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Simple Summary: In this study, we applied translational informatics for intelligent medicine of acute
myeloid leukemia, a type of cancer characterized by disease relapses even after seemingly successful
treatments. Treatment failure is associated, at least in part, with the fact that targeting individual
proteins often promotes rewiring of relevant networks and re-organization of interactions of, among
others, non-targeted proteins to eventually evade single-target therapies. To develop efficient ther-
apies, these dynamics should be taken into account and target whole network modules instead of
singleton genes in order to prevent the establishment of compensating signaling circuits. Therefore,
we integrated network-based methods, structural pharmacology, and molecular modeling to establish
two complementary multitargeting strategies, one in the form of repurposable drug combinations
and the other as a de novo synthesized triple-targeting agent. Of note, our study exploits, for the first
time, a greedy algorithm to identify optimal combinations of drugs and therapeutic protein targets.

Abstract: Background/Objectives: Acute myeloid leukemia (AML) is characterized by therapeutic
failure and long-term risk for disease relapses. As several therapeutic targets participate in networks,
they can rewire to eventually evade single-target drugs. Hence, multi-targeting approaches are
considered on the expectation that interference with many different components could synergistically
hinder activation of alternative pathways and demolish the network one-off, leading to complete
disease remission. Methods: Herein, we established a network-based, computer-aided approach for
the rational design of drug combinations and de novo agents that interact with many AML network
components simultaneously. Results: A reconstructed AML network guided the selection of suitable
protein hubs and corresponding multi-targeting strategies. For proteins responsive to existing drugs,
a greedy algorithm identified the minimum amount of compounds targeting the maximum number
of hubs. We predicted permissible combinations of amiodarone, artenimol, fostamatinib, ponatinib,
procaine, and vismodegib that interfere with 3–8 hubs, and we elucidated the pharmacological
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mode of action of procaine on DNMT3A. For proteins that do not respond to any approved drugs,
namely cyclins A1, D2, and E1, we used structure-based de novo drug design to generate a novel
triple-targeting compound of the chemical formula C15H15NO5, with favorable pharmacological and
drug-like properties. Conclusions: Overall, by integrating network and structural pharmacology with
molecular modeling, we determined two complementary strategies with the potential to annihilate
the AML network, one in the form of repurposable drug combinations and the other as a de novo
synthesized triple-targeting agent. These target–drug interactions could be prioritized for preclinical
and clinical testing toward precision medicine for AML.

Keywords: acute myeloid leukemia; network rewiring; multi-targeting drug design; drug repurposing;
DNMT3A; cyclins

1. Introduction

Acute myeloid leukemia (AML) is a complex and heterogeneous blood malignancy in
adults. Its management includes various therapeutic strategies, mainly intensive chemother-
apy, targeted therapies [1,2], allogeneic stem cell transplantation [3], and CAR T-cell im-
munotherapy [4]. One major clinical challenge of AML is that patients are at a life-long
risk for disease relapses even after seemingly successful therapies [5], a condition known
as minimal residual disease (MRD). Even when the majority of malignant cells are elim-
inated by treatments, a few cells manage to survive in the patient long after the initial
diagnosis [6] and, under the appropriate conditions, may fuel recurrence and/or resistance
to therapies [7–9]. Furthermore, selection of best possible care is often complicated by
polypharmacy, as these patients may need to receive multiple drugs (often ≥5) in the con-
text of additional lines of cancer therapy, management of comorbidities, and/or supportive
care, which generally increases the chances for negative drug–drug interactions [10].

The tendency of AML to recur reflects the dynamic and evolving nature of cancer [11].
Medical treatments exert immense evolutionary pressure for positive selection of drug-
resistant clones [12]. Besides genomic alterations, rapid and dynamic rewiring of signalling
pathways and transcriptional networks is also a means for developing resistance to thera-
pies [13]. In particular, therapeutic gene targets are usually components of networks that
secure their robustness through feedback and redundancy mechanisms. Therapy-induced
perturbations of individual gene targets often promote rewiring of relevant networks and
re-organization of interactions among other, non-targeted genes, which favor adaptation
and survival. Eventually, the signaling circuits that are established under the selective
pressure of a certain drug orchestrate the evolution of correspondingly resistant tumor
subclones [14]. This realization has shifted the research interest from the ‘one target-one
drug-one disease‘ paradigm to the identification of compounds that interact with multiple
interrelated targets in the cancer network to create an additive or synergistic effect [15].
Hence, next-generation therapies should rely on drugs that do not interact with a single
selected hub but rather annihilate the whole network one-off by interfering, at first instance,
with as many of its components as possible. Multi-targeting is pursued by either combina-
tion therapies, whereby two or more drugs acting on distinct targets are combined [16,17],
or multi-target drug design, whereby a single agent acts on two or more interrelated onco-
genic targets simultaneously [18]. Both strategies have shown promising efficacy and safety
profiles in the AML clinical and/or preclinical setting [19–26].

The identification of suitable proteins and corresponding drugs for multi-targeting
can be guided by network pharmacology [27,28]. In this regard, the reconstruction of
the core disease networks facilitates the rational selection of the components that should
be optimally targeted to inhibit malignant phenotypes while minimizing risks for drug
resistance and side effects [29–33]. These approaches do not only identify proteins that
can be targeted by already existing compounds but also effectively map those for which
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there are no clinically available therapeutics, thereby providing a comprehensive means to
explore and extend the druggable space of proteins implicated in complex diseases [34–36].

Herein, we established a network-based, computer-aided approach for the strategic
design of multi-targeting drug combinations and de novo agents that interact with com-
ponents of the AML network. First, we identified targets overexpressed in AML versus
healthy blood cells and exploited them to reconstruct the core AML network. Then, aiming
to demolish the AML network one-off and, at the same time, avoid polypharmacy-related
complications, we sought to predict the maximum number of targets that are inhibited
using as few compounds as possible. We provide robust computational evidence that,
on the one hand, the druggable components of the network are potentially targeted by
specific combinations of already existing drugs, and on the other hand, key undruggable
components of the network can be inhibited simultaneously with a novel small-molecule
compound, which we generated in silico using structure-based de novo multi-target drug
design. By integrating network-based methods, functional enrichment analysis, phyloge-
nomics, structural pharmacology, and molecular modeling, we determined two alternative
strategies with the potential to specifically demolish the AML network, one in the form of
drug combinations and the other as a de novo synthesized multi-targeting agent.

2. Materials and Methods

2.1. In Silico Reconstruction of the AML Network and İdentification of Druggable and
Undruggable Hubs

The differentially expressed transcripts in AML patient tissue samples as compared
to healthy ones were defined as previously described [8] (Table S1). The locus type
of these genes (i.e., protein-coding genes, non-coding etc.) was identified via HGNC
BioMart (https://www.genenames.org/, accessed on 11 February 2022) [37]. Potential
protein—protein interactions of the upregulated protein-coding genes (PCGs) were investi-
gated by STRING version 11.5 [38], a database of experimentally verified and predicted
physical and functional protein–protein associations derived from diverse sources (e.g.,
experimental studies, databases, scientific literature mining, etc.); a confidence score of 0.85
was applied so as to avoid false positives and false negatives. The topological features (e.g.,
degree distribution) of the constructed network were investigated with Cytoscape (v.3.9.0),
a software for network processing and visualization. [39]. A greedy algorithm was applied
to select the maximum number of the most highly connected nodes in the generated graph
being targeted by the minimum number of known drugs. For this purpose, the Python
programming language, as well as the Python libraries pandas and NetworkX, were used for
data manipulation and graph analysis, respectively. The corresponding UniProt identifiers
(UniProt IDs) for all PCGs were acquired using custom R scripts. The main repository of
protein sequences and functional information, UniProt Knowledgebase (UniProtKB) [40]
(https://www.uniprot.org/help/uniprotkb, accessed on 25 February 2022), release 2022_05,
was searched with in-house Python scripts, utilizing the urllib and BeautifulSoup libraries, to
assign UniProt IDs to the PCGs under study. The drugs potentially targeting the PCGs were
retrieved from DrugBank (https://go.drugbank.com/, accessed on 25 July 2022) (Table S2).
Gene set enrichment analysis (GSEA) [41] was performed to identify relevant statistically
significant gene ontology (GO) terms over-represented in those genes encoding the protein
components of the constructed AML network (Table S3).

2.2. Molecular Dynamics Simulations of DNMT3A in Procaine Environment

To perform the molecular dynamics simulations, we took into consideration that
the methyl group donor of DNMTs is S-adenosyl-L-methionine (SAM), which, following
transfer of the methyl group onto the DNA, converts into S-adenosyl-L-homocysteine
(SAH) [42]. The methylation coproduct SAH usually acts as a competitive inhibitor of
DNMTs, and the strength of its binding to DNMTs is often even higher than that of the
SAM cofactor itself [42]. Therefore, two atomistic simulations were prepared: (1) SAH-free
DNMT3A “apoenzyme” bound to procaine at its SAH-pocket, and (2) SAH-bound enzyme

https://www.genenames.org/
https://www.uniprot.org/help/uniprotkb
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in excess (0.07 M) procaine solution. The atomic coordinates of the enzyme were obtained
from the Research Collaboratory Structural Bioinformatics (RCSB) Protein Data Bank (PDB)
(PDB ID: 6F57) [43]. The human metabolome database (HMDB ID: HMDB0014859) was
used to get the atomic coordinates of procaine. CGENFF4 [44] was used to obtain the
forcefield parameters for procaine and SAH. The structures were solvated in a cubic water
box with a minimum 12 Å buffer zone between the biological material and the system.
Na+ and Cl− ions were randomly positioned in each water box to mimic a physiological
salt concentration of 0.161 M. The system was neutralized electrostatically with additional
Na+ or Cl− counterions to balance the net excess charge. For the simulations containing
procaine, randomly distributed procaine molecules were introduced to a concentration of
0.07 M. The CHARMM36m force field [45,46], the four-site OPC water model [47], and the
most recently updated Na+ and Cl− ion parameters were used to describe the interactions
between the atoms and chemical groups [48,49]. The molecular dynamics trajectories were
collected using GROMACS, version 2019. 4 [50]. Each system box was energy-minimized
using a combination of the conjugate gradient and steepest descent algorithms, followed
by equilibration in the NVT ensemble for 1 ns at 100 K and 1 ns at 300 K and also in
the NVT ensemble using an integration timestep of 1 fs for each. Production trajectories
for each of the four enzyme systems were gathered in the NPT ensemble at 300 K and
atmospheric pressure (1 atm) using an integration timestep of 2 fs for a total of 500 ns. The
temperature and pressure were kept constant using the velocity-rescaling thermostat [51]
and the Parrinello–Rahman barostat [52]. The atomic coordinates were recorded every
100 ps. Visual Molecular Dynamics (VMD), version 1.9.4 [53] and its Python wrapper
library, VMD Python version 3.0.1, were used for all analyses. Each of the two 500 ns
atomistic simulations is replicated three times for the statistical confidence of the results.
Further simulation details are provided in Table S4.

2.3. Structure-Based De Novo Design of a Triple-Targeting Agent

The de novo design and in silico evaluation of an agent that simultaneously interacts
with CCNA1, CCND2, and CCNE1 was performed through the following steps: (1) acqui-
sition of three-dimensional (3D) structures of the cyclin proteins; (2) multi-targeting ligand
building; and (3) computation of physicochemical, pharmacokinetic, drug-like, and toxicity
parameters.

2.3.1. Acquisition of 3D Structures of the Cyclin Proteins

The experimentally resolved 3D structure of the Homo sapiens CCNE1 was obtained
from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank
(PDB), San Francisco, CA, USA [54]; PDB ID:1W98. ColabFold (https://github.com/
sokrypton/ColabFold, accessed on 27 January 2023), which is based on AlphaFold [55],
was used to predict the 3D structures of the human CCNA1 (RefSeq ID: NP_003905.1) and
CCND2 (RefSeq ID: NP_001750.1) protein sequences.

2.3.2. Multi-Targeting Ligand Building

Ligands were generated based on the 3D structure of the target cyclin proteins by
employing LigBuilder V3. This is the first de novo multi-target drug design program,
which can be used to design ligands to target multiple receptors, multiple binding sites of
one receptor, or various conformations of one receptor. It can be especially applied for the
design of common ligands against protein targets with large differences in binding sites [56].
First, we detected potential binding sites in the target cyclins via the ‘Cavity’ module, which
considers the structural constraints, hydrophobic effect, and hydrogen bonds. A probe
sphere is used to explore the entire surface area of the three cyclins for binding pockets.
A pharmacophore model was derived from the target proteins to define key interaction
sites, and the druggability of the detected binding sites was estimated. We used the ‘de
novo’ design strategy of LigBuilder V3, whereby a sp3 carbon with four hydrogen atoms
is placed randomly into the binding pocket and provides the starting point upon which

https://github.com/sokrypton/ColabFold
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a new molecule is built in a stepwise manner by applying local energy minimization at
each step. Hence, this workflow does not require a user-defined “seed” structure to be
pre-placed into the binding site of the target protein. A build-in genetic algorithm for ligand
construction was applied. Initially, organic fragments (i.e., building blocks) were selected
from the default fragment library and attached to the seed structure with a synchronous
growing operation, toward generating a larger compound that would fit into the active
sites of the three target proteins. The new generation of compounds, derived from the
parent population, were randomly split into fragments and were recombined—a process
called crossover—to form the new “seed structure pool”. The nascent fragments (progeny)
are statistically more fit (i.e., privileged) than their parents and are subsequently chosen
to serve as “seeds” in the subsequent cycles of ligand design. The overall procedure was
reiterated until convergence, that is, the full generation of novel optimal ligand molecules.

ChemDraw (https://revvitysignals.com/products/research/chemdraw, accessed on
22 June 2023) and Chemaxon (https://chemaxon.com/, accessed on 22 June 2023) naming
toolkit were used for generating the chemical structure of the ligand and naming it.

2.3.3. Computation of Physicochemical, Pharmacokinetic, Drug-likeness, Synthesizability,
and Toxicity Parameters

The drug-like properties of the generated ligand compound were evaluated using
the SwissADME (https://www.swissadme.ch/, accessed on 11 July 2023) [57], a freely
accessible web tool, which includes a comprehensive set of pharmacokinetic and drug-
likeness predictive models. The freely available online tool pkCSM [58], utilizing graph-
based structure signatures, was used to assess the toxicity risk of the compound.

2.4. Identification of the Amino Acid Residues Mediating the Multi-Target Agent-Cyclin Protein
İnteractions

To identify the amino acids that are structurally and functionally important for the
interaction between the de novo designed multi-targeting agent and cyclin proteins, the
following steps were executed: (1) molecular docking; (2) orthologs search and protein
sequence alignments; and (3) creation of amino-acid sequence motifs.

2.4.1. Molecular Docking

The multi-target ligand generated by de novo drug design was validated by perform-
ing molecular docking simulations via AutoDock Vina [59]. The ligand was docked against
each cyclin protein, and its binding affinity towards cyclins was estimated. The spacing
value was set as 0.375 Å by default. Also, the x center, y center, and z center were set
as 18.774, −0.488, −20.234; 18.768, −0.557, −20.365; 18.545, −0.404, −20.191 for CCNE1,
CCNA1, CCND2, respectively. The van der Waals surface of the ligand–protein binding site
was calculated, and the van der Waals surface of the ligand was expanded until it collided
with that of its cognate protein.

2.4.2. Orthologs Search and Protein Sequence Alignments

In order to retrieve the orthologous amino acid sequences of the proteins CCNA1,
CCND2, and CCNE1 across diverse taxa, the corresponding Homo sapiens (Human) and
Mus musculus (Mouse) protein sequences were used as probes to search the well-annotated
genomes of the vertebrate species Macaca mulatta, Equus caballus, Monodelphis domestica,
Ornithorhynchus anatinus, Gallus gallus, Anolis carolinensis, Xenopus tropicalis and Danio
rerio in the publicly accessible non-redundant sequence database National Center for
Biotechnology Information (NCBI)’s RefSeq [60] by applying reciprocal best hit BLASTp.
The orthologous amino acid sequences were aligned with PRALINE [61]. The resulting
multiple sequence alignments were edited with Jalview [62].

https://revvitysignals.com/products/research/chemdraw
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2.4.3. Creation of Amino Acid Sequence Motifs

The human protein sequences CCNA1, CCND2, and CCNE1 were submitted to the
NCBI’s Conserved Domains Database (CDD) [63], which relies on position-specific scoring
matrices to identify protein domains and functionally important residues. The sequence
motifs harbouring the residues implicated in the ligand–protein interactions were excised
from the multiple sequence alignments and were subsequently submitted to WebLogo3 [64],
with default options, to construct consensus sequences.

2.5. Molecular Visualization

The molecular images were generated using PyMOL Molecular Graphics System,
version 2.5.4, Schrodinger LLC. (Hyderabad, Telangana). PoseView was also utilized for
the two-dimensional (2D) display of protein–ligand interactions [65].

3. Results
3.1. A Transcriptomics-Based Reconstruction of the AML Network Drives the Selection of
Actionable Targets and Corresponding Multi-Targeting Strategies

To select the suitable combinations of targets, we sought to reconstruct a core AML
network, characterize its associated functions, and define its topological and pharmacologi-
cal properties. This information enables us to prioritize the most efficient combinations of
targets and to decide on which multi-targeting strategy would be optimal for their simulta-
neous inhibition, according to their ability to interact or not with already existing drugs. To
this end, we set up the workflow depicted in Figure 1A. As a first step, we compared the
gene expression profiles from 151 AML samples available in the TCGA database versus
the 456 normal blood samples available in GTEx to identify the differentially expressed
genes (DEGs) in leukemic cells versus normal control samples. To reduce heterogeneity
introduced by different RNA sequencing analysis packages, we created the consensus list of
the DEGs that are identified as commonly up- or down-regulated by three methods, namely
edgeR, limma, and DESeq2 [8]. We found 1506 genes that are significantly upregulated in
AML versus normal blood (Table S1). By using HGNC BioMart, we further identified the
type of genes to which the 1506 upregulated transcripts correspond, such as protein-coding,
pseudogene, and non-coding RNA (long non-coding RNA, microRNA, small nucleolar
RNA, and small nuclear RNA). Overall, 1233 DEGs were annotated as PCGs, 239 as ncRNA
genes, 31 as pseudogenes, and 3 as others (Figure 1B).

To investigate which of the products of the 1233 upregulated PCGs interact physi-
cally and/or functionally to make up the core AML network, we analyzed them in the
STRING database. We found that 404 PCGs (Table S1) form PPIs and create a highly inter-
connected network, hereafter termed the ‘AML network’. Gene Set Enrichment Analysis
(GSEA) (Figure 1C–E) showed that these components are strongly associated with cell
cycle, mitotic and DNA metabolic processes, and chromosome organization. They are
also over-represented in molecular functions within the nucleus, such as DNA binding,
ATP-dependent and catalytic activities on DNA, and binding on chromatin and protein-
containing complexes. These results confirmed that proteins involved in cell cycle control
and act on DNA are key components of the AML network and have a prominent role in
AML pathogenesis [66,67].

In the reconstructed network (Figure 2A), the most highly interconnected nodes,
corresponding to hubs, are more relevant to the overall function and integrity of the
network. Intra-modular hubs are central and have the highest number of connections
to the neighboring nodes, whereas inter-modular hubs are intermediate between two or
more modules [68–70]. These hubs are highly significant for network integrity; hence,
their pharmacological inhibition stands higher chances for demolishing the AML network
one-off. To decipher such hubs in the AML network, we performed topological analysis
via Cytoscape. Subsequently, we classified the network hubs based on their ability to be
targeted by existing compounds (Figure 2A). To this end, the corresponding UniProt IDs
for the 404 PCGs were acquired from the UniProt Knowledgebase [40] and juxtaposed
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with the DrugBank data to retrieve the list of drugs potentially targeting the corresponding
proteins. We found that 102 nodes in the AML network (Figures 1B and 2A, red-colored
nodes) are targeted by 607 unique drugs (Table S2). Therefore, multi-targeting for these
proteins can capitalize on the prediction of appropriate combinations of existing drugs. In
contrast, 302 nodes in the AML network were defined as ‘undruggable’ (Figures 1B and 2A,
blue-colored nodes); hence, de novo drug design is essential to achieve their multi-targeting.
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associations. The fifteen selected target proteins are represented by bigger nodes. The three cyclin
proteins that were selected for subsequent de novo multi-target drug design are denoted by a blue
outline. (B) Diagram of the permissible two-drug combinations that can target the highest number
of druggable hubs. The safe combinations appear in green, while those that are associated with
drug–drug interactions are in red. The number of the AML network hubs targeted by each drug alone
is depicted next to each drug name. The number of the targeted hubs for each drug combination is
outlined in the corresponding cell.

3.2. A Greedy Algorithm Predicts Safe Combinations of Approved Drugs for Multi-Targeting of the
Hubs in the AML Network

To predict combinations of existing drugs that can demolish the AML network by
simultaneously interfering with as many druggable proteins as possible, we exploited
a greedy algorithm. This algorithm iteratively selects drugs from the available pool to
maximize the cumulative number of targeted proteins. A custom scoring function was
introduced for each protein in the network, serving as a pivotal component. This scoring
mechanism allowed for ranking the top-15 proteins that could strike an optimal balance
between high connectivity within the network and the efficient targeting of proteins by
a minimal number of drugs. For this purpose, the Python programming language, as
well as the Python libraries pandas and NetworkX were used for data manipulation and
graph analysis, respectively. The algorithm defined 15 hubs, which are the pharmacological
targets of the overall 6 existing drugs (Table 1). These are (a) procaine, that targets the DNA
methyltransferases DNMT1 and DNMT3A [71]; (b) amiodarone, an agonist of PPARA and
inhibitor of the Voltage gated L-type calcium channel proteins CACNB2 and CACNB4;
(c) vismodegib, a well-known competitive antagonist of the SMO (smoothened) G protein-
coupled receptor, which is a component of the Hedgehog signaling pathway [72]; (d) fosta-
matinib, a tyrosine kinase inhibitor targets INSR, WEE1, KIT, and PLK1/4; (e) artenimol, a
derivative of artemisinin, that targets FLNA and RPS8and (f) ponatinib, a multi-targeted
kinase inhibitor, that targets ABL1 and RET. Interestingly, the identified drugs have shown
antileukemic activity in AML cell lines, patient samples, or clinical patients. Furthermore,
the corresponding hubs inhibited by these drugs have shown potential as therapeutic
targets of leukemia based on a number of preclinical and clinical studies (Table 1).

To evaluate combinations of 2 or 3 of these drugs with a favorable safety profile,
we used DrugBank’s drug–drug interaction checker, which allows for up to 5 drugs at a
time to be checked against one another for potential drug–drug interactions and assigns a
relative severity score at culprit pairs. The permissible combinations of 2 drugs appear in
Figure 2B, highlighted in green, while the ones posing a risk for drug–drug interactions
and clinical complications are depicted in red. In detail, there are 7 combinations free
from reportable interactions. Three of them entail vismodegib, which can be safely used
with either fostamatinib, amiodarone, or artenimol (multi-targeting of 6, 4, and 3 hubs,
respectively). Moreover, procaine can be used either with fostamatinib (7 hubs) or ponatinib
(4 hubs). Other combinations with no reportable interactions are artenimol with either
amiodarone or fostamatinib (multi-targeting of 5 and 4 hubs, correspondingly). Among all
permissible two-drug combinations, fostamatinib plus procaine, as well as fostamatinib
plus artenimol, target up to 7 hubs each. Regarding three-drug combinations, two regimens
are predicted to be safe and at the same time target a high number of hubs: vismodegib
plus artenimol and either fostamatinib (multi-targeting of 8 hubs) or amiodarone (multi-
targeting of 6 hubs).



Cancers 2024, 16, 3607 10 of 30

Table 1. Landscape of the role of the identified drugs and their corresponding targets in AML.

Drug Description-Initial
İndication Protein Target Effect of Protein Target in IN AML

Drug Repurposing
Potential for AML (Type
of Data)

A
m

io
da

ro
ne

a class III antiarrhythmic for
the treatment of recurrent

hemodynamically unstable
ventricular tachycardia and

recurrent ventricular
fibrillation.

CACNB2 ND

YES (in vitro) [73].
CACNB4 • CACNB4 downregulates Wnt/β-catenin signalling [74], an important oncogenic signalling

pathway that is associated with AML cancer stem cell phenotype [75].

PPARA • PPARα increased expression suppresses glucose metabolism and eliminates stem and
progenitor cells in AML [76].

A
rt

en
im

ol

active metabolite of
artemisinin and antimalarial

agent for the treatment of
uncomplicated Plasmodium

falciparum infections

FLNA • FLNA regulates rRNA synthesis and cell proliferation in leukemic cells [77].
• A variant of KMT2A-FLNA fusion transcript was detected in an AML patient [78].

YES (in vitro) [79–81].

RPS8

• RPS8 was identified as one of the proteins differentially expressed between pediatric AML
stem cells (AML-SCs) and hematopoietic stem cells [82].

• RPS8 protein levels were downregulated in AML-SCs compared to hematopoietic stem
cells [82].

Fo
st

am
at

in
ib tyrosine kinase inhibitor, for

the treatment of chronic
immune thrombocytopenia
after attempting one other

treatment.

INSR
• INSR codes for the insulin receptor. Insulin promotes the growth of AML blasts and activates

the PI3K/Akt and Erk pathways [83].
• Downregulated INSR expression may be associated with relapse in AML [84].

YES (in vitro, in patient)
[85,86].

KIT KIT-D816 mutations are associated with poor prognosis for AML1-ETO-positive AML patients [87].

PLK1

• Potential therapeutic target in AML.
• PLK1 is overexpressed in AML cases, and high expression is associated with shortened

survival [88].
• A novel oral PLK1 inhibitor (onvansertib) has recently been evaluated for relapsed/refractory

AML in a phase Ib trial [89].
• Onvansertib and decitabine combination is well tolerated and has antileukemic activity

particularly in patients with target engagement and decreased mutant circulating tumor DNA
(ctDNA) following treatment [89].

• Complex karyotype AML was reported to display G2/M signature and hypersensitivity to
PLK1 inhibition [90].
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Table 1. Cont.

Drug Description-Initial
İndication Protein Target Effect of Protein Target in IN AML

Drug Repurposing
Potential for AML (Type
of Data)

Fo
st

am
at

in
ib tyrosine kinase inhibitor, for

the treatment of chronic
immune thrombocytopenia
after attempting one other

treatment.

PLK4

• Potential therapeutic target in AML.
• PLK4 is overexpressed in the TP53-mutant AML subtype and its inhibition induces

antileukemic effects [91].
• Downregulation of PLK4 induces cell apoptosis and G2/M arrest in AML [92].

YES (in vitro, in patient)
[85,86].

WEE1

• Potential therapeutic target in AML.
• WEE1 is a mediator of AML cell survival after cytarabine exposure [93].
• Ex vivo inhibition of WEE1 and CHK1 synergistically enhanced therapeutic efficacy in

AML [94].
• Combination of Wee1 inhibitor and cytarabine enhanced anti-leukemic effects in mice with

AML [95].

Po
na

ti
ni

b

kinase inhibitor, for the
treatment of various types of

CML and Philadelphia
chromosome–positive acute

lymphoblastic leukaemia

ABL1

• BCR-ABL1 fusion transcript is described in an AML case [96].
• AML with t(9;22)(q34;q11), also known as AML with BCR-ABL1, is a rare, provisional entity in

the WHO 2016 classification and is considered a high-risk disease according to the European
LeukemiaNet 2017 risk stratification [97].

• ETV6/ABL1 fusion gene has been reported in some AML cases [98].
• NUP214-ABL1 fusion gene in an AML patient was detected [99].

YES (clinical trial)
Ponatinib showed clinical
activity in AML patients
with FLT3-ITD in a small
phase I study. Regimen
optimization and testing in
larger cohorts is required
[100].

RET

• RET is activated in AML cells; RET-mTORC1 signaling promotes AML through autophagy
suppression [101].

# Autophagy induction through RET inhibition was proposed as a therapeutic strategy
against AML.

# Caution is needed regarding the therapeutic potential of RET, as autophagy may have
opposing roles in oncogenesis, depending on the context.

• In MLL-AF9 translocated AML models, RET was identified, in vitro and in vivo, to be a
potential therapeutic target [102].
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Table 1. Cont.

Drug Description-Initial
İndication Protein Target Effect of Protein Target in IN AML

Drug Repurposing
Potential for AML (Type
of Data)

Pr
oc

ai
ne local anesthetic, used for

peripheral and spinal nerve
block

DNMT1

• A potentially important target in AML.
• DNMT1 is 5.3 fold overexpressed in AML cells compared with the control bone marrow

cells [103].
• A recently characterized DNMT1-specific inhibitor showed better efficacy with improved

tolerability against AML in vitro and in vivo [104].

YES (in vitro) [105]

DNMT3A

• A potentially important drug target in AML.
• Approximately 22% of AML patients harbour DNMT3A mutations affecting translation; these

mutations are enriched in intermediate risk cytogenetic profiles [106].
• DNMT3A-mutated AML patients have shorter overall survival [106].
• Most mutations of DNMT3A are heterozygous affecting the catalytic domain, with R882H

mutations being the most frequently observed ones [107].
• AML cells carrying the R882H mutation have severely reduced de novo methyltransferase

activity and focal hypomethylation at specific CpGs across AML cell genomes [107].
• CpG Island hypermethylation mediated by DNMT3A is suggested to be a consequence of

AML progression [108].

V
is

m
od

eg
ib hedgehog pathway inhibitor,

for treatment of locally
advanced or metastatic basal

cell carcinoma

SMO

• GLI3R is required for the therapeutic effect of SMO antagonists in AML samples [109].
• Component of the Hedgehog signaling pathway, which is implicated in the development,

maintenance, and expansion of leukemic stem cells (LSC) chemosensitivity and drug
resistance [110].

Equivocal (In a phase Ib
clinical trial, vismodegib
monotherapy was
well-tolerated but had
minimal clinical efficacy as
a monotherapy in patients
who had received prior
treatments [111].
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Overall, our approach provided various options for combinations of existing drugs
with the potential to interfere with 3 up to 8 hubs in the AML network. This redundancy
offers flexibility for personalizing treatment by administering to each AML patient a two-
or three-drug combination that is tailored to their clinical condition to achieve the same
therapeutic targeting outcome, that is, to demolish one-off the AML network.

3.3. Molecular Dynamics Simulations Infer Inhibition of DNMT3A by Procaine via an Allosteric
Mechanism of Pharmacological Action

Two of the predicted drug combinations include procaine, a known inhibitor of the
DNA methyltransferase enzymes DNMT1 and DNMT3A, which catalyze DNA methy-
lation, and their activation has oncogenic roles in AML [71]. The currently approved
hypomethylating agents, such as two cytidine analogues, decitabine or azacytidine [112],
are notably toxic in healthy blood cells due to their non-specific mechanism of action.
To address these toxicities, alternative approaches for therapeutic manipulation of DNA
methylation revolve around the development of selective inhibitors of DNA methyltrans-
ferases [104,113,114]. Hence, we turned our attention to procaine, an epigenetic drug that
acts against AML by specifically interfering with DNA methylation.

Since the mechanism of pharmacological action of procaine on DNA methyltrans-
ferases has not been elucidated, we further performed a detailed analysis of how procaine
could interact with its identified targets. DNMT1 and DNMT3A are canonical cytosine-
5 DNMT enzymes that catalyze the addition of methylation marks to genomic DNA.
DNMT3A acts as de novo methyltransferase, i.e., it preferentially binds to non-methylated
DNA and generates new methylation patterns, while DNMT1 is a maintenance methyl-
transferase that binds to hemi-methylated DNA during DNA replication and sustains
inheritable DNA methylation [113,115] (Figure 3A). Therefore, DNMT3A is a particularly
crucial target since it functions at the rate limiting step of DNA methylation. For this
reason, we focused on the binding dynamics between procaine and functional regions
of DNMT3A (Figure 3B, bottom). We exploited ligand docking and atomistic molecular
dynamics (MD) simulations to predict how atoms in DNMT3A would move over time in
response to procaine. This computational method offers the opportunity to capture the
position and motion of every atom at every point in time, which would be otherwise very
difficult to address with experimental techniques [116].
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Figure 3. Molecular simulation of the mode of action of procaine on DNMT3A. (A) DNMT1,
DNMT3A, and DNMT3B are canonical cytosine-5 DNMTs that catalyse the addition of methylation
marks to genomic DNA. DNMT3A/DNMT3B are de novo methyltransferases, i.e., they preferentially
bind to non-methylated DNA and generate new methylation patterns, while DNMT1 is a mainte-
nance methyltransferase that binds to hemi-methylated DNA during DNA replication and mediates
inheritable DNA methylation. The S-Adenosyl-L-homocysteine (SAH) is formed by demethylation of
the cofactor S-Adenosyl-L-methionine (SAM). SAH is a potent inhibitor of DNA methylation by se-
lectively binding to the active site of DNMTs, thereby preventing methyl groups from being added to
the DNA template. (B–G) Molecular simulations of DNA-bound DNMT3A in procaine. (B) DNMT3A
(green) bound to DNA (orange). The cofactor SAH is in red spheres in the top model. The bottom
model illustrates the possibilities (indicated by “?”) by which procaine could be interacting with
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DNMT3A. (C) Ensemble of the molecular conformations of procaine as predicted by SwissDock to
bind DNMT3A most favorably. (D) The snapshots of the active site procaine 1st (ASP1) simulation
with initial (time = 0), midpoint (time = 250 ns), and final (time = 500 ns) states from the apoenzyme
simulation. DNMT3A (green) bound to DNA (orange). The cofactor SAH is replaced by one copy
of procaine (blue), which departs this position at the end of the simulation. (E) For the active site
procaine 1st (ASP1) simulation, residues that make strong contacts with procaine are indicated in
shades of red (red refers to the strongest interaction). (F) The snapshots of the excess procaine 1st
(EP1) simulation with initial (time = 0), mid-point (time = 250 ns), and final (time = 500 ns) states
from the SAH-bound enzyme in 0.07 M procaine. (G) Following panel E, strong procaine contacts are
indicated for excess procaine 1st (EP1) simulation.

To this end, we investigated the binding of procaine to DNMT3A in the presence or
absence of SAH by preparing two atomistic simulations: (a) the SAH-free DNMT3A, i.e.,
apoenzyme, bound to procaine at its crystallographically identified SAH-pocket, and (b) the
SAH-bound enzyme (again in its crystallographically identified pocket) in an environment
containing excess procaine. The temperature and pressure were kept constant, and the
atomic coordinates were recorded every 100 ps. The respective MD simulation trajectories
are recorded in Videos S1 and S2. To compare with the MD outcomes, the most favorable
binding pockets of procaine on the DNMT3A surface were identified using also unbiased
molecular docking [44,117]. The active site of DNMT3A, in close proximity to which SAH
is known to reside, was identified as the preferred binding pocket by Swissdock (Figure 3C).
This finding suggests a potential interaction between procaine and the crucial catalytic site
of the enzyme, which we subsequently tested using MD.

Starting with the active site of DNMT3A occupied by procaine instead of SAH, sub-
microsecond active site procaine 1st (ASP1) MD simulation was performed (Figure 3D,
left panel, also see Section 2). Contrary to the docking prediction, procaine abandons the
SAH pocket (Video S1; Figure 3D, right), relocating to an alternative region on the outer
enzyme façade (Figure 3E). Subsequent to the initial simulation, the active site procaine
2nd (ASP2) MD simulation reveals that procaine exhibits some displacement (Figure S1A)
but remains close to the SAH-binding pocket, albeit primarily with the help of nonspecific
contacts with the DNA (Figure S1B). In the active site procaine 3rd (ASP3) MD simulation
replicate, procaine exits the SAH pocket and translocates to a region proximal to the alpha-
helix structure in DNMT3A (Figure S1C), eventually stabilizing in a region on the DNA
(Figure S1D). The hypothesis derived from these observations suggests that procaine could
modulate the activity of DNMT3A allosterically via interacting with distal sites. In order
to examine the existence of other allosteric sites on DNMT3A, a second sub-microsecond
excess procaine 1st (EP1) simulation was run, in which excess procaine was added to
the solvent environment and SAH was reinserted into its binding pocket (Figure 3F).
Throughout the entire simulation, SAH remains bound within the active site of DNMT3A,
emphasizing its critical role in enzymatic function (Video S2). Procaine molecules map out a
small number of distinct loci on the exposed surface of the enzyme, all spatially very distant
from the active site (Figure 3G). In the atomistic simulation procedures, steps involving
excess procaine 2nd (EP2) and 3rd (ES3) atomistic simulations were performed. Excess
procaine molecules were integrated into the solvent environment, while SAH continues to
exhibit stable binding within the active site (Figure S1E,G). Individual procaine molecules
establish robust interactions at various external sites of DNMT3A, as illustrated in Figure
S1F,H. Considering the inhibitory role of procaine in DNMT3A activity, these sites could be
implicated in allosteric modulation mechanisms on the protein–ligand interaction landscape
of DNMT3A. These MD results indicate that procaine strongly interacts with DNMT3A,
albeit at distal sites from its catalytic site, suggesting a potentially allosteric mechanism of
inhibition. Furthermore, even at high concentrations, procaine does not preferentially bind
to the pocket occupied by SAH, indicating that a competitive binding between SAH and
procaine is not likely.
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Furthermore, the root mean square deviation (RMSD) (Figure S2A) and root mean
square fluctuation (RMSF) metrics (Figure S2B) used in the MD simulation analyses revealed
consistently stable conformations for each replicate of the MD simulations of DNA-bound
DNMT3A in procaine, in the presence or absence of the cofactor SAH.

3.4. De Novo Design of a Novel Multi-Targeting Agent against Undruggable Hubs of the
AML Network

A large amount of the hubs of the reconstructed AML network (302 of 404, 74.75%)
do not interact with existing drugs. As long as these hubs remain undruggable, they
offer opportunities for rewiring to circumvent therapeutic perturbations of the network.
Therefore, they represent a source for generating compensatory mechanisms that could
support relapse and/or resistance to therapy. Novel compounds need to be developed
‘from scratch’ against these hubs. Therefore, we sought to design a multi-targeting agent
that could simultaneously interact with more than 2 of the identified undruggable hubs.
According to GSEA analysis, the undruggable hubs are prominently associated with cell
cycle processes (Table S3). Based on this finding, it is plausible to envisage that an agent
with the potential to interfere with cell cycle regulators that are highly interconnected in
the network could secondarily impact many other functionally related hubs, theoretically
achieving a ‘domino-effect’ that would lead to the annihilation of the AML network.

Among the undruggable hubs that are over-represented in cell cycle regulation, we
spotted three members of the cyclin family, namely cyclins A1, E1, and D2 (CCNA1, CCNE1,
and CCND2, correspondingly), which regulate key phases of cell cycle and have been pro-
posed as promising therapeutic targets for haematological cancers (Figure 4A) [118–122]).
As CCNA1, CCND2, and CCNE1 are highly interconnected, with 15, 8, and 13 edges
correspondingly (Figure 2A), their simultaneous targeting would possibly be propagated
across other hubs, eventually impairing the integrity of the AML network. Proteins that
belong to the same family have better chances to be targeted by a single compound due to
their sequence and structural similarities [18].

We performed structure-based de novo computer-aided drug design for a ligand
compound that is able to target all three cyclins. First, we obtained the 3D structures of
the human cyclin targets. The structure of the human CCNE1 protein is experimentally
resolved and was retrieved from the RCSB PDB [54]. For the structures of human CCNA1
and CCND2, which remain experimentally unresolved, we performed in silico prediction
from their primary amino acid sequences using AlphaFold [55]. Then, these structures
were used as an input to LigBuilder V3 [56,123]. This software constructs novel chemical
compounds by relying on a genetic algorithm that resembles the evolution of a population
affected by natural selection. The constructed ligands were subsequently evaluated based
on several criteria, including: (a) the lock-key model, which can assess the protein–ligand
conformational complementarity; (b) calculation of the ligand–protein binding affinity,
using the predicted ligand’s average binding affinity for each target; (c) possession of
certain physicochemical features that enable protein–ligand chemical specificity through
the receptor binding pocket; and (d) synthesizability of the novel ligand compound [123].
We further assessed the drug-likeness of the ligand by implementing relevant functional
modules, such as toxic fragment filtering and Lipinski’s rule of five (RO5) [124], i.e.,
molecular weight (MW), polar surface area (PSA), rotatable bonds (RB), hydrogen bond
acceptors (HBA), hydrogen bond donors (HBD), and LogP.

In this way, (2S)-2-[5-(2-anilino-2-oxoethyl)furan-3-yl]-2-hydroxypropanoic acid with
the C15H15NO5 chemical formula and 289.29 g/mol molecular weight was identified as
the best scoring drug-like compound targeting CCNA1, CCND2, and CCNE1 among five
candidate compounds (Figure S3). Interestingly, only the S enantiomer was identified,
while R did not appear in the list of constructed ligands, implying that the interaction with
the target proteins is likely stereo-specific. This de novo designed potential multi-targeting
agent is hereafter termed a ‘novel ligand’ (Figure 4B).
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Figure 4. Development of a drug-like ligand to target three cyclins simultaneously. (A) Cyclins
A1, D2, and E1 are key hubs of the AML network. Complexes of these cyclins with their CDK
partners regulate key processes during the cell cycle. CDK4/6/cyclin D complexes act in phase G1,
and CDK2/cyclin E complexes act when G1/S transition takes place. The CDK2/cyclin A complex
regulates progression through the S phase and the CDK1/cyclin A complex through the G2 phase in
preparation for mitosis (M). (B) Chemical structure of the triple-targeting cyclin protein ligand that
was generated by LigBuilder V3.

3.5. The Novel Ligand Exhibits Drug-like Features and Lacks Toxicity

To be considered as a drug candidate, a chemical compound should exhibit pharma-
cokinetic properties including absorption, distribution, metabolism, and excretion (ADME).
Moreover, it should have minimal toxicity potential on vital tissues. In this regard, we tested
whether the novel ligand exerts essential ADME properties. By employing SwissADME,
we found that the novel ligand possesses favorable pharmacokinetic and drug-likeness
properties, such as high gastrointestinal absorption, no blood–brain barrier (BBB) perme-
ability or violation of RO5, and a high bioavailability score of 0.56 (56%) (Figure S4A).
Furthermore, using the online tool pkCSM [58], we investigated the following toxicity
parameters: (a) AMES toxicity, that is an indicator of the mutagenicity of the chemical;
(b) the maximum dose of the compound tolerated by humans, where 0.477 log(mg/kg/day)
is the threshold toxic dose; (c) minnow toxicity, which represents the concentration of the
compound required to cause death of 50% of fathead minnows; a molecule having an
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LC50 value less than 0.5 mM is considered to be acutely toxic in nature, a skin irritant, and
tumorigenic with effect on the reproductive system. Our analysis predicted that the novel
ligand is non-mutagenic, non-hepatotoxic, and non-irritant, while the dose range of the
compound is considered non-toxic for humans and minnows (Figure S4B), as it would
induce toxicity only at elevated doses.

3.6. Feasibility of Synthesis of the Novel Ligand

The LigBuilder V3 predicted that the novel ligand, namely (2S)-2-[5-(2-anilino-2-
oxoethyl)furan-3-yl]-2-hydroxypropanoic acid (1), is synthesizable. Scheme 1a) shows
a simple retro synthetic analysis of the cyclin kinase inhibitors. The compound can be
in principle prepared from four different building blocks as starting materials, namely
furan derivatives, aniline derivatives, hydroxyaldehyde, and α-keto acids. All of these
compounds are commercially available with various substituents. To demonstrate this, we
provide as an example a synthetic strategy to obtain the lead structure, namely (2S)-2-[5-(2-
anilino-2-oxoethyl)furan-3-yl]-2-hydroxypropanoic acid (1), where R1 = Me, n = 1, R2 = H
(Scheme 1b).

An effective synthesis of 1 could start with 3-bromo furan and tert-butyl pyruvate;
both are compounds that are commercially available or can be prepared by readily available
starting materials. It seems feasible that the pyurate could also be replaced with the tert-
butyl esters of other α-keto acids, e.g., 2-keto butyric acid, which would allow variability of
the alkyl substituent R1. The 3-bromo furan would then first be converted to a Grignard
reagent, to which the pyruvate is added, resulting in the tertiary alcohol. Stereoselectivity
can be controlled by the addition of titan or copper compounds in combination with chiral
ligands [105,106]. For further transformation, the alcohol group of 3 should be protected,
for example, in the form of silyl ether (4). It should then be possible to halogenate the furan
moiety at the 2 position. The halogenated derivate 5 can be coupled with 2-(bromomethyl)-
1,3-dioxolane (6), a commercial reagent that re-ensembles a protected glycolaldehyde. For
the C-C coupling between 5 and 6, the latter can be converted to a Grignard reagent
using magnesium and added to 5 in the presence of Iron salts as catalysts [125]. If the
product 7 is obtained, the acetal could be hydrolysed using dilute acid. This step most
likely needs to be carefully optimized to not hydrolyse the tert-butyl ester group, and
if desired, we also propose the addition of fluoride ions to deprotect the alcohol group.
Successful hydrolysis of the acetal in 7 would then result in a free aldehyde that can be
oxidized to the carboxylic acid. Methods for this transformation under mild conditions are
already in place [126–129]. The carboxylic acid 8 could be then converted into 1 by reacting
with aniline. Conversion should be feasible under mild conditions using typical coupling
reagents like dicyclohexylcarbodiimide and others [130–132].

It should be stressed out that, as is the case for any novel chemical compound, the
protection strategy of the functional groups is experimentally feasible. It is also needed to
be experimentally tested whether the first step of the chemical reaction can be performed
in a stereoselective manner. In vivo aspects of the compound, including its half-life in the
human body, its administration and metabolic routes, and its pharmacokinetic and pharma-
codynamic properties, should also be comprehensively validated in experimental mouse
models. Nevertheless, herein we show that retrosynthetic experiments for generating the
novel ligand are feasible to start from easily accessible materials.
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3.7. Molecular Docking Predicts Interaction of the Novel Ligand with Highly Conserved and
Functionally Important Residues of the Cyclin Proteins

Cyclins have divergent sequences and fulfil diverse functions across the cell machinery.
They typically function as cyclin-dependent protein kinase (CDK) activators during cell
cycle regulation but may also exert CDK-independent functions [133]. Therefore, we
further wondered whether the novel ligand affects regions on the target proteins that are
important for their functions, such as amino residues that are involved in the cyclin–CDK
interactions. In this regard, we performed molecular docking simulations via AutoDock
Vina [59] to map the region(s) of the human CCNE1, CCND2, and CCNA1 where the ligand
binds, as well as to estimate the corresponding binding affinities. Given that LigBuilder V3
applies a simple empirical scoring function for calculating the affinities of the ligand–target
protein interactions, these simulations serve as an additional line of validation of the novel
ligand. The predicted pKd values of the ligand affinity to the proteins CCNE1, CCND2,
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and CCNA1 are −6.8, −6.2, and −6.4, respectively, indicating that the ligand binds to its
target proteins and forms relatively strong interactions with them, in agreement with the
LigBuilder predictions. The best docked poses of the ligand compound against cyclins are
shown in Figure 5A–C.
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The human protein sequences for CCNA1, CCND2, and CCNE1 were submitted to
the NCBI’s Conserved Domains Database (CDD) [63] to identify protein domains and
functionally important residues based on position-specific score matrices. Moreover, given
that functionally important amino acids tend to be conserved across species, we further
evaluated the interfaces on which the ligand is predicted to be bound for signs of conser-
vation. To this end, we compared the primary sequences of the human CCNE1, CCND2,
and CCNA1 versus the protein products of their orthologous genes in vertebrate species
with well-annotated genomes, namely Macaca mulatta, Equus caballus (Horse), Monodelphis
domestica (Opossum), Ornithorhynchus anatinus (Platypus), Gallus gallus (Chicken), Ano-
lis carolinensis (Lizard), Xenopus tropicalis (Frog), and Danio rerio (Zebrafish). Following
multiple sequence alignments, the motifs harbouring the residues that mediate the ligand–
protein interactions were excised and used to construct consensus sequences (Figure 5D–F).
Overall, we found that for CCNE1, the ligand specifically interacts with the amino acids
Asn236, Gln240, Tyr255, and Asn344 in the C-terminus of the cyclin-like domain (Figure 5D).
These residues are invariant across examined species, whereas Tyr255 is substituted by an-
other highly conserved aromatic amino acid, phenylalanine, in the Xenopus laevis sequence
(Figure S5). Moreover, Asn236, Gln240, and Tyr255 have a critical role in the CDK–cyclin
interface, according to the NCBI CDD database [134], suggesting that these residues could
be involved in the cyclin–CDK interaction. The CCNA1 interacts with the ligand through
the amino acids Gln346, Leu349, and Gln350, which reside in the C-terminal domain. Of
those, Gln346 and Gln350 remain unchanged across species, whereas Leu349 is replaced
by the fellow hydrophobic methionine in Zebrafish (Figures 5E and S5). Furthermore,
Leu349 and Gln346 were found to reside in the CDK–cyclin interface, suggesting an in-
volvement in the CCNA1–CDK physical interaction (Figures 5E and S5). Regarding the
interacting residues in CCND2, the ligand binds to four amino acids in the N-terminal
domain. These are three invariant Ala14, Leu21, and Lys113 amino acids, as well as one
not conserved residue, Arg16, without any predicted role in the structure or function of
CCND2 (Figures 5F and S5).

4. Discussion

Recurrence of AML could be prevented by targeting the tendency of networks to
establish interactions with alternative hubs in order to circumvent therapeutic perturba-
tions of single targets. In this regard, a paradigm shift is emerging from single-target
therapies to the design of multi-target approaches. Simultaneous inhibition of different
molecules [15,135,136] is expected to demolish the cancer network one-off and, hence,
tackle compensatory network rewiring. Novel multi-targeting agents [18] and drug com-
binations [137] are the two main strategies for orchestrated pharmacologic targeting and
modulation of multiple proteins [136]. Consistently, in this study we established and
applied a computational systems biology workflow to identify AML-enhanced proteins
that could be inhibited via multi-targeting strategies. Transcriptomics-based reconstruc-
tion of the network underlying AML enabled the identification and assessment of targets
and drugs with well-balanced profiles between efficacy and safety. Identification of the
topological and pharmacological features of the network was followed by the development
of distinct multi-targeting strategies, depending on the ability of hubs to be targeted by
existing drugs or not. By incorporating diverse computational methods, we developed
two parallel sub-pipelines for drug discovery: for druggable hubs, we predicted the op-
timal combinations of already approved drugs; for rationally selected undruggable hubs
(which cannot be targeted by existing drugs), we designed a novel agent that targets all of
them simultaneously.

For druggable components, we found that amiodarone, artenimol, fostamatinib, pona-
tinib, procaine, and vismodegib can be safely combined in 7 dual drug-regimens and
2 triple-drug regimens for multi-targeting perturbation of the AML network. The redun-
dancy of the specific drug combinations offers alternative options for treatment personal-
ization based on the clinical status of each patient. For instance, given that several AML
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patients may experience neurological implications and neuropathic pain, the predicted
procaine-containing combinations could be considered for both, relieving neuropathic
symptoms [138], but also for possibly delaying disease recurrence. On a similar note,
considering that several AML patients experience treatment-induced cardiovascular dis-
eases [139], the predicted amiodarone-containing regimens may hold promise to exert
antileukemic effects while, at the same time, offering prophylaxis from cardiac complica-
tions [140]. It is noteworthy that the identified drugs have shown antileukemic activity and
repurposing potential for AML in preclinical and/or clinical studies (Table 1), a finding that
confirms the prediction accuracy of our established workflow. Furthermore, the use of a
greedy algorithm enabled us to minimize the number of these drugs that target a maximum
number of hubs to avoid the potential risk for polypharmacy-related complications. To the
best of our knowledge, this is the first time to use a greedy algorithm to identify optimal
combinations of drugs and therapeutic protein targets. Future experimental testing of these
combinations will comparatively estimate their efficacy to annihilate the AML network.

As the mode of action of most of the abovementioned drugs on their identified
protein targets is unknown, we got a glimpse into the pharmacological mechanism of
procaine against DNMT3A by using a combined approach of docking and MD simulations.
The selection of the drug–target pair was particularly motivated by the current intense
pharmacological interest for the development of specific DNMT inhibitors in replacement
of the currently used but toxic cytidine analogs [112]. We found that the procaine-induced
inhibition could occur through allosteric regions of the enzyme rather than a chemical
competition with the cofactor SAH. This prediction can be experimentally tested via a
double-titration assay including procaine and SAH. Finally, the differences between docking
versus MD-predicted binding modalities of procaine are noteworthy. This highlights the
importance of the energetic contributions due to the inherent flexibilities of the ligand
and the enzyme, as well as the delicate chemical interactions in an explicitly represented
solvent environment.

Regarding the undruggable targets, we performed in silico drug design, whereby the
newer version 3 of the LigBuilder software was used, combined with protein structure and
conservation predictions. This pipeline led to the generation of a novel small-molecule
ligand for three different cyclins. The de novo compound appears to exhibit drug-like
features, including favorable pharmacokinetic properties and synthesis accessibility, while
it is predicted to lack toxicity. Further integration of molecular docking with phylogenetic
analyses revealed that the novel agent is likely to bind to distinct, albeit highly conserved
and/or functionally important residues in all three cyclin proteins. Whether this ligand
holds promise to show antileukemic effects in vitro and in vivo and/or ability to overcome
resistance to AML monotherapies remains to be experimentally tested in leukemia cell lines
and mouse AML models. Future experiments are anticipated to validate the mechanism of
action, test whether the novel agent can efficiently and safely kill leukemic cells through
inhibition of cyclins, and subsequently determine whether this agent holds promise to
become the first triple-targeting agent against AML.

Overall, we developed two distinct multi-targeting approaches: repurposing of com-
binations of existing drugs and design of drug-like compounds de novo. Each strategy
presents its own advantages and limitations. In particular, drug repurposing expects that
existing dossiers of preclinical and clinical information will shortcut expeditious regulatory
approval for a new indication, thereby decreasing drug development costs and maximizing
clinical utility of the repurposed molecule. However, there are several industrial concerns,
such as a clear commercial value proposition, intellectual property, and clinical equipoise,
which can complicate the materialization of repurposing for actual clinical use [141]. As
far as de novo drug design is concerned, past experience has taught us that generating
new compounds from scratch is time-consuming, cost-ineffective, and often linked to high
failure rates when forwarded in clinical trials [142]. Nevertheless, artificial intelligence
(AI) tools hold promise to generate new chemical entities with desired and customizable
features, including aspects of toxicity and pharmacokinetic properties. Computer-aided
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generation of compounds with a priori designed pharmacological properties may have
higher chances for reducing side-effects and/or achieving consistency of preclinical and
clinical studies. Overall, if used together, the two strategies could complement each other
toward precision medicine for AML. Computational approaches are already streamlining
the development of novel therapeutics [142,143]. Synergies of computational methods with
experimental testing can markedly improve design–make–test–analyze cycles involved
in drug discovery [142], and eventually result in safe multi-targeting approaches that
circumvent primary and secondary resistance and improve patient survival.

5. Conclusions

In the present study, network pharmacology guided the in silico identification and
characterization of targets and drugs with well-balanced profiles between efficacy and
safety. An integrative systems biology approach was applied to reposition already approved
compounds for potential AML treatment in two- or three-drug combinations. We also
discovered a new drug-like compound that potentially targets three AML-relevant cyclin
proteins. As cyclins represent attractive drug targets by being the primary regulators of the
passage of cells through the cell cycle, this drug-like molecule could be further exploited in
future pharmaceutical research endeavors for developing efficient cyclin-targeting drugs.
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snapshots of the active site procaine 3rd (ASP3) simulation with initial (time = 0), mid-point (time =
250 ns), and final (time = 500 ns) states from the apoenzyme simulation. DNMT3A (green) is bound
to DNA (orange). The cofactor SAH is replaced by one copy of procaine (blue), which departs this
position at the end of the simulation. (D) Following panel B, strong procaine contacts are indicated
for active site procaine 3rd (ASP3) simulation. (E) The snapshots of the excess procaine 2nd (EP2)
simulation with initial (time = 0), mid-point (time = 250 ns), and final (time = 500 ns) states from
the DNMT3A (green) bound to DNA (orange) and SAH (red)-bound enzyme in 0.07 M procaine
(blue). (F) Following panel D, strong procaine contacts are indicated for excess procaine 2nd (EP2)
simulation. (G) The snapshots of the excess procaine 3rd (EP3) simulation with initial (time = 0),
mid-point (time = 250 ns), and final (time = 500 ns) states from the DNMT3A (green) bound to DNA
(orange) and SAH (red)-bound enzyme in 0.07 M procaine (blue). (H) Following panel F, strong
procaine contacts are indicated for excess procaine 3rd (EP3) simulation; Figure S2: RMSD and RMSF
analysis in the MD simulation (A) RMSD analysis on the MD trajectory and (B) RMSF profiles per
residue for DNMT3A; Figure S3: The structurally related agents de novo generated with LigBuilder
V3; Figure S4: Screenshot of the output of (A) SwissADME and (B) pkCSM; Figure S5: Alignment
of the homologous CCNE1, CCNA1, and CCND2 protein sequences. The amino acids are colored
based on their conservation scores; Video S1: MD simulation trajectory of the DNMT3A (green) in
complex with DNA (orange), with procaine (blue) docked into the SAH binding pocket; Video S2:
MD simulation trajectory of the DNMT3A (green) in complex with DNA (orange), in the presence of
SAH (red), in a procaine (blue) environment Data.
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