Lastly, larger prospective studies with long-term
follow-up and external validation are needed to ensure more generalisable results.

5. Conclusions

In conclusion, current AI models have shown promising results for predicting BCR
post-RP, particularly when imaging modalities such as MRI are incorporated during de-
velopment. In many cases, these models outperformed or were at least equivocal to
traditional methods of BCR prediction. However, the current AI models are not ready for
real-life clinical application due to the lack of high-quality prospective studies with robust
external validation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16213596/s1, Table S1: Characteristics and results of studies
developed using histological variables only; Table S2: Characteristics and results of studies developed
using clinical and pathological variables only; Table S3: Characteristics and results of studies that
included radiological parameters. References [15–38] are cited in the Supplementary Materials.
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