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Simple Summary: This study explores Warburg’s paradox, whereby cancer cells use both glucose
and oxygen to survive, even though glucose is converted to lactate instead of being oxidized. By
systematically investigating cellular metabolism during each phase of cell division and comparing the
metabolic profiles of lymphoma cells and non-malignant lymphocytes, we discovered that pyruvate,
the end-product of glucose metabolism, is converted into alanine. This conversion directs glutamine
carbon, rather than glucose, into the TCA cycle. Furthermore, using fludarabine to selectively inhibit
lymphoma cell proliferation, we showed that blocking the conversion of pyruvate to alanine disrupts
the TCA cycle and interferes with the supply of nucleotides and the energy necessary for cancer
cell growth. Our findings suggest that with the suppression of glucose oxidation, the conversion of
pyruvate to alanine is the crucial metabolic link that connects glucose and oxygen metabolism and
serves as a key component of Warburg’s paradox.

Abstract: Background/Objectives: Warburg’s metabolic paradox illustrates that malignant cells
require both glucose and oxygen to survive, even after converting glucose into lactate. It remains
unclear whether sparing glucose from oxidation intersects with TCA cycle continuity and if this
confers any metabolic advantage in proliferating cancers. This study seeks to understand the
mechanistic basis of Warburg’s paradox and its overall implications for lymphomagenesis. Methods:
Using metabolomics, we first examined the metabolomic profiles, glucose, and glutamine carbon
labeling patterns in the metabolism during the cell cycle. We then investigated proliferation-specific
metabolic features of malignant and nonmalignant cells. Finally, through bioinformatics and the
identification of appropriate pharmacological targets, we established malignant-specific proliferative
implications for the Warburg paradox associated with metabolic features in this study. Results: Our
results indicate that pyruvate, lactate, and alanine levels surge during the S phase and are correlated
with nucleotide synthesis. By using 13C1,2-Glucose and 13C6,

15N2-Glutamine isotope tracers, we
observed that the transamination of pyruvate to alanine is elevated in lymphoma and coincides with
the entry of glutamine carbon into the TCA cycle. Finally, by using fludarabine as a strong inhibitor
of lymphoma, we demonstrate that disrupting the transamination of pyruvate to alanine correlates
with the simultaneous suppression of glucose-derived nucleotide biosynthesis and glutamine carbon
entry into the TCA cycle. Conclusions: We conclude that the transamination of pyruvate to alanine
intersects with reduced glucose oxidation and maintains the TCA cycle as a critical metabolic feature
of Warburg’s paradox and lymphomagenesis.

Keywords: Warburg effect; lymphoma; lactate; glucose; nucleotides; glutamine; targeted
inhibitors; transaminase

1. Introduction

“At first glance, it appears paradoxical that a cell that can live by fermentation may
die because it lacks oxygen”. “But there is really no contradiction here” and “Providing
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glucose to the tumor is bad, but providing oxygen is even worse” [1]. Otto Warburg made
these proverbial statements exactly a century ago (in 1923), following his seminal discovery
that tumors secrete lactic acid when aerobic glycolysis is present [1]. Warburg subsequently
theorized that metabolic failure associated with respiratory failure is preceded by an in-
crease in lactate synthesis (through fermentation) [2], but this concept was later disproven.
While the existence of the “Warburg effect” has been acknowledged in numerous studies,
contradictory opinions and disagreements also exist in the literature [3–6]. Nonetheless,
metabolic dysfunction is recognized as an important hallmark of cancer. The importance of
the Warburg phenomenon is evidenced by the integration of this concept into the clinical
application of 18F-fluorodeoxyglucose PET (positron emission tomography) imaging (FDG-
PET) [3], the adaptation of lactate and lactate dehydrogenase (LDH) in cancer diagnosis [7,8],
and the development of metabolism-targeted therapeutics [9].

Several attempts aimed at resolving the mechanistic basis of the Warburg effect
were predominantly focused on ATP generation, genetic, oncogenic upstream regula-
tors, biomass, pH, signaling changes, tumor microenvironment, and interorgan metabolic
interactions [3,4,9]. Most cancers exhibit increased aerobic glycolysis and lactate synthe-
sis; however, these biochemical characteristics are also observed in many proliferative
mammalian cells, yeasts, and bacteria. An increase in lactate synthesis paralleled with S
phase in proliferative Saccharomyces cerevisiae, as well as increased glycolysis and DNA
synthesis in mouse fibroblasts have been observed [10]. Although aerobic glucose to lactate
conversion is not as efficient as oxidative phosphorylation for energy production, combined
with the high levels of LDH protein expressed, it still has been considered a significant
source of ATP production in cancer [11]. It can be argued that uncoupling glycolysis from
the tricarboxylic acid cycle (TCA cycle) is crucial for providing the glycolytic intermediates
necessary for the biosynthesis of lipids, amino acids, and nucleotides in malignant cells [6].
Although the conversion of pyruvate to lactate limits further oxidation of glucose and
results in the uncoupling of glycolysis from the TCA cycle, the TCA cycle and oxidative
phosphorylation remain active in cancer cells [12,13]. In addition, the TCA cycle can be
sustained by anaplerosis to maintain the electron transport chain and oxidative phospho-
rylation [14]. It is possible for cancer cells to use both LDH and oxidative TCA cycle
mechanisms simultaneously to meet their higher energy requirements.

Recent research by Luengo et al. highlights the significance of cancer cells converting
glucose into lactate even when oxygen is available [15]. In this study, aerobic glycolysis is
found to facilitate the balancing of redox reactions by producing NADPH and regenerating
NAD+, which facilitates the synthesis of metabolic precursors to enhance cell prolifera-
tion [15]. Consequently, aerobic glycolysis supporting energy metabolism is considered
less important than biosynthesis [15]. Furthermore, other studies have shown that the
glucose uptake, which facilitates energy production through lactate dehydrogenase (LDH)
and maintains redox balance, also supports the oxidative branch of the pentose phos-
phate pathway [16]. While ATP is normally associated with energy supply, increased ATP
production has been shown to negatively impact proliferation in PTEN-deficient mouse
embryonic fibroblasts and prostate cancer cells [17,18]. Conversely, blocking ATP synthesis
is well-established as an effective method of inhibiting the proliferation of cancer cells [19].
As a result, it is unclear whether the Warburg metabolism is primarily responsible for
affecting energy metabolism and/or biosynthesis [20].

During normal cell proliferation, energy and biosynthesis are tightly regulated and
proceed in an orderly manner [20]. To proliferate rapidly, malignant cells, however, require
energy and biosynthesis simultaneously [20]. The conversion of pyruvate to lactate is
therefore mechanistically preferable to its oxidation by cancer cells [21]. In this manner, the
TCA cycle intermediates, and excess ATP is prevented from leading to feedback inhibition,
ensuring continuous glucose uptake and glycolytic activity (see graphical abstract). Based
on these contexts, we focused our efforts on understanding the mechanistic basis for
Warburg’s paradox in this study.
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Warburg’s paradox influences malignancy aggressiveness; it is important to under-
stand the metabolic connection between glucose utilization, glucose oxidation, and oxygen
metabolism. Moreover, TCA cycle intermediates such as acetyl CoA, α-ketoglutarate,
citrate, and fumarate are implicated in tumorigenic activities [22]. This could lead to
the continuous loss of metabolic intermediates, which in turn raises questions regarding
whether the fidelity of the TCA cycle is maintained during malignancy. Most importantly,
such events could impair the ability of the TCA cycle to provide oxaloacetate for accepting
carbons (from acetyl-CoA) for glucose oxidation and energy production. Therefore, un-
derstanding how cancer cells can disconnect from glucose and oxygen metabolism while
remaining dependent on them becomes more challenging. Cancer cells undergo extensive
metabolic reprogramming to circumvent rate-limiting mechanisms for uninterrupted glu-
cose uptake [23], but these mechanisms are necessary to simultaneously support anabolic
functions and energy production. There is still a lack of precise understanding of these
reprogrammed metabolic pathways within the context of the Warburg paradox, which is
crucial for the development of more effective cancer treatments.

Our investigation into this aspect originated from a perspective obtained from our
prior study, which revealed that citrate exiting the TCA cycle is utilized by fatty acid
synthase (FASN) for de novo lipogenesis (DNL) [24]. By enhancing the turnover rate of
NADPH/NADH, this metabolic activity enables nucleotide synthesis via the pentose phos-
phate pathway (PPP) [24]. The results of this study prompted us to investigate metabolic
compensatory responses for citrate loss, which may be responsible for the reduced glu-
cose oxidation and increased lactate synthesis. Further, the metabolic function, which
compensates for citrate loss, may be responsible for the continuity of oxygen-dependent
energy metabolism (via the TCA cycle). Together these mechanisms may provide the
biological basis of Warburg’s paradox. Therefore, in this study, our goal is to understand
the metabolic relationship between glucose and nucleotide biosynthesis in the context of
citrate loss and TCA cycle functionality under these conditions. Our approach to resolve
these metabolic relationships involved two complementary approaches. The first was to
identify the metabolic signatures that increase with cell proliferation across the cell cycle
phases and determine whether they differ between malignant cells (lymphoma cell lines
and tumors) and normal cells (represented as non-malignant lymphoblastoid (LCL) and
normal tissues). By using bioinformatically selected targets, the second approach identifies
metabolic functions that become downregulated while blocking proliferation selectively in
the malignant lymphoma cells, but not in the non-malignant LCL. In these experiments, we
used whole cell extracts for mass spectrometry to estimate the size of the total pool of polar
metabolites and investigated the relative carbon contributions from 13C1,2 D-Glucose and
13C5,15N2 L-Glutamine. The isotope 13C1,2 D-glucose is commonly used to track carbon
flow into nucleotides (from C2-glucose to C1-ribose, with a loss of a single carbon) through
the oxidative pentose phosphate pathway (PPP), while C2-glucose remains C2 throughout
glycolysis, and it gradually loses its carbon through the TCA cycle, as described in the
literature [25–27]. The use of 13C5,15N2 L-Glutamine was utilized in order to detect N1 ni-
trogen transfers to alanine or aspartate during transamination [28], as well as to determine
the relative contribution of glucose and glutamine carbons in various metabolic pathways.
Through identification and comparison of metabolic profiles associated with proliferation
and malignancy, but suppressed by proliferation inhibition, we aim to establish a metabolic
link between aerobic glycolysis and the TCA cycle.

2. Materials and Methods
2.1. Cell Culture and Reagents

ATCC (STR profiling) authenticated lymphoma cell lines, CA46 and SUDHL4, and
transformed human primary B lymphoblastoid cell line (LCL), purchased from Astarte
Biologics, were grown in the RPMI 1640 medium with 10% heat-inactivated fetal bovine
serum (FBS) and 200 U of penicillin/streptomycin (Mediatech, Manassas, VA, USA) under
5% CO2 and at 37 ◦C. Metabolic pathway inhibitors Abexinostat (#S1090), Fludarabine
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(#S1491), Thioguanine (#S1774), YK-4-279 (#S7679), Auranofin (#S4307), Sodium oxamate
(#S6871), CPT1-2 (#S2968), MK801 (#S2857), and XAV939 (#S1180) were purchased from
Selleckchem (Houston, TX, USA). Demvistat (#HY-15453) and MCT1-III (#5387590001)
were purchased from Medchem Express (Manmouth Junction, NJ, USA) and Calbiochem
(San Diego, CA, USA), respectively. RPMI-1640 glucose and pyruvate deficient (Catalog#
R1383), RPMI-1640 glutamine deficient (Catalog# R5886), and dialyzed fetal bovine serum
(Catalog#F0392), were purchased from Sigma (St. Louis, MO, USA). 13C1,2, D-Glucose
(CLM-504-PK) and 13C5,15N2, L-Glutamine (CNLM-1275-H-PK) were purchased from
Cambridge Isotopes, (Tewksbury, MA, USA).

2.2. Flow Sorting of Cell Cycle Phases

A total of 15 × 106 CA46 were cultured without changing growth medium for 48 h
in T225 flask, followed by labeling with 2 µg/mL Hoechest 33342 (Life Technologies,
Eugene, OR, USA) for 45 min, by directly adding to the existing medium. Then, cells
were centrifuged at 800 rpm for 5 min and the medium was replaced with chilled PBS
consisting of 5 × 106 cells/mL and maintained on ice until completion of flow sorting.
Using a total of ~50 × 106 cells, flow sorting of “singlet” cells based on Hoechest 33342
stain gated as G1, S and G2 were sorted into separate tubes and maintained on ice, until
flow sorting was completed. Then, the flow sorted cells were centrifuged and resuspended
at 0.5 × 106 per well in 6 well plates, plated in triplicates, acclimatized for one hour at
37 ◦C and 5% CO2, followed by incubation for 2 h in the pyruvate deficient RPMI medium
consisting of dialyzed serum for pool size estimation. Through comparing the metabolic
profiles of the cell cycle phase sorted with unsorted flow, through cells and cells directly
collected from cell culture, we ensured that the flow sorting procedure did not introduce
any metabolic artifacts in these experiments. To avoid toxicity and to prevent confounding
effects on metabolic profiles, propidium iodide was not added to exclude dead cells. For
isotope tracer investigations with flow, sorted cells were incubated for 2 h or for other
experiments and inhibitor treatments; cells were incubated for 12 h in medium consisting
of the following isotope tracers, 13C1,2-glucose or 13C5, 15N2-glutamine, consisting of the
appropriate metabolite deficient RPMI-1640 medium, supplemented with 10% dialyzed
fetal bovine serum. Since flow-sorted cells could progress to the next phase in cell culture,
metabolic labeling and pool size analysis were limited to two-hour incubations to ensure
metabolic estimates remained consistent across each phase.

2.3. Preparation of Tumor Specimens for Metabolomic Profiling

Cryopreserved diffuse large B cell lymphoma (DLBCL) tumor and normal lymph
nodes were obtained as deidentified specimens through Biospecimen Repository and
Histopathology Service, following the Scientific Review Board of Rutgers Cancer Institute
of New Jersey’s institutional review board exempt approval for study protocol #001835 on
14 December 2019. Lymphoma tumor and normal lymph node tissues were sliced using
sterile scalpel blades on Petri dishes placed on a dry ice tray. Tissue bits of <25 mg were
weighed and powdered using Cryomill and sterile zirconium beads as two sets. Pow-
dered tissues were extracted for polar metabolite analysis using an appropriate volume
of extraction buffer, i.e., methanol:acetonitrile:water 40:40:20 consisting 0.5% formic acid.
Following 5 min of incubation on ice, the tissue was neutralized with 15% ammonium
bicarbonate and then centrifuged at 14,000 rpm for 15 min at 4 ◦C. Supernatants were col-
lected, flash-frozen, and stored in −80 ◦C until mass spectrometry. The second set of tissue
powder was extracted with cell lysis buffer (Cell lysis buffer, Cell signaling Technology,
Beverly, MA, USA). Protein content was normalized by tissue weight, determined using
Biorad protein assay reagent (Hercules, CA, USA), and then utilized for normalizing the
tissue weight of samples used in the mass spec analysis. Determination of accuracy in peak
detection, quantification, and validations with reference metabolites were performed, as
reported previously [24,29].
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2.4. Metabolomic Profiling

Whole cell lysates were prepared from cultured cells using the same extraction method
as for tumors (above) and as previously reported [24]. Whole cell lysates were used in
metabolomic profiling experiments, since the focus of this study is to investigate intracellu-
lar metabolic pathways. To compare relative changes for the same metabolite across differ-
ent experimental conditions, we used estimated pool sizes (corrected for natural abundance
and normalized ion counts) and fractional labeling indices. Estimation of pool sizes without
labeling were performed using lymphoma cell lines or LCL cells cultured in RPMI-1640
(Mediatech, Manassas, VA, USA) and 10% dialyzed fetal bovine serum (Catalog# F0392,
Sigma Aldrich, St. Louis, MO, USA). For the isotope tracer investigations, parallel labeling
experiments using RPMI-1640 glucose and pyruvate deficient (Catalog# R1383), substi-
tuted with 2 g/L 13C1,2, D-Glucose, or RPMI-1640 glutamine deficient (Catalog# R5886),
substituted with 0.3 g/L 13C5, 15N2, L-Glutamine and dialyzed fetal bovine serum (Cata-
log# F0392) Sigma (St. Louis, MO, USA), were performed. 13C1,2-glucose was utilized for
comparing 13C enrichments to distinguish 13C labeled C1 isotopomers derived from the
oxidative pentose phosphate pathway (PPP) [25–27]. Additionally, 13C1,2-glucose allows
for distinguishing TCA cycle intermediates, obtained directly from pyruvate 13C2 in citrate
or 13C1 in malate generated in the TCA cycle, through loss of carbon from each round of
this metabolism. 13C5, 15N2-Glutamine was utilized for comparing 13C enrichments in
the TCA cycle and carbon transfers, if any into glycolysis, and identify the 15N products
yielded from the transamination reaction, as described in the literature [28]. Isotope tracer
experiments with 13C1,2-Glucose and 13C5, 15N2-Glutamine were performed by incubation
for 12 h, so that incorporation of these labels in the nucleotides could be detected, which
occurs relatively slowly, as previously observed [24]. Relative contribution of carbons were
calculated by dividing the metabolite-specific carbon enrichment by the sum of correspond-
ing carbon enrichments of relevant metabolites or different carbon sources, as described
in the literature [27]. Briefly, samples extracted with (40:40:10) methanol, acetonitrile, and
water, consisting of 0.5% formic acid and neutralized with sodium bicarbonate, were used
for the analysis by mass spectrometry. LC−MS was performed using the Q Exactive PLUS
hybrid quadrupole-orbitrap mass spectrometer (Thermo Scientific, Waltham, MA, USA),
coupled to hydrophilic interaction chromatography; metabolite feature extraction using
MAVEN for isotope labeled metabolites; accuracy, abundance, and correction for impurity
were performed using AccuCor written in R as described [24]. The corrected ion counts
were normalized by cell number or protein concentration as described before [24].

2.5. Western Blot

Preparation of protein lysates and Western blots were performed as described be-
fore [24], using the following primary antibodies against LDHA (RRID:AB_2066887),
LDHB (RRID:AB_1124720), PDH (RRID:AB_2162928), GPT1/ALT RRID:AB_10710382),
GPT2/ALT2 (RRID:AB_2927429), JUN (RRID:AB_10949318), STAT1(RRID:AB_2737027),
HDAC1 (RRID:AB_2756821), NONO (RRID:AB_2940779), DRAP1 (RRID:AB_2940780),
ETS1, (RRID:AB_831289), and β-actin (RRID:AB_330288), purchased from Cell Signaling
Technology (Beverly, MA, USA) or Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.6. Cell Proliferation Assays

MTT assays were performed using DLBCL cells treated with the appropriate pharma-
cological inhibitors for 72 h, as described before [24], using CellTitre 96, non-radioactive
cell proliferation kit purchased from Promega (Madison, WI, USA). Briefly, 104 cells/100 µL
were plated in a 96-well plate and treated with increasing concentrations of appropriate
drugs and incubated at 37 ◦C and 5% CO2 for 72 h. MTT assay was then performed
following the instructions supplied by the manufacturer, and the absorbance was measured
at 570 nM, using SpectraMax M5 plate reader (Molecular Devices, San Jose, CA, USA).
IC50 values for drug treatments were derived using GraphPad Prism (Boston, MA, USA).
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2.7. Transcriptomics and Bioinformatic Analysis

RNA isolation and transcriptomic datasets for lymphoma cell lines, used in mapping
the Warburg effect on molecular-metabolic circuitry, were obtained from our previous
research [24,30–32]. All transcriptomic assessments were performed in biological triplicates
using Affymetrix Human Genechip 2.0 ST or Human HT 12 Genechip Illumina. These
datasets included the following DLBCL cell lines: Raji, SUDHL2, SUDHL4, SUDHL6,
SUDHL10, OCI-LY3, Jurkat, L540, L428, and Hut78 cell lines. The raw data for these experi-
ments are available at the NCBI Gene Expression Omnibus database, with the following
identifiers: GSE102760 GSE102764, GSE66417, GSE66415, and GSE126768 (see Table S1),
and the normalized data is included in Table S2. Meta-analyses of lymphoma patient
tumors were performed using harmonized median normalized log2 transformed transcrip-
tomic datasets, retrieved from the National Cancer Institute (NCI) dataset consisting of
DLBCL (n = 574), accessible from portal.gdc.cancer.gov, as reported in this study [33].
Upstream regulatory factors for metabolic genes were retrieved from the Genecard-linked
GeneHancer database as a list of high-confidence enhancers and promoters associated with
every metabolic gene published on http://www.genecards.org, accessed on 16 Septem-
ber 2020. Network analysis of metabolic gene-regulatory factors was performed using
Cytoscape version 3.8.2, as described before [24].

2.8. Statistical Analysis

All experiments were performed in triplicate. The metabolic pool sizes were estimated
from three independent experiments analyzed in triplicate. Significant differences (by
log2-fold change) between control and treatment were statistically determined by one-way
analysis of variation (ANOVA) and post hoc analysis, using log2 transformed pool size
intensities from data normalization performed using the software packages included in
Metaboanalyst 3.0 [34]. Identification of top significant metabolite features was performed
by partial least squares—discriminant analysis (PLS-DA) and variable importance in pro-
jection (VIP) scoring analysis, following principal component analysis (PCA). Statistical
correlation analysis and Spearman rank correlation were performed using the software
packages included in Metaboanalyst 3.0 [34]. The statistical analysis for transcriptomic
datasets was performed as previously described [30,31]. Heatmap analysis represented
as row variances, hierarchical clustering based on one minus Pearson’s correlation by
predefined groups, and heatmap collapsing based on pathway metabolite median were per-
formed using Morpheus, available from https://software.broadinstitute.org/morpheus/,
accessed on 16 September 2020.

3. Results
3.1. Levels of Lactate and Nucleotides Surge at S Phase

In malignancy, glucose is converted to lactate at a higher rate, and Warburg also
noted that both glucose and oxygen are essential for cancer survival [1]. Since malignancy
involves uncontrolled proliferation, we first investigated the metabolic dynamics associated
with lymphoma cell cycle progression. We therefore performed metabolomic profiling of
flow sorted log phase Hoechst 33342-labeled CA46 according to the G1, S, and G2 phases
as shown in Figure 1a. The results of metabolomic profiling of CA46 by cell cycle phases
consisting of metabolic pool sizes, represented as heatmaps clustered by Spearman rank
correlation analysis, revealed that most amino acids and glucose pools are relatively larger
during the G1 and S phases. Based on one-way ANOVA, false discovery rate (FDR 0.05) and
Fisher’s least significant difference (LSD) analysis, 31 metabolites representing glycolysis,
TCA cycle intermediates, and nucleotides were identified as significantly increased in the
S phase along with lactate, and nucleotides remained elevated through G2 (Figure 1b and
Table S1). Additionally, amino acid pools decreased from the G1 to S and G2 phases of the
cell cycle (Figure 1b and Table S1). Interestingly, among the amino acids, we observed that
alanine, glutamate, aspartate, and proline metabolic pools were higher in the S and G2 than
in the G1 phase (Figure 1b).

portal.gdc.cancer.gov
http://www.genecards.org
https://software.broadinstitute.org/morpheus/
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Figure 1. Metabolomic profiling of lymphoma cell cycle. (a) A representative flow cytometric
profile of Hoechst 33342-stained CA46 cells illustrating the gating strategy adapted for sorting cells
according to their cell cycle phase for metabolomic profiling. (b) Heatmap of metabolic pools profiled
from mass spectrometry analyses of CA46 cells sorted by phase of the cell cycle. The color gradient
represents the absolute mean deviations between low and high levels of each metabolite’s pool
sizes. Statistically significant differences from the comparison between G1 with S or G2 are denoted
(*, ** with p-values of <0.05, <0.005, respectively (c) Identification of top significant metabolite
features (p < 0.001) by partial least squares—discriminant analysis and variable importance in
projection scoring analysis. The colored boxes on the right indicate the relative concentrations of the
corresponding metabolite in each group.

Further, a VIP score analysis (see “Methods”) of the overall metabolic changes vs. the
cell cycle progression also identified α-ketoglutarate, lactate, and alanine as among the top
10 metabolites associated with increases in nucleotide pool sizes (UMP, GMP, ATP, CTP,
and CMP) at the S phase (Figure 1c). Since alanine, aspartate, α-ketoglutarate, glutamate,
and pyruvate were increased during the S phase (Figure 1b,c), we hypothesized that
glutamine/glutamate carbon entry as α-ketoglutarate could be facilitated by transaminases
(alanine and aspartate transaminases), allowing glucose to indirectly support the TCA
cycle. Therefore, our next objective is to determine whether these transaminases mediated
metabolic functions are active during the S phase.
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3.2. Pyruvate and Alanine Transaminase

To determine whether pyruvate–alanine transamination provides glutamine carbons
to sustain the TCA cycle during S phase, we sorted cells based on their cell cycle phase
and performed isotope enrichment analysis using 13C1,2-Glucose and 13C5,

15N2-Glutamine,
as illustrated in Figure 2a. The glycolytic metabolism of glucose with 13C1,2 yielded two
molecules of pyruvate, with one molecule enriched with 13C1,2 and the other remaining
unlabeled. Alanine and lactate retained the same isotopic enrichments since there was
no carbon loss during the metabolic conversion from pyruvate, as shown in Figure 2a.
Upon entering the TCA cycle, and accruing loss of one carbon as CO2, α-ketoglutarate
was enriched with 13C1, and this enrichment could then transfer to glutamate by pyruvate-
dependent alanine transaminase. However, oxaloacetate remained unlabeled due to the loss
of another carbon through the further metabolism of α-ketoglutarate to yield oxaloacetate
in the TCA cycle, as summarized in Figure 2a.
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Figure 2. Pyruvate and alanine transamination activity in cell cycle progression. (a) Schematic
diagram illustrates isotopomers arising from carbon and nitrogen exchanges in transaminase reactions
and pyruvate metabolism. Bar graphs represent the pool sizes and isotope enrichment patterns from
13C1,2-Glucose or 13C5,

15N2-Glutamine tracers from 2 h labeling with flow sorted CA46 cells used
in the identification of metabolic changes associated with cell cycle progression. (b) Bar graphs
represent fractional labeling patterns detected in the transaminase metabolism from 12 h labeling
with 13C1,2-Glucose or 13C5,

15N2-Glutamine tracers in CA46 cells.
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In parallel labeling experiments with 13C5,15N2-Glutamine, loss of one nitrogen
yielded 13C5,15N1-glutamate (through glutaminase), which would then transfer 15N1 en-
riching alanine (C0

15N1 or C3
15N1) or aspartate (C0

15N1 or C4
15N1) from glucose- or

glutamine-derived carbon backbones by participating in transaminase reactions (Figure 2a).
Additionally, 13C5 α-ketoglutarate (derived from glutamate) participating in the TCA cycle
and incurring carbon loss converted into 13C4 oxaloacetate (Figure 2a). Furthermore, this
13C4 labeled oxaloacetate could produce pyruvate through malic enzyme, which could
result in enriching both lactate and alanine with 13C3 (Figure 2a).

Following 2 h of culture in 13C1,2 Glucose medium without pyruvate, the cell cy-
cle sorted CA46 cells showed a significant increase in pyruvate, lactate, alanine, and
α-ketoglutarate pool sizes from G1 to S (p < 0.05), and then decreased by G2 (Figure 2a).
Under these conditions, glutamate and aspartate pool sizes showed modest changes. Pyru-
vate, lactate, and alanine were all enriched with 13C labels from glucose-derived carbons
(Figure 2a). However, aspartate and α-ketoglutarate did not contain these 13C labels, and
prior studies have demonstrated that the labeling of aspartate occurs at slower kinetics [35].
Cell cycle sorted CA46 cells labeled with 13C5,15N2-Glutamine showed significant increases
in glutamate and α-ketoglutarate levels during the S phase compared with the G1 phase
(p < 0.05) (Figure 2a). Interestingly, we observed that only one-third of glutamate carbons
were enriched with 15N, represented as 13C5N1, while the remaining two-thirds contained
13C5N0, indicating that glutamate carbons undergo rapid turnover, incurring 15N loss
(Figure 2a). Moreover, 78% of α-ketoglutarate was enriched with 13C5, derived from glu-
tamine, whereas glucose-derived 13C carbons remained undetected, suggesting glutamine
is the main carbon source for α-ketoglutarate in TCA during the S phase of the cell cycle
(Figure 2a).

Next, we observed that with increases in both alanine and aspartate levels, an increase
in transamination activity resulted in a 1.5-fold increase in enrichment with 15N to C0 ala-
nine (from glucose-derived) in the S phase compared to G1 (p < 0.05) (Figure 2a). In contrast,
by averaging all three phases of the cell cycle, aspartate contained 20–30% carbon obtained
from glutamine, of which only 10% were labeled with 15N, without any increases at the
S phase compared to G1 (Figure 2a). Overall, since 13C enrichments from glucose were
absent in α-ketoglutarate, and a significant 3-fold increase in α-ketoglutarate consisting
of carbon enriched from glutamine were observed in the S phase, along with 15N enrich-
ment increases detected in alanine, we conclude glucose-dependent alanine transaminase
facilitates participation of glutamine carbon into the TCA cycle, through the S phase tran-
sition during cell cycle. Considering that 13C labeling from glucose was not detected in
α-ketoglutarate, oxaloacetate, and aspartate, and 13C carbons derived from glutamine
were not detected in pyruvate, lactate, and oxaloacetate from 2 h labeling experiments,
we performed our next labeling experiments with 13C1,2-Glucose or 13C5,15N2-Glutamine
for 12 h (with unsorted CA46 cells) to gain a better clarity of the carbon exchanges occur-
ring in these reactions. In CA46 cells using 13C1,2-Glucose, we observed 50% of pyruvate
(representing half of a molecule of glucose) was 13C-labeled, and nearly equal percentages
of lactate and 45% of alanine (transaminase-derived) were also 13C-labeled (Figure 2b).
Altogether we observed proportionally similar 13C labeling patterns in pyruvate, lactate,
and alanine, at both 2 and 12 h labeling experiments. However, we were then able to detect
25% of α-ketoglutarate as 13C labeled (TCA cycle-derived) and 20% of glutamate with
13C label (transaminase-derived) (Figure 2b). Despite extending the duration for labeling,
oxaloacetate did not show any evidence of 13C labeling, while aspartate showed <5% of
glucose-derived 13C labels (Figure 2b). These results suggest that glucose carbons entering
glycolysis are predominantly converted to lactate or undergo transamination into alanine
(Figure 2b). The slower kinetics of 13C labeling in α-ketoglutarate suggests that only a small
fraction of pyruvate enters the TCA cycle (Figure 2b).

With 13C5,15N2-Glutamine-labeled CA46 cells, we observed high amounts of glutamate
consisting of either (40%) 13C5, 15N1, (45%) 13C5, N0, and (<5%) C0

15N1, indicating that
glutamine-derived carbon is being directly deaminated (40%) and returned from the TCA
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cycle (50%) (Figure 2b). Furthermore, since glutamate and α-ketoglutarate contain 90% of
the carbons labeled with 13C5, glutamine appears to be the major source of carbons for TCA.
Interestingly, by comparing nitrogen transfers to alanine based on the carbons derived
from glucose (C0, 60%) or glutamine (13C5, 40%), we observed that 15N was present only
in 10% of carbon derived from glucose (C0) and completely absent in the alanine derived
from 13C glutamine. This indicates that cytosolic glycolytic pyruvate was likely the source
of carbon (through glutaminolysis, the TCA cycle, and transamination) (Figure 2b). The
absence of 15N in the 40% fraction of 13C-derived alanine suggests that alanine transaminase
activity involving glutamate-derived N0 could have occurred in a different subcellular
compartment, possibly in the mitochondria. Of note, in comparing the 2 h with the 12 h
labeling, we found a substantial reduction in 15N labeling in C0, which suggests alanine
derived from glycolytic is consumed or lost. Although aspartate, pyruvate, and lactate
showed trace amounts of glutamine-derived 13C (Figure 2b), the slower labeling kinetics at
12 h indicate that glutamine is not the major carbon source for these metabolites.

In summary, these results (from the 2 and 12 h labeling experiments) show that the
carbon from glucose that ends in pyruvate is preferentially converted into lactate and
alanine instead of directly being oxidized through the TCA. Thus, our next objective is to
determine whether the pyruvate to alanine transamination that occurs during the S phase
is related to differential glucose and glutamine utilization in normal and malignant cells.
Therefore, we compared the metabolic profiles using LCL (lymphoblastoid, transformed
non-malignant normal human B lymphocyte) and DLBCL cell lines (CA46 and SUDHL4).

We observed that in comparison with LCL, lymphoma cells (CA46 or SUDHL4) have
significantly higher amounts of glucose-6-phosphate and glutamate (Figure 3a), which are
the first metabolic intermediates of glucose and glutamine metabolism. Lymphoma cells
had a one-fold higher pyruvate pool than LCL cells, while lactate and alanine pools were
2–4 times and 4-fold higher, respectively (Figure 3a). Although pyruvate is more readily
available, our results indicate that malignant cells do not prefer to oxidize pyruvate by
TCA, despite the higher availability. Therefore, the transamination of pyruvate to alanine
represents a highly relevant aspect of Warburg’s paradox, which considers glucose as
necessary for maintaining oxidative metabolism.

Based on these results, we concluded that by sparing glucose from oxidation, the
transamination of pyruvate to alanine becomes crucial for sustaining the TCA cycle. This
metabolic reprogramming likely provides a proliferative advantage to malignant cells.
Therefore, our next goal is to investigate the overall metabolic implications of the differ-
ential utilization of glucose and glutamine between DLBCLs and LCL cells. By using
13C1,2-Glucose as tracer and performing 12 h labeling, we observed marked labeling of all
intermediates in glycolysis, TCA cycle, transaminase, and nucleotide metabolism in all
cell lines (Figure 3). We observed, however, that the proportion of labeling patterns varied
between metabolic pathways and cell types (Figure 3). In non-malignant LCL cells, the
average carbon labeling index (from 13C1,2-Glucose) for glycolytic intermediates beyond
glucose-6-phosphate were 50% (representing half of a molecule of glucose), followed by
40% from citrate through isocitrate and 25% from α-ketoglutarate through the rest of the
TCA cycle (Figure 3a). Additionally, fractional labeling with 13C derived from glucose
was significantly higher for metabolic end-products representing nucleotides (60%) or
coenzymes (NAD+ and NADP+) (80%) than for intermediates representing glycolysis or the
citric acid cycle in LCL (Figure 3a). When comparing LCL with lymphoma cell lines CA46
and SUDHL4, the average percentage of 13C labeling with glycolytic intermediates was the
same, but the labeling index for citric acid cycle intermediates, alanine, and nucleotides
was 20% higher in lymphoma cell lines, CA46 and SUDHL4 (Figure 3a).

In parallel experiments using 13C5,15N2-Glutamine, we observed 13C labeling of all
citric acid cycle intermediates, alanine from transaminase but not detected in the glycolytic
intermediates, aspartate, and nucleotides in all three cell lines (Figure 3b). In comparison
with LCL, the lymphoma cells, CA46 and SUDHL4, showed an average of 20% higher 13C
labeling, with citric acid cycle intermediates and NAD+ and NADP+ (Figure 3b). Interest-
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ingly, when comparing LCL with lymphoma cells (CA46 and SUDHL4), we observed a
net 20% increase in 13C incorporation from both glucose- and glutamine-derived carbons
in α-ketoglutarate (Figure 3a,b). This suggests that glucose metabolism, while facilitating
increased participation of glutamine, also increases. Consequently, glucose and oxidative
metabolism are synergistically enhanced in lymphoma. Comparing these results with the
similar 20% increases in glucose-derived nucleotide metabolism (Figure 3a), it becomes
clear that the biological advantage of glucose-mediated (net gain of 40%) increases in
oxidative metabolism could be significant for lymphoma. This helps meet the simultaneous
demand for energy and glucose-derived nucleotides.
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Figure 3. Comparative analysis of isotope enrichment patterns in glucose and nucleotide
metabolism in lymphoblastoid cells and lymphoma cell lines. (a) Bar graphs represent relative
pool sizes of transaminase metabolites in LCL vs. lymphoma cells. The error bars represent the
standard deviation from the mean of experimental triplicates. Statistically significant differences
from the comparison between LCL with lymphoma cell lines (CA46 or SUDHL4) are denoted
(**, ***, **** with p-values of <0.005, <0.0005, and <0.0001, respectively), by 2-way ANOVA, as
differences in the metabolite pool sizes between normal versus lymphoma cells. (b,c) Bar graphs
represent mean fractional isotope enrichment patterns in glycolysis, citric acid cycle, transaminase,
pentose phosphate, and nucleotide metabolism in LCL, CA46, and SUDHL4 with (b) 13C1,2-Glucose
or (c) 13C5,

15N2-Glutamine isotope tracers. Each bar represents the mean of experimental triplicates.
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3.3. Molecular-Metabolic Circuitry of Lymphoma

Our findings indicate that pyruvate–alanine transamination may play a pivotal role in
Warburg’s paradox. Thus, glucose, even when converted to lactate, synergistically favors
oxidative metabolism to provide nucleotides and energy for the growth of malignant cells.
Typically, during cell division, the process prioritizes acquiring nutrients and accumu-
lating energy in the form of ATP [36]. This accumulation leads to feedback inhibition of
glycolysis, which then permits nucleotide biosynthesis to proceed [36]. Due to the high
energy demand for nucleotide metabolism, normal cells cannot use glucose for both energy
and biosynthesis simultaneously [36]. However, malignant cells undergo metabolic repro-
gramming to overcome this limitation, resulting in increased glucose uptake but reduced
glucose oxidation, without compromising oxidative metabolism, which is crucial for sur-
vival [1,2,5,24,37]. Therefore, Warburg’s paradoxical metabolism becomes crucial and must
be considered a key endpoint in oncogenic paradigms that drive malignant proliferation.
Disrupting these mechanisms in malignant cells could revert their metabolic and prolif-
erative functions of normal cells. Therefore, our next objective is to construct a molecular
metabolic circuit aligned with this metabolic paradox and then disrupt metabolic activities
using inhibitors appropriate for selectively blocking cell proliferation in lymphoma, while
sparing non-malignant LCL cells.

By enumerating the key metabolic genes that included pyruvate metabolizing en-
zymes and the associated metabolite transporters, defined as core metabolic components
(Figure 4a), and then identifying the corresponding regulatory genes, we constituted a
molecular-metabolic network model, as follows. Using GeneHancer, a database that con-
tains genome-wide datasets containing promoter-gene associations, we conducted data
mining and identified 2611 potential interactions consisting of 456 transcription regula-
tors associated with 10 metabolic genes and transporters (see Table S2). We then utilized
transcriptomics datasets (see Table S2), which included lymphoma patients (n = 481, from
the National Cancer Institute) and lymphoma cell lines (n = 9) collected from our prior
studies [31,33], to retrospectively analyze the mRNA level expression of metabolic genes,
transporters, and transcription factors. The results of this analysis indicated that the medi-
ans of log2 normalized gene expression, for both lymphoma patient and cell line datasets,
and were significantly high (log2 > 10 for metabolic genes and >7.5 for transcriptional
regulators (Figure 4b)).

Among all genes, lactate dehydrogenase genes (LDHA and LDHB) were observed to
be the most highly expressed (among the entire transcriptome), followed by transaminase
genes (GOT1, GOT2, GPT, and GPT2) with log2 median expression > 10, both in lymphoma
patients and cell lines (Figure 4b). In both lymphoma patients and cell lines, a median
log2 of >10 and >8 was observed for transcriptional regulatory factors of metabolic genes
(Figure 4b). Our next step was to isolate common sets of transcription factor-metabolic inter-
actions via network analysis by Cytoscape, which identified 103 transcription factors (out of
456) that acted with eight metabolic genes as well as the PCNA associated with proliferation
(Figure 4c). An analysis of pathway enrichment using the 103 transcription factors by the
Gprofiler database revealed that these regulatory genes are associated with “Transcriptional
misregulation in cancer”, KEGG:05202 pathway with the highest significance (adjusted
p < 0.0001). Accordingly, this finding of a massive number of oncogenic transcription
factors exerting redundant control over metabolic genes indicates the sheer complexity
of the molecular mechanism employed in the reprogramming of metabolism in cancer.
Moreover, such molecular complexity and redundant regulatory influences of metabolic
genes present significant difficulties for the appropriate identification of actionable targets
for biological investigation.

Nevertheless, we chose to assess these interactions by means of pharmacological
inhibitors for a priori determination of the gene regulatory and enzymatic functions in the
context of this molecular-metabolic circuitry. For this purpose, through the comparison
of transcriptomes of lymphoma patients and cell lines, we identified 10 highly expressed
transcription factors (median log2 > 10) that regulated a minimum of five metabolic genes
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(Figure 4c). Of note, despite shortlisting transcriptional factors to a few candidates, Figure 4c
shows that each metabolic enzyme (at mRNA level) is regulated by multiple transcrip-
tional factors and therefore requires additional screening experiments using a panel of
pharmacological inhibitors.
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Figure 4. Modeling the molecular metabolic circuitry of lymphoma. (a) This diagram illustrates the
metabolic intersections linking pyruvate with lactate, transaminase, the TCA cycle, and the associated
solute carrier transporters. As described in the Methods Section, these metabolic components were
used to model the molecular metabolic circuitry of the Warburg effect. (b) The boxplots illustrate
the mRNA expression of metabolic genes and their putative regulatory factors in lymphoma tumors
(n = 481) and cell lines (n = 10). Whiskers represent standard deviations from the normalized mean of
Log2 expression values for each experimental dataset. (c) Molecular-metabolic network rendering
using Cytoscape shows metabolic genes with putative regulators as interactors (top), further filtered
by putative regulators with four or more interactions with metabolic genes (bottom).
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3.4. Targeting the Molecular-Metabolic Regulatory Mechanisms in DLBCL

The overall goal of this experiment is to determine whether disrupting key molecular-
metabolic circuits, thereby reversing the metabolic features associated with Warburg’s
paradox, can limit the proliferative activity of malignant cells. Using the molecular-
metabolic circuitry defined in Figure 4c, we selected the appropriate pharmacological
inhibitors to compare cell proliferation assessments with LCL, CA46, and SUDHL4 cells.
The inhibitors intended to target metabolic enzymes, such as SLC25A1 (CPT1) [38], MCT1
(MCT-III) [39], LDHA (oxamate) [40], glutamine transporter (MK801) [41], and PDH/α-
ketoglutarate (Demvistat) [42], without affecting cell viability in the lymphoma cells or
LCL (see Figure S1). While pharmacological inhibitors chosen for targeting transcriptional
regulatory factors, besides TARDP1 (XAV939) [43], targeted HDAC1 (abexinostat) [44],
STAT1 (fludarabine) [45], NONO (auranofin) [46], DNMT1 (thioguanine) [47], and ETS1
(YK-4-279) [48], all resulted in decreased cell viability in the lymphoma cell lines in a
concentration-dependent manner, in both lymphoma and LCL cells (see Figure S1). Among
these inhibitors, fludarabine alone selectively reduced the cell viability in CA46 and
SUDHL4 lymphoma cell lines, without affecting LCL cell viability (see Figure S1). There-
fore, for metabolomic profiling experiments, LCL, CA46, and SUDHL4 cells were treated
with abexinostat (12.5 µM), fludarabine (2.5 µM), auranofin (0.5 µM), thioguanine (2.5 µM),
and YK-4-279 (12.5 µM) for 48 h using the average IC50 for lymphoma cell lines.

Heatmap analysis of log2 transformed pool size estimates and hierarchical clustering
of 41 significant metabolites (from ANOVA), revealed the following changes in metabolic
signatures (Figure 5a), (Raw profiles and statistical analysis provided in Table S1). Com-
pared to lymphoma cell lines (CA46 and SUDLH4), LCL had a larger metabolic pool of
glycolytic intermediates (glucose-6-phosphate, fructose-6-phosphate, dihydroxyacetone
phosphate) and glutamate (Figure 5a). However, the pool sizes of nucleotides and TCA
intermediates were higher in lymphoma cell lines than LCL. Treatment with fludarabine in
CA46 and SUDHL4 resulted in reversing these metabolic features and became comparable
to LCL. (Figure 5a). Specifically, fludarabine treatment, while increasing the levels of the
glycolytic intermediates, caused significant decreases in metabolic pool sizes of pyruvate,
lactate, TCA cycle intermediates, nucleotides, and alanine, selectively in the lymphoma
cell lines (CA46 and SUDHL4 (Figure 5a). Abexinostat exhibited a significant reduction
in the pool size of most metabolites in both LCL and DLBCL cells, while thioguanine and
YK-4-279 demonstrated significant decreases in the pool sizes of all metabolites in LCL
(Figure 5a). Auranofin did not show any significant difference in the metabolic profiles
when compared with untreated cells in all cell lines (Figure 5a).

Additionally, we performed principal component analysis (PCA) for an unbiased
assessment of the overall metabolic characteristics (of pool size changes) from each experi-
ment. Based on the loadings from the PC1 axis (plotted by highest variation 56.7%), we
observed that the overall metabolic pools in lymphoma cell lines CA46 and SUDHL4 are
similar but differ from those in LCL (Figure 5b). Further, we observed that the metabolic
profiles of fludarabine-treated CA46 and SUDHL4 were aligned together with fludarabine-
treated LCL and untreated controls, suggesting that while LCL is unaffected by fludarabine,
the metabolic profiles of fludarabine-treated lymphoma cells appear similar to those of LCL
cells (Figure 5b).

A VIP scoring (see Methods), performed to identify the most significant metabolites
which demonstrated most variations across all experiments, revealed lactate and TCA
cycle intermediates, including α-ketoglutarate and nucleotides, as the most responsive
metabolic signatures (Figure 5c). Since glucose and glutamine are the primary metabolites
involved in all these metabolic processes, we also investigated the most significant changes
in metabolic features by correlating the metabolic behavior with glucose from fludarabine
treatment. The Spearman rank correlation of the significant metabolites showed positive
correlations with glucose and glutamine and aspartate, whereas negative correlations
were observed for lactate, alanine, TCA cycle intermediates, and nucleotide pool size
changes (Figure 5c). The inverse correlation observed from treatment with fludarabine
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suggests that metabolic impairment, which decreases the TCA cycle, nucleotides, lactate,
and transaminase metabolic intermediates, leads to the impaired utilization of glucose
and glutamine, resulting in the corresponding increases. These metabolic changes affected
proliferative function only in fludarabine-treated lymphoma cells, but not in the LCL cells
(Figure 6a).
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Figure 5. Perturbation of molecular metabolic network with pharmacological inhibitors. (a) The
heatmap from metabolomic profiling shows the effect of pharmacological inhibitors on targeting
Warburg metabolism regulators in LCL, CA46, and SUDHL4 cells. Color gradient indicates the abso-
lute mean deviation between pool sizes for each metabolite. (b) Plots from the principal component
analysis of LCL, CA46, and SUDHL4 demonstrate overall behaviors of each experimental set from
treatment with pharmacological inhibitors intended to target the Warburg metabolism. (c) Partial least
squares-based analysis (left) identifies the top significant metabolite features by discriminant analysis
and variable importance (right) and metabolites aligned with changes in glucose metabolism with
fludarabine based pharmacological inhibition of Warburg regulators by Spearman rank correlation
analysis with p-values < 0.005 (right).
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Figure 6. Fludarabine decreases 13C incorporation from glucose into nucleotides. (a) Dose–
response curves from fludarabine lymphoma and LCL cells, with log molar concentration (x-axis) and
percent cell viability (y-axis), determined at 72 h by CellTitre glo assay. (b) The line graph represents the
mean of log2 fold-changes in the pool sizes of corresponding metabolites in LCL, and lymphoma cells,
treated with fludarabine. (c) Schematics represent isotope enrichment pattern for ribose phosphate
and synthesis of nucleotides derived from glucose through oxidative pentose phosphate pathway
(Ox-PPP). Bar graphs represent mean fractional 13C enrichment patterns in nucleotides of control and
fludarabine-treated LCL, CA46, and SUDHL4 cells. (d) Bar graphs represent percentages of average
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relative carbon contributions from 13C enriched nucleotides of control and fludarabine-treated LCL,
CA46 and SUDHL4 cells. The error bars represent the standard deviation from the mean of all
nucleotides. (e) Distribution plot represents relative carbon contributions from 13C enrichments in
lactate, citrate, alanine, and ribulose-5-phosphate (R5P) in control and fludarabine-treated LCL, CA46,
and SUDHL4 cells. (f) Bar graphs represent pool size changes in the metabolites with fludarabine
treatment in LCL, CA46, and SUDHL4 cells. (g) Diagrammatic summary of the metabolic fate of
glucose metabolism with fludarabine treatment in the lymphoma cells. The error bars represent the
standard deviation from the mean of experimental triplicates. Statistically significant differences
from the comparison between control and fludarabine are denoted by * with p-values of <0.05 by
student t Test.

3.5. Fludarabine Interrupts Glucose Carbon Entry into Nucleotide Metabolism

As summarized in Figure 6b, fludarabine treatment resulted in a significant decrease
in the pool sizes of pyruvate, alanine, and lactate (Log 1-fold), as well as TCA cycle in-
termediates and nucleotide metabolites (Log 2-fold). On the other hand, the pool sizes
of most glycolytic intermediates were increased (Figure 6b). Given that fludarabine treat-
ment significantly reduced the levels of transaminase-associated pyruvate, alanine, and
α-ketoglutarate, and meaningful insights from 15N labeling were not possible, we con-
clude that overall transamination is impaired, as evidenced by the significantly elevated
glutamine levels. Based on these observations, our next objective is to identify which
metabolic compartments of glucose and glutamine are affected and how they correlate with
the decrease in pyruvate to alanine transamination caused by fludarabine. To achieve this,
we performed the following isotopic tracer investigations using LCL and lymphoma cells.

Using 13C1,2-Glucose as a tracer, we examined the effect of fludarabine on the fractional
labeling patterns with the metabolic intermediates in lymphoma and LCL cells, following
48 h of treatment with 12 h labeling investigations. With fludarabine treatment, although
lymphoma cells showed increases in pool sizes of glycolytic intermediates, no significant
changes were observed in the fractional labeling pattern, including lactate and alanine
(see Table S1). However, the most significant impact of reduced metabolic labeling with
13C1,2-Glucose was observed in the TCA cycle and nucleotide metabolic intermediates
in the lymphoma cells treated with fludarabine, but not in the LCL cells (Figure S2a,b).
We further determined that, based on the carbon labeling patterns in the nucleotides,
these nucleotides were primarily derived from glucose, through the oxidative pentose
phosphate pathway (PPP) (Figure S2d). The isotopic tracing of 13C1 incorporation in
nucleotides, illustrated in Figure 6c and focusing on oxidative PPP, clearly demonstrates
that fludarabine causes a significant decrease in 13C fractional labeling in all nucleotides
(nucleotide mono- and triphosphates), only in the lymphoma cells (Figure 6c). Comparing
the average 13C fractional labeling in the nucleotides, it is apparent that lymphoma cells
incorporate far more 13C1 from glucose (65–70%) than LCL (40%) (Figure 6d). Meanwhile,
treatment with fludarabine resulted in a significant reduction (from 65–70% to 10–15%)
in glucose-derived 13C1 labeling of nucleotides in the lymphoma cells, compared to LCL
(Figure 6d).

Based on the estimation of relative carbon contribution between oxidative and non-
oxidative PPP, we observed that lymphoma cells utilized oxidative PPP (70–80%) and
LCL (50%), with fludarabine treatment resulting in the most reduction in oxidative PPP
(from 70–80%) to 30% in lymphoma compared (from 50%) to 40% in LCL versus non-
oxidative PPP (Figure S2). These results indicate that the oxidative pentose phosphate
pathway (PPP) is a major source of nucleotides and is elevated in lymphoma. Additionally,
fludarabine treatment restores the oxidative PPP to levels comparable with those in LCL.
Based on the relative carbon contribution estimation, lymphoma cells utilize more glucose-
derived carbons (20–30%) for ribose phosphate synthesis (R5P) than LCL (18%), which
decreases to less than 10% in fludarabine-treated lymphoma cells (Figure 6e). However, the
contribution of glucose carbon to alanine and citrate was similar in LCL cells (Figure 6e),
while the contribution to lactate could be different, since both intracellular and secreted
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lactate assessments are necessary for making meaningful conclusions. Despite pyruvate,
lactate, and alanine fractional labeling patterns remaining unchanged, their pool sizes
showed significant reductions (Figure 6f). However, there was also a significant increase in
upstream glycolytic metabolites glycerol-3-phosphate and dihydroxy acetone phosphate
(DHAP) in fludarabine-treated lymphoma cells (Figure 6f), indicating that overall glycolytic
activity, if not inhibited, is accumulating.

Taken together, fludarabine treatment reduced the metabolic pool sizes of nucleotides,
pyruvate, lactate, and alanine in lymphoma cells, with opposite effects on upstream gly-
colytic intermediates, as summarized in Figure 6g. This was accompanied by a decrease in
the incorporation of glucose-derived carbon into the TCA cycle and nucleotide metabolism.
The correlation between lactate and alanine levels with energy metabolism and nucleotide
levels is therefore consistent with the fludarabine-mediated suppression of lymphoma
specific cellular proliferation.

3.6. Fludarabine Disrupts Glutamine Carbon Entry into the TCA Cycle

Next, we investigated whether reduced pyruvate availability is linked to elevated
glutamine levels and the decreased metabolic activity of the TCA cycle (Figure 6b). This was
conducted to establish that glucose, even when converted into lactate, acts synergistically
with oxidative energy-yielding metabolism. As illustrated in Figure 7a, we investigated 13C
enrichment patterns of TCA cycle intermediates using glutamine-derived 13C-5 glutamate
as a precursor for this investigation. Oxidation of α-ketoglutarate in the conventional
direction of the TCA cycle should result in the loss of one carbon as carbon dioxide
generating 13C-4 succinate, which in subsequent metabolic stops could yield 13C-4 citrate,
through 13C-4 oxaloacetate accepting two carbons from pyruvate. Alternatively, if α-
ketoglutarate becomes the direct source of citrate through reductive carboxylation [12],
then all five carbons of citrate will be derived from 13C-5 sourced from α-ketoglutarate, as
shown in Figure 7a.

Using 13C5,15N2-Glutamine as a tracer, we observed that C-5 of α-ketoglutarate, aconi-
tate and citrate were labeled at 80%, 50%, and 40% respectively in the untreated lymphoma
cells (Figure 7b). In LCL cells, that C-5 of α-ketoglutarate, aconitate and citrate was labeled
with 13C at 50%, 38%, and 18% respectively from 13C5,15N2-glutamine. Together, these la-
beling patterns indicate that glutamine significantly contributes to citrate synthesis through
reductive carboxylation in lymphoma than LCL cells. Considering the loss of one carbon
atom as CO2 in the conventional TCA cycle, we found that succinate C-4 is 70% labeled,
while C-4 of fumarate and malate are labeled at 40% (as shown in Figure 7b). Unfortunately,
due to its low abundance, the labeling in oxaloacetate remained undetermined by mass
spectrometry. Taken together, our 13C enrichment results reveal that glutamine carbon
undergoes both oxidation (via the conventional TCA cycle) and reductive carboxylation
generating citrate (Figure 7b). This necessity for (glutamine-derived) excess citrate pro-
duction suggests that citrate is lost from the TCA cycle or is not sufficiently synthesized
from pyruvate-derived Acetyl-CoA. Our previous research has shown that citrate exit
facilitates nucleotide metabolism (via glucose and the PPP) [24]. Therefore, it is possible
that glutamine-derived citrate could be necessary for compensating for this citrate loss.
Taken together, we conclude that citrate exit is another important link between energy
metabolism and nucleotide synthesis.

While fludarabine treatment did not alter the proportion of 13C enrichment in C-5 of
α-ketoglutarate, citrate, and C-4 of succinate in LCL cells, these 13C enrichments, except for
citrate, were significantly reduced in the lymphoma cells (CA46 and SUDHL4) (Figure 7c).
However, we observed a significant decline in the citrate pool size in the fludarabine-
treated lymphoma cells (CA46 and SUDHL4), along with α-ketoglutarate and succinate
(Figure 7d). This abrupt decline in citrate occurred despite increases in the pool sizes of
glucose-6-phosphate (Figure 6f) and glutamine (Figure 7d), indicating that citrate is the
end-product of the synergistic glucose/glutamine metabolism in the TCA cycle.
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representing TCA cycle metabolites in CA46 cells and the bar graphs show 13C fractional enrichment 
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Figure 7. Fludarabine decreases13C incorporation from glutamine into TCA cycle in lymphoma.
(a) Schematics illustrate patterns of isotopomers expected from 13C enriched TCA cycle metabolites
derived from 13C5,15N2-Glutamine. (b,c). The distribution plot represents 13C enriched isotopomers
representing TCA cycle metabolites in CA46 cells and the bar graphs show 13C fractional enrichment
changes in TCA cycle intermediates with fludarabine treatment in LCL, CA46 and SUDHL4 cells.
(d) The bar graphs represent the mean changes in the pool sizes of TCA cycle intermediates and
associated metabolites with fludarabine treatment in LCL, CA46 and SUDHL4 cells. (e) Relative
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carbon contribution from glucose and glutamine from 13C enriched TCA cycle intermediates, and the
effect of fludarabine in LCL, CA46, and SUDHL4 cells are represented as a distribution plot. (f) An
overview of metabolic pool size changes in lymphoma cells treated with fludarabine is summarized
in this illustration based on Figures 6f and 7d, with pool size decreases (in blue) and increases (in
red). The error bars in this figure represent the standard deviation from the mean of experimental
triplicates. Statistically significant differences from the comparison between control and fludarabine
are denoted by * with p-values of <0.05 by student t Test.

Furthermore, by comparing the relative contribution of carbons 13C-1 from glucose
and 13C-5 or 13C-4 from glutamine, we observed that lymphoma cells incorporate 20% more
carbon from glutamine into citrate (Figure 7e). The relative contributions of carbons from
glucose and glutamine to α-ketoglutarate, succinate, and malate were similar for both LCL
and lymphoma cells (Figure 7e). However, treatment with fludarabine further reduced glu-
cose carbon contributions to α-ketoglutarate and succinate (from 30–40% to less than 10%)
(Figure 7e), indicating that glutamine entry facilitates the reciprocal participation of glucose
carbon in the TCA cycle.

Taken together, results from the fludarabine treatment experiments indicate that de-
creased pyruvate and alanine availability (Figure 6f) restrict the participation of both
glucose and glutamine carbons in the TCA cycle, resulting in glycolytic and glutamine
accumulation and thereby resulting in the reduction in the pool sizes of TCA cycle interme-
diates (Figure 7d). Therefore, pyruvate to alanine transamination appears to be essential
for the glucose-dependent maintaining of TCA cycle metabolism through glutamine.

3.7. Elevated Levels of Pyruvate, TCA Cycle Intermediates, and Nucleotides Correlate with STAT1
Expression in Tumors

Our experiments with fludarabine have demonstrated that when glucose and glu-
tamine carbons accumulate and fail to enter the energy-yielding TCA cycle, nucleotide
biosynthesis becomes compromised. These observations are significant in the context of
Warburg’s paradox, where glucose, despite being converted into lactate, acts synergistically
with oxygen metabolism to promote tumorigenesis. Therefore, Warburg’s paradox and
the Warburg effect represent the endpoints for oncogenic signals to generate energy and
nucleotides, driving malignant cell proliferation. Our final goal is to determine whether
the metabolic correlations inferred from in vitro experiments using cultured cells are clini-
cally relevant for lymphoma. Our comparison of the metabolic profiles of cultured cells
(LCL and lymphoma cell lines, CA46 and SUDHL4) with patient-derived tissues (normal
lymph nodes and B cell lymphoma tumors, n = 10) reveals that the pool sizes of metabolic
intermediates from transaminase, the citric acid cycle, and nucleotide metabolism are well
correlated and consistently elevated in malignancy (p < 0.05), with significant metabolites
shown as a heatmap in Figure 8a,b. Raw profiles and detailed statistical analysis are
provided in Table S1.

Additionally, we compared protein lysates from tumor and normal tissues for expres-
sion levels of metabolic enzymes and transcription factors associated with our predicted
Warburg circuitry (Figure 4c) for validating the biological appropriateness for using fludara-
bine in our metabolic studies. The results of the Western blot analysis comparing normal
lymph nodes to B cell lymphoma nodes indicated that STAT1 and JUND are significantly
overexpressed in lymphomas (Figure 8c). We also observed that the expression of LDHA
and alanine transaminase in lymphoma is sporadically elevated. The significant overex-
pression of STAT1 (Figure 8c) indicates that fludarabine’s tumor selectivity is associated
with its regulatory influence on inhibiting STAT1 function and malignant metabolic activity,
and it is clinically relevant.

In summarizing the results of our experiments, we observed an increase in pyruvate,
lactate, and alanine levels during the S phase of the cell cycle, which corresponded to
increases in glycolysis, the TCA cycle, and nucleotide metabolism (Figure 1). Pyruvate
plays a key role in supplying glutamine-derived carbons as α-ketoglutarate and contributes
to citrate formation in malignant cells (Figures 2 and 7). We previously observed that
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citrate exit facilitates FASN-mediated NADP/NADPH cycling, which is necessary for
diverting glucose-derived carbon into nucleotide synthesis via the oxidative PPP [24].
Therefore, continuous citrate loss should result in a diminished TCA cycle, as shown in
step 1 (Figure 9a). This is evident from the shrinking citrate pools derived from glucose
and glutamine with fludarabine treatment (Figure 9a).
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Figure 8. Warburg paradoxical metabolic features are elevated in lymphoma. (a,b). Heatmaps
from metabolomic profiling comparing (a) primary lymphocyte (LCL) with lymphoma cell lines
(CA46 and SUDHL4) and (b) normal lymph node and lymphoma tumors show upregulation in
the pool sizes of metabolites associated with glucose metabolism, lactate, alanine and nucleotides
in lymphoma. Color gradient indicates the absolute mean deviation between pool sizes for each
metabolite. (c) Western blot analysis comparing lymphoma tumor and normal lymph nodes show
that Jun (denoted as ***, p < 0.005) and STAT1 (denoted as **, p < 0.05) expressions (normalized by
β-actin) represented as violin plots, are significantly upregulated in the tumors. Original uncropped
blots are presented in Supplementary Figure S3.
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step 2 (Figure 9a). This is evident from the decreases in α-ketoglutarate levels and label 
incorporations observed with fludarabine (Figure 7c,d). As the entry of pyruvate carbon 

Figure 9. (a) Diagrammatic summary illustrating the results from isotopic tracer experiments (high-
lighting the predicted metabolic sequence of steps, outlined in the results), providing an integrated
overview of proliferative metabolic functions in lymphoma. (b) Diagrammatic summary of physio-
logical metabolic regulations in proliferation, highlighting the disruption of these regulations by the
Warburg phenomenon in malignancy.

Transamination of glycolytic carbons from pyruvate to alanine serves as an alternate
pathway to restore the TCA cycle (and citrate) through glutamine carbon, as indicated in
step 2 (Figure 9a). This is evident from the decreases in α-ketoglutarate levels and label
incorporations observed with fludarabine (Figure 7c,d). As the entry of pyruvate carbon
into the TCA cycle is diminished with fludarabine, the malate, aspartate, and oxaloacetate
shuttle shunts glutamate carbons through a partially active TCA cycle, as indicated in step 3
(Figure 9a), potentially sustaining oxidative metabolism. With the accumulation of the
metabolic components of mitochondrial shuttle pathways—such as aspartate (Figure 7d),
DHAP, and glycerol-3-phosphate (Figure 6f)—with fludarabine, we conclude that the
overall integrity of the TCA cycle is vulnerable. Therefore, constant availability of pyruvate
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becomes crucial for TCA cycle to remain operational, and metabolic conversion of pyruvate
to lactate ensures this availability, as shown in step 4 (Figure 9a).

Finally, based on the fact that fludarabine treatment decreases pyruvate and lactate
levels while glycolytic intermediates accumulate, the impaired TCA cycle-mediated energy
metabolism is accompanied by decreased nucleotide biosynthesis, as indicated in step 5
(Figure 9a). This conclusion is derived from Figures 6g and 7f. We conclude that all
these metabolic reprogramming events converge on nucleotide biosynthesis to confer a
proliferative advantage in malignant lymphoma cells.

Applying these results in the context of resolving the metabolic reprogramming
principles responsible for the Warburg effect and Warburg’s paradox, and their implications
in malignancy, our conclusions are as follows:

The physiological regulation of normal cell proliferation is a systematically controlled
process facilitated through feedback regulations that follow a sequential metabolic ac-
tivity [36]. Newly formed cells prioritize glucose carbon for energy production. The
accumulating energy then exerts feedback inhibition over pyruvate synthesis [49], resulting
in the accumulation of glycolytic intermediates. This allows glucose carbons to flow toward
nucleotide biosynthesis. Once nucleotide levels reach sufficient levels, mitotic activity is
triggered followed by completion of cell proliferation in an orderly fashion [36] (Figure 9b).

The hallmark of malignancy, on the other hand, is uncontrolled cell proliferation. The
metabolic feedback regulations found in normal cells make it disadvantageous for cells to
commit to rapid proliferation. Therefore, the overexpression of LDH pivots glycolysis away
from TCA cycle-mediated feedback inhibition, keeping the glucose carbon flow uninter-
rupted. This is the foremost and most apparent feature noticeable in most malignancies and
caught the attention of Warburg, commonly known as the Warburg effect [2] (Figure 9b).

With LDH activity keeping pyruvate metabolism open, transamination reactions allow
coupling of glucose with glutamine to sustain the TCA cycle and respiratory oxygen-
mediated energy metabolism (Figure 9b). Together these metabolic features constitute the
principles behind Warburg’s paradox. As a result, with excess energy constantly available,
increased glycolytic and glutamine metabolism via the TCA cycle allows citrate to couple
with FASN-mediated Ox-PPP-dependent nucleotide synthesis [24]. FASN is also the most
highly overexpressed protein in almost all malignancies, including in lymphoma [24]
(Figure 9b). Considering that exogenous lipids are physiologically abundant, de novo
lipogenesis in malignancy, which is energetically expensive, is unnecessary but exists [24].
Additionally, citrate, being the negative feedback regulator of the TCA cycle, is utilized
for lipogenesis [49], providing an opportunity to remove another important feedback
regulatory mechanism over energy production. LDH and FASN are crucial metabolic
functions that remove feedback restrictions on glycolysis and the TCA cycle, enabling
citrate to integrate energy and nucleotide metabolism. Due to the low abundance of
oxaloacetate and the contribution of glutamine-derived carbon in the reductive synthesis of
citrate, it is clear that the exit of citrate is also a crucial component for integrating glucose
and oxidative metabolism. Consequently, all oncogenic signals ultimately converge on
upregulating the expression of enzymes involved in these metabolic paradigms to drive
abnormal cell proliferation.

4. Discussion

Based on Warburg’s concept, the synthesis of lactate from glucose suggests that glucose
oxidation is unnecessary (Warburg effect) [1]. However, the simultaneous need for both
glucose and oxygen in malignancy in the context of lactate metabolism though seemingly
contradictory, indicates that these metabolic functions as complementary mechanisms
(Warburg’s paradox) [1]. To understand the broader biological implications of the Warburg
effect in cancer, it is essential to explore the metabolic impact of these paradoxical features.

Although extensive research on the Warburg effect exists, there is a lack of a sim-
plistic overview and clarity, leading to several unanswered questions raised in the litera-
ture [3,4,9]. Despite ongoing debates about the biological benefits of aerobic glycolysis in
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malignancy [49], we independently assessed this using multiple experimental approaches
to understand its overall relationship with lymphoma metabolism. This study aims to
examine and clarify the metabolic patterns in lymphoma and non-malignant cells, inves-
tigate their behavior in malignant-specific proliferative activity, and illustrate metabolic
connectivity using an ‘omics’-based strategy. While comparing absolute quantities between
metabolites, flux analysis, subcellular compartmentalization, kinetics, and accounting
for metabolite excretion are important next steps, our ‘omics’-based approach focuses
on metabolic labeling patterns and relative changes in each metabolite under different
conditions. This approach provides an initial overview of the metabolic reprogramming
principles and its relevance to Warburg phenomenon in lymphoma.

Results from our metabolomic profiling and analysis of cell cycle progression in CA46,
show that increased amino acid pools correspond to the G1 and S phases, and that glycol-
ysis, TCA cycle, and nucleotide pools also increase during the S phase progression, with
glycolysis and nucleotides remaining elevated until G2. While similar metabolomic profil-
ing of cell cycle phases has been conducted with yeast, mouse fibroblasts and lymphocytes,
such an assessment with cancer cell lines has proven to be very challenging [50]. There-
fore, results from our metabolic profiling and isotope enrichment analysis demonstrating
increased transamination of pyruvate to alanine occurring during S phase of the cell cycle,
are significant findings in this study. Most importantly, 13C enrichments demonstrated
that pyruvate and lactate carbons are derived entirely from glucose, while alanine had
carbons derived both from glucose and glutamine in lymphoma. Interestingly, studies
based on glioblastoma indicated that glutamine is the major source of carbon for pyruvate,
alanine, lactate, and nucleotides [51,52], which suggests that these metabolic features while
conserved, may vary by the source of carbon based on the cell type.

Based on the 2 vs. 12 h incorporation of 13C and 15N labels into alanine (derived from
glutamine), we observed that the 15N label was present only in the C-0 isotopomer, which
originates from glucose and occurs rapidly, as shown in Figure 2a. Conversely, alanine con-
taining glutamate-derived 13C did not include 15N; it was identified as N-0, which followed
slower kinetics (Figure 2a). These findings suggest that transamination reactions involving
glucose-derived pyruvate and 13C,15N-glutamate occur in distinct cellular compartments.
It is well known that cytosolic alanine transaminase converts glycolytic pyruvate to alanine,
while mitochondrial alanine transaminase converts alanine to pyruvate for gluconeogene-
sis [53]. Moreover, transamination reactions are freely reversible metabolic functions [53].
Therefore, we conclude that the source of alanine containing 15N is glycolytic pyruvate.
The resulting carbon exchange, yielding α-ketoglutarate from glutamate, occurs in the
cytosol, directly linking glucose to the continuity of oxidative metabolism, as envisioned in
Warburg’s paradox.

Further evidence in the literature supports our conclusion that, despite glucose be-
ing metabolized into lactate, glycolysis in malignant cells seems to catalytically enhance
oxidative metabolism through the transamination of pyruvate to alanine, as elaborated
further. Inhibition of alanine transaminase with cycloserine or 3-chloroalanine while re-
ducing alanine levels, has also been shown to disrupt glycolysis and energy metabolism
in Lewis lung carcinoma cells [54]. Similarly, blocking alanine or aspartate transaminase
activities with oxamate has been shown to kill cancer cells while not affecting normal
cells [54–56]. This effect is comparable to the selective inhibition of lymphoma prolif-
eration observed in our studies with fludarabine treatment which corresponded with a
reduction in pyruvate and alanine levels, compromising the TCA cycle and nucleotide
metabolism. These results altogether illustrate the importance of transamination in the
metabolic interplay between glycolytic pyruvate and oxidative metabolism as a significant
event in the proliferative activities of lymphoma. Similar results have already shown that
pyruvate to alanine transamination is a key metabolic link between glycolysis and the TCA
cycle [57]. Interrupting this link using RNAi against cytosolic alanine transaminase (GPT2)
was demonstrated to impair oxygen metabolism, cell proliferation, and tumor growth in
colon cancer [57]. However, this study did not further elaborate on how these metabolic
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features are interconnected with proliferative functions, specifically nucleotide biosynthesis,
which is critical for malignancy [57]. Moreover, inhibiting aspartate transaminase activity
impedes the flow of glucose carbons into nucleotide metabolism and diminishes both the
TCA cycle and oxygen consumption in MDA-MB-231 cells [56]. With proliferation blocked
from aspartate transaminase in MDA-MB-231, this study reported that specifically, the
carbon flow from glucose (as α-ketoglutarate) to glutamate was impaired [56]. Therefore, it
is possible that both alanine and aspartate transaminases are tandemly participating in this
breast cancer cells [56], while this dependence could be a predominant feature of alanine
transaminase metabolism in lymphoma (this study) or colon cancers [57].

Given that nucleic acids constitute approximately one-third of a cell’s dry weight,
glucose is essential, not only as an energy source but also for providing ribose for nucleotide
biosynthesis, which is crucial for cell division [11]. Results from our experiments and others
with stimulated peripheral lymphocytes [58], have shown that glucose utilization and
lactate production surge during nucleic acid synthesis and S phase progression, suggesting
that metabolic reprogramming of diminishing glucose oxidation to facilitate nucleotide
biosynthesis may be advantageous for the proliferative functions of malignant cells. In
this context, while other studies have addressed parts of this issue, our results provide
an integrated overview showing that the Warburg effect and paradoxical metabolism
are directly interlinked for simultaneous energy production and nucleotide biosynthesis.
Meeting these two most fundamental necessities is important for malignancy, as this
distinguishes it from normal cell proliferation, where these metabolic activities proceed in
an orderly fashion.

We have observed that lymphoma cells cultured in a medium with dialyzed serum
lacking glucose undergo rapid cell death within 2 h. Moreover, lymphoma cells (SUDHL4)
can sustain proliferation with 1 µg/mL glucose per million cells (compared to the stan-
dard culture concentration of 100–200 µg/mL) Therefore, considering that physiological
deprivation of glucose is not a practical therapeutic approach, targeting metabolic vulnera-
bilities requires identifying molecular or metabolic inhibitors and developing appropriate
combinatorial therapies. In terms of translating these results into metabolism-targeted
therapies, evidence suggests that fludarabine, commonly used for hematological malig-
nancies, inhibits STAT1 activity [59–61]. Previous studies have established that STAT1
knockdown results in downregulation of genes associated with glycolysis, TCA cycle,
oxidative phosphorylation and LDH [62]. However, in chronic lymphocytic leukemia
patients, the effects of fludarabine on STAT1 were transient, leading to increased STAT1 ex-
pression and therapeutic resistance [59]. Existence of such complexity further underscores
the need for developing comprehensive strategies that may involve drug combinations
to simultaneously target multiple molecular, metabolic, and proliferative pathways when
applying such concepts in cancer treatments.

In summarizing our investigations into the Warburg paradox, we have observed
that pyruvate, lactate, and alanine surge during the S phase of the cell cycle (Figure 1b).
This correlates with the entry of α-ketoglutarate from glutamine and the synthesis of
nucleotides from glucose-derived carbon (Figures 2 and 3). These metabolic features are
elevated in malignant lymphoma cells compared to non-malignant LCL cells (Figure 3).
Fludarabine, which inhibits cell proliferation in lymphoma cells but not in non-malignant
LCL cells, perturbs these metabolic functions (Figures 5 and 6). Our observations with
fludarabine treatment also reveal that metabolic intermediates representing the TCA cycle
and nucleotides are depleted only in lymphoma cells (Figure 6), likely due to metabolic
consumption linked to oncogenic proliferative activities. Elevated glycolytic intermediates
under these conditions correlate with a lack of nucleotide synthesis (Figure 6a), supporting
our previously established role of TCA cycle-derived citrate in PPP activity.

Depletion of other TCA cycle intermediates aligns with their established roles in driv-
ing oncogenic activities, such as chromatin modification and proliferative signaling [22].
We have previously reported that TCA cycle gene elevation occurs early in tumor progres-
sion [31]. Thus, funneling TCA cycle intermediates for oncogenic proliferation appears to
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be a metabolic necessity of malignancy [22]. Due to these metabolic changes, with reduced
oxaloacetate (the substrate for glucose oxidation), pyruvate takes alternate routes. Over-
expression of LDH in malignancy leads to pyruvate being metabolized into lactate, a key
phenotype in the Warburg effect [3]. Continuous lactate drainage prevents glycolysis from
inhibiting glucose uptake, making glucose uptake a prominent feature that is apparent in
cancer diagnosis [7,8].

Our findings also reveal that the metabolic conversion of pyruvate to alanine, catalyzed
by a reversible transaminase reaction, allows glutamine carbon to feed as α-ketoglutarate
while yielding alanine, and it is noteworthy that alanine is also a precursor for protein
and nucleotide biosynthesis. Fludarabine-induced increases in metabolites associated with
glycerol-3-phosphate and DHAP shuttle mechanisms (Figure 6f) which are elevated in
cancer, known to sustain oxidative phosphorylation, [63] possibly continues to maintain the
continuity of oxygen metabolism through glycolytic intermediates, while TCA intermedi-
ates remain depleted (Figure 6a). Based on glutamine carbon labeling in the TCA cycle, the
bidirectional split toward α-ketoglutarate carbons into citrate and malate (Figure 7e) sug-
gests that the TCA cycle is no longer active as conventional cyclical metabolism. This TCA
metabolic fidelity loss, if occurring in mitochondria, may also represent a mitochondrial
defect as envisioned by Warburg. While the existence of robust shuttle mechanisms that
maintain oxygen metabolism could compensate for TCA defects [63], supplying glutamine-
derived α-ketoglutarate, which make it synergistic with glycolysis, could explain the
mechanistic basis of Warburg’s paradox.

In comprehending the translational significance by understanding the Warburg para-
dox, it appears that targeting oncogenic metabolic functions that participate in simulta-
neously enhancing carbon-feeding biosynthetic activities and oxygen-dependent energy-
yielding processes is necessary for achieving superior efficacies.

5. Conclusions

The relationship between the Warburg effect, metabolic reprogramming, and cancer is
a well-studied aspect of cancer biology. However, many questions and challenges remain
about the direct biological and translational implications of this metabolic phenomenon in
cancer [4,64]. Our results demonstrate that pyruvate transamination, coupling glycolysis,
and glutamine sustain oxidative energy metabolism, aligning with the Warburg paradox.
Producing lactate is essential to protect glycolysis from TCA cycle-mediated feedback
inhibition. In return, the TCA cycle provides citrate, facilitating lipogenesis and coupling
with the oxidative pentose phosphate pathway (ox-PPP) to produce nucleotides. This
integrated perspective underscores the dual role and biological significance of the Warburg
paradox in ensuring a continuous, uninterrupted supply of energy and nucleotides for
malignant cell proliferation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers16213606/s1, Figure S1. Pharmacological inhibition
of molecular-metabolic Warburg circuitry. Graphs show the effect of pharmacological inhibitors on
cell proliferation measured by MTT based cell viability assays in LCL, CA46, and SUDHL4 cells after
72 h. x-axis represents the concentration of the pharmacological inhibitors, and y-axis represents
percent control cell viability. The error bars represent standard deviations of mean from experiments
performed in triplicate. Figure S2. Fractional labeling patterns in citric acid cycle intermediates
and nucleotide metabolism with inhibitors of transcriptional regulators. Bar graphs represent mean
fractional labeling patterns in (a) the citric acid cycle and (b) nucleotides, following 13C1,2-Glucose
isotope tracer (c) citric acid cycle following 13C5,15N2-Glutamine isotope tracer labeling in LCL,
CA46 and SUDHL4 treated with inhibitors. Error bars represent standard deviations from the mean
of experimental triplicates. (d) Bar graphs represent relative carbon contributions in the pentose
phosphate pathway and the effect of fludarabine treatment on carbon contributions to oxidative
pentose phosphate pathway in lymphoma and LCL cells. Figure S3. Western blots uncropped original
images (for Figure 8c). Table S1. Table consisting of list of GEO ID by lymphoma cell lines for
transcriptomic dataset and Metabolic profiling raw data tables from all experiments. Table S2. Log2
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transformed RNA expression datasets corresponding to molecular and metabolic regulators of the
Warburg metabolism from Diffuse Large B Cell Lymphoma patient (NCI dataset) and lymphoma
cell lines.
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