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Simple Summary: Currently, pathologists use ultrastaging to detect whether cancer has spread to
the lymph nodes. This process is time-consuming and expensive. Our pilot study explored the use of
a deep learning algorithm to help detect cancer spread to lymph nodes of early-stage cervical cancer
patients. Using this technology could make the detection process faster, more efficient, and less costly.
We evaluated an algorithm that was originally designed to identify cancer spread to lymph nodes
in breast and colon cancer in cervical cancer patients. The study included 21 women with different
types of early-stage cervical cancer. The algorithm was used to analyze 47 lymph node samples and
successfully identified all cases where cancer had spread, showing 100% accuracy. Although the
algorithm was initially developed for other cancers, it proved highly effective in this new population.
More prospective research in a larger group of patients is needed to confirm its cost-effectiveness.

Abstract: Background/objectives: Pathological ultrastaging, an essential part of sentinel lymph
node (SLN) mapping, involves serial sectioning and immunohistochemical (IHC) staining in order
to reliably detect clinically relevant metastases. However, ultrastaging is labor-intensive, time-
consuming, and costly. Deep learning algorithms offer a potential solution by assisting pathologists
in efficiently assessing serial sections for metastases, reducing workload and costs while enhancing
accuracy. This proof-of-principle study evaluated the effectiveness of a deep learning algorithm
for SLN metastasis detection in early-stage cervical cancer. Methods: We retrospectively analyzed
whole slide images (WSIs) of hematoxylin and eosin (H&E)-stained SLNs from early-stage cervical
cancer patients diagnosed with an SLN metastasis with either H&E or IHC. A CE-IVD certified
commercially available deep learning algorithm, initially developed for detection of breast and
colon cancer lymph node metastases, was employed off-label to assess its sensitivity in cervical
cancer. Results: This study included 21 patients with early-stage cervical cancer, comprising 15 with
squamous cell carcinoma, five with adenocarcinoma, and one with clear cell carcinoma. Among these
patients, 10 had macrometastases and 11 had micrometastases in at least one SLN. The algorithm was
applied to evaluate H&E WSIs of 47 SLN specimens, including 22 that were negative for metastasis,
13 with macrometastases, and 12 with micrometastases in the H&E slides. The algorithm detected all
H&E macro- and micrometastases with 100% sensitivity. Conclusions: This proof-of-principle study
demonstrated high sensitivity of a deep learning algorithm for detection of clinically relevant SLN
metastasis in early-stage cervical cancer, despite being originally developed for adenocarcinomas of
the breast and colon. Our findings highlight the potential of leveraging an existing algorithm for use
in cervical cancer, warranting further prospective validation in a larger population.
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1. Introduction

Lymph node involvement is the most important prognostic factor in early-stage cer-
vical cancer and influences therapy decisions [1]. To assess nodal involvement, sentinel
lymph node (SLN) biopsy and subsequent pathological processing according to the ultra-
staging protocol is recommended in early-stage cervical cancer [2]. Ultrastaging, consisting
of serial step sectioning at multiple levels and immunohistochemical staining, is accurate
for detecting low volume disease, defined as either micrometastasis or isolated tumor
cells, but is a labor-intensive and expensive procedure [3–5]. In addition, with a risk of
around 18% for nodal involvement in this population, only about 20% of the metastases are
exclusively detected by ultrastaging [6]. With a median of two SLNs per patient, numerous
SLNs must be processed for one additional finding of metastasis [7]. Consequently, the
cost-effectiveness of ultrastaging is still debated and leaves room for other technologies.

Recently, artificial intelligence (AI)-based algorithms have been developed offering
automated detection of metastases in whole slide images (WSIs) of SLNs. This technology
potentially reduces the pathologists’ workload while increasing efficiency, diagnostic accu-
racy, and reproducibility [8]. Furthermore, an algorithm aiding the pathologist in screening
the hematoxylin and eosin (H&E) sections may reduce the need for immunohistochemistry
(IHC) and could benefit the cost-effectiveness of ultrastaging. AI algorithms for detection of
nodal metastases in breast cancer have shown to be comparable, or even superior, to a panel
of pathologists in a simulated environment [9,10]. In a real-life clinical setting, the best
diagnostic accuracy and highest efficiency may be reached when pathologists are assisted
by AI-based algorithms [11,12]. Also, a recent clinical trial in breast cancer showed that
the use of immunohistochemistry and subsequent SLN processing costs were significantly
reduced for AI-assisted pathologists [13].

To the best of our knowledge, a deep learning algorithm for detecting nodal metastases
in cervical cancer has not yet been developed. For creation and validation of new algorithms,
large training and validation sets are needed. Although the histological characteristics
may differ, as the majority of the cervical cancers are of squamous cell origin, the certified
algorithms for breast cancer might also adequately detect nodal metastases in cervical
cancer since they seem to detect anything not belonging in lymph nodes, potentially saving
significant cost and time [13].

In this proof-of-principle study, we aimed to retrospectively assess the standalone
performance of an existing deep learning application, certified to detect SLN metastases
of breast and colon adenocarcinomas, for the detection of SLN metastases in early-stage
cervical cancer. Our main objectives were to assess its sensitivity and to evaluate if this
algorithm has the potential to be used outside the certified tumor range.

2. Materials and Methods

Patients were identified from a database with histologically proven cervical cancer
patients who underwent primary surgery, including SLN procedure. This study included
the early-stage cervical cancer patients diagnosed with SLN metastases, either macrometas-
tasis (>2 mm) or micrometastasis (>0.2 mm and ≤2 mm) detected with either H&E or IHC,
upon surgical lymph node staging from January 2015 to October 2023. Of these patients,
we retrospectively collected all WSIs of H&E-stained SLN specimens to be reviewed by
the algorithm. Excluded were patients with a finding of isolated tumor cells only, as the
clinical value of this finding is disputed, or patients who objected against the reuse of their
health care data for scientific research (as reported in their medical records). By including
only patients with at least one positive SLN, we eliminated the risk of ambiguity if a case
previously assessed as negative for metastasis would now be assessed as positive by the
algorithm-supported pathologist. By selecting this subset of patients, no risk of an inferior
diagnosis (i.e., missed tumor cells at prior diagnosis) existed. Ethics approval was waived
for this retrospective cohort study. In this work, the study presented in [14] is revised
and expanded.
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All excised SLN specimens were routinely processed according to the ultrastaging
protocol as previously described [7]. In 2015, we implemented a fully digital diagnostic
workflow in which all slides were digitized as WSIs by Hamamatsu XR Nanozoomer 2.0 and
S360 scanners (Hamamatsu Photonics, Hamamatsu City, Japan) at 40× magnification and
reviewed using Sectra’s Picture Archiving and Communication System (PACS, Sectra AB,
Linköping, Sweden) [15]. The included SLNs were categorized as negative, micrometastasis,
or macrometastasis based on the largest tumor deposit identified at diagnosis by either
H&E or IHC, as part of the clinical standard of care. This upfront diagnosis was considered
the reference standard. If the area of metastasis had not yet been annotated by a pathologist
at the WSI level at diagnosis, this was performed retrospectively by a pathologist (P.J.v.D.).
Samples with metastases detected during the frozen section procedure were also included
in this study.

All H&E WSIs were reviewed by the Conformité Européenne-in vitro diagnostics
(CE-IVD)-certified Metastasis Detection App (version 2023.01.09) by Visiopharm (Hoer-
sholm, Denmark), a deep-learning application developed to detect lymph node metastases
from adenocarcinomas of breast cancer and colon cancer. This application was integrated
within Sectra PACS where the output of the algorithm was graphically displayed. Details
on the workflow of the app have been described before [12,13]. In summary, the Metastasis
Detection App by Visiopharm marks suspicious cells with either red (high suspicion),
orange (intermediate suspicion), or yellow (low suspicion) outlines. According to Visio-
pharm, the probability of a region being metastasis is based on the probability distribution
generated by the neural network’s softmax function. The application provides results at
the 95%, 80%, and 50% operating points, corresponding to red, orange, and yellow outlines.
The best balance between sensitivity and specificity occurs at the 95% operating point (red
outlines). The largest area of metastasis is indicated in mm2 and the largest length in mm
(also see Figure 1). In this study, all outlined areas (either red, orange, or yellow) were
considered equal as the most important aspect within an AI-assisted workflow is that the
pathologist’s attention is drawn to the tumor area, regardless of the level of suspicion.

The primary outcome was the standalone performance of the algorithm for detecting
nodal metastases. Assessing performance consisted of checking whether the confirmed
areas of metastases (by a pathologist), either on the H&E slides or IHC slides, were an-
notated by the algorithm on the H&E slides, covering the same area either partially or
entirely, as the key parameter was that the pathologist’s review should be guided to this
area (see Figure 2). This outcome was made binary: metastases were either correctly
annotated (regardless of color and diameter), or they were not. The annotations by the
algorithm were reviewed by a researcher (I.G.T.B.) and pathologist (P.J.v.D.) and compared
to the reference annotations made by pathologists at diagnosis. In case of an apparent
false-negative finding with the algorithm, a second pathologist reviewed the slides (G.N.J.).
The standalone performance of the algorithm was expressed by its sensitivity for detection
of SLN metastases: true-positive SLNs/(true-positive SLNs + false-negative SLNs). True
positives were defined as an annotation by the algorithm (entirely or partly) corresponding
to the area where malignant cells were detected by the pathologist, regardless of the color
of its outline or size. False negatives were defined as a missing annotation by the algorithm
in an area where malignant cells were detected by the pathologist. The presence of isolated
tumor cells was disregarded in this study (thus missing ITC by the algorithm was not
deemed as a false negative). The secondary outcome was the number of annotations made
by the algorithm, as this defines the workload of the pathologist in real life. The number of
annotations and corresponding confidence levels per slide were automatically extracted
from the application, aggregated, and presented in an Excel spreadsheet. Inherently to
selecting a subset of patients with proven nodal metastasis at diagnosis, we could not assess
the false-negative rate of the algorithm in a complete population of cervical cancer patients.

Clinical, histopathological, and surgical data on the included patients were extracted
from the existing database. Categorical data were summarized as frequency and percentage,
and continuous variables were summarized as medians and ranges. Only descriptive
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statistics were performed in this proof-of-principle study. Analyses were performed using
the Statistical Package for the Social Sciences version 26.0.0.1 (SPSS; International Business
Machines, Armonk, NY, USA) and Microsoft Excel 2016 (Microsoft, Redmond, WA, USA).
The original output of PACS and Visiopharm was used for composing the figures, leaving
the annotations as posted by the pathologist or the algorithm, respectively.
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Figure 1. Output of a deep learning algorithm applied to H&E WSIs of sentinel lymph nodes
in early-stage cervical adenocarcinoma and squamous cell carcinoma with correct detection of
macrometastasis (left) and micrometastasis (right). H&E, hematoxylin and eosin; WSIs, whole slide
images. This figure was constructed from original output from PACS and Visiopharm. As these applications
are set to European standards, the comma is used as decimal separator.
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Table 1. Baseline characteristics on patient level. 

 Patients (n = 21) % 
Age, median (range) 42 (23–63)  
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Squamous cell carcinoma 15 71.4 
Adenocarcinoma 5 23.8 

Clear cell carcinoma 1 4.8 
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Figure 2. Example of algorithm output with multiple annotations of different colors in the correct
area but not with the correct diameter. H&E, hematoxylin and eosin; WSI, whole slide image. This
figure was constructed from original output from PACS (with the original pathologist’s annotations) and
Visiopharm. As these applications are set to European standards, the comma is used as decimal separator.
Apoptose means apoptosis.
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3. Results

In total, 192 patients underwent SLN procedure as part of their cervical cancer treat-
ment during the inclusion period. Five patients objected against the reuse of their health
care data for scientific research and their data were not collected. The cohort consisted of
21 patients diagnosed with early-stage cervical cancer of different histological subtypes and
at least one SLN metastasis at surgical lymph node staging. Ten patients were diagnosed
with macrometastasis, of which one patient was also diagnosed with micrometastasis in
her bilateral SLN. Eleven patients were diagnosed with micrometastasis as their largest
metastasis. Clinicopathologic features of the cohort are summarized in Table 1. In to-
tal, 47 SLNs were excised during surgery, whereof 473 H&E slides (median 18; range
6–52 slides) were reviewed by the algorithm, including frozen sections if performed. The
algorithm posted 5857 annotations suspicious for metastases (all confidence levels), with a
median of 128 annotations (range 32–2093) per patient. The frozen section WSIs yielded a
high number of annotations probably due to the poorer section quality. When excluding
frozen sections, a total of 2675 annotations were posted, with a median of 81 per patient
(range 10–464), of which 1040 yellow annotations (median 39; range 7–165), 298 orange
annotations (median 11; range 2–63), and 1337 red annotations (median 10; range 1–402)
were posted. In slides with a high number of annotations, these were often clustered (see
Figure 3).
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Table 1. Baseline characteristics on patient level.

Patients (n = 21) %

Age, median (range) 42 (23–63)
Histologic subtype

Squamous cell carcinoma 15 71.4
Adenocarcinoma 5 23.8

Clear cell carcinoma 1 4.8
Histologic grade

Grade I 1 4.8
Grade II 8 38.1
Grade III 11 52.4

Grade not applicable * 1 4.8
Metastasis

Macrometastasis 10 47.6
Micrometastasis 11 52.4

Frozen section performed 19 90.5
Number of SLNs removed, median (range) 2 (1–4)

Number of H&E slides per patient **, median (range) 18 (6–52)
Number of annotations per patient **, median (range) 128 (32–2093)

Number of annotations without frozen sections, median (range) 81 (10–464)
Yellow annotations 39 (7–165)
Orange annotations 11 (2–63)

Red annotations 10 (1–402)

* Clear cell carcinoma; ** including frozen sections. SLN, sentinel lymph node; H&E, hematoxylin and eosin.

On the lymph node level, the cohort consisted of 20 negative SLNs, 13 with macrometas-
tases, and 14 with micrometastases (Table 2). In two of the 14 SLNs with micrometastases,
tumor cells were only detected in the deeper-cut sections with IHC. A second pathologist re-
viewed these cases to confirm that the tumor cells were not visible in the H&E slides. Based
on H&E slides alone, the cohort thus involved 22 negative SLNs, 13 with macrometastases
and 12 with micrometastases. The algorithm picked up all H&E-positive slides with at least
one annotation in the correct area, yielding a clinical sensitivity of 100%. In one case the
algorithm did put an annotation in the correct area of macrometastasis but with a yellow
outline only (see Figure 4).

Table 2. Outcome on sentinel lymph node level.

Sentinel Lymph Nodes (n = 47)

Negative * 20
Positive 27

Macrometastasis 13
Detected with H&E ** 13

Detected with algorithm 13

Micrometastasis 14
Detected with H&E ** 12

Detected with IHC only 2
Detected with algorithm 12

* Based on both H&E and IHC slides. Based on H&E slides only, 22 SLNs were negative. ** Including frozen
sections. H&E, hematoxylin and eosin; IHC, immunohistochemistry.

Table 3 provides the results of the algorithm on the case level. In case 1 and case 20,
tumor cells in at least one SLN were only detected in the deeper-cut IHC slides by the
pathologist, indicating that the algorithm could never have picked up these tumor cells on
the original H&E slides. In one case the algorithm missed an area of tumor cells on a frozen
section. The regular H&E sections of this case were correctly detected by the algorithm
(case 18). In one case the tumor cells were only visible in the frozen section and not in
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the regular H&E slides, which was correctly annotated by the algorithm (case 2). In all
other cases, either no tumor was seen on the frozen sections at diagnosis or it was correctly
annotated by the algorithm.

Table 3. Results of the algorithm on the case level.

Case Cancer
Type

Metastasis
Size

SLN
Count

FS
Performed

Number of
Positive

SLNs

Outcome of
the Algorithm
(Based on HE)

Visiopharm Output

1 Squamous Micro 2 Yes 2 TP/NA
1—detected in HE+FS slides;

2—tumor cells only visible in IHC
slide (deeper levels), not in H&E

2 Clear cell Macro 2 Yes 1 TP Detected in FS slides *

3 Squamous Micro 2 Yes 1 TP Detected in H&E (not present in FS)

4 Squamous Micro 2 Yes 1 TP Detected in H&E (not present in FS)

5 Adeno Macro 4 Yes 1 TP Detected in H&E + FS slides

6 Adeno Macro 2 Yes 2 TP Both detected in H&E + FS slides

7 Squamous Micro 3 Yes 1 TP Detected in H&E slides (not present
in FS)

8 Squamous Macro 2 Yes 2 TP Both detected in H&E + FS slides

9 Adeno Macro 2 Yes 1 TP Detected in H&E + FS slides

10 Squamous Micro 2 Yes 1 TP Detected in H&E + FS slides

11 Squamous Micro 2 Yes 1 TP Detected in H&E slides (not present
in FS)

12 Squamous Micro 2 Yes 1 TP Detected in H&E slides (not present
in FS)

13 Squamous Macro +
micro 2 Yes 2 TP

1—detected in H&E + FS slides
(micro);

2—detected in H&E + FS slides
(macro)

14 Squamous Micro 2 Yes 1 TP Detected in H&E slides

15 Adeno Micro 2 Yes 2 TP
1—detected in H&E slides (not

present in FS);
2—detected in H&E + FS slides

16 Squamous Macro 3 Yes 1 TP Detected in H&E slides (not present
in FS) **

17 Adeno Macro 4 Yes 2 TP
1—detected in H&E slides (not

present in FS);
2—detected in H&E + FS slides

18 Squamous Macro 2 Yes 1 TP Detected in H&E slides, missed in
FS slides

19 Squamous Macro 2 No 1 TP Detected in H&E slides

20 Squamous Micro 1 No 1 NA Tumor cells only visible in IHC
slides (deeper levels), not in H&E

21 Squamous Micro 2 Yes 1 TP Detected in H&E + FS slides

TOTAL 47 19 27 25

* No tumor cells visible in H&E slides; ** yellow annotation only. H&E, hematoxylin and eosin; FS, frozen section;
IHC, immunohistochemistry; TP, true positive; NA, not applicable.
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4. Discussion

In this proof-of-principle study, a certified AI-based algorithm, developed for adeno-
carcinomas of the breast and colon, showed a sensitivity of 100% for clinically relevant SLN
metastasis (macrometastasis and micrometastasis) in early-stage cervical squamous cell
carcinomas, adenocarcinomas, and one clear cell carcinoma. In two cases, micrometastases
were only detected in the deeper-cut IHC slides and not present in the regular H&E slides,
indicating that they never could have been picked up by the algorithm. The output of the
algorithm amounted to a median of 128 annotations per case that had to be reviewed by
the pathologist, which were not all true-positive annotations.

The confidence/color outlines, corresponding to the level of suspicion, were lumped
in this study as a previous study indicated that yellow outlines may also contain tumor,
necessitating review of all outlines by the pathologist [13]. Also, in the present study,
orange or even yellow annotations sometimes indicated an area of metastasis. At this stage
of the study, in which the algorithm is used off-label and the clinical significance of the
confidence classes is to be determined, we considered all annotations of any color in an
area of true metastasis as true positives.

Previous research in SLNs of breast cancer patients showed that deep learning al-
gorithms could identify metastases in SLN slides with almost 100% sensitivity, whereas
about 40% of the slides without metastases could be identified as such [16]. A challenge
competition demonstrated that deep learning algorithms rival human performance. The
researchers found that the best algorithm achieved similar true-positive fractions as pathol-
ogists interpreting slides without time constraints. For pathologists under time constraints,
which is often the case in daily practice, the algorithms performed even better, especially in
detecting micrometastases [9]. In SLNs of melanoma patients, an algorithm highlighting
nodal metastases also showed promising results, accurately identifying tumor deposits
>0.1 mm, without relying on immunohistochemical staining [17]. For squamous cell carci-
nomas, several algorithms have been employed so far, although these have not yet been
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implemented in clinical practice. In 2020, Pan et al. studied an algorithm developed
on a slide set of metastatic esophageal squamous cell carcinoma to screen lymph nodes
suspicious for metastases from the pharyngeal and lung. The applied algorithm reached
an accuracy of 96.7% and 90% for pharyngeal and lung cancer, respectively [18]. In a test
setting by Tang et al., nodal metastases from head and neck squamous cell carcinoma cases
were detected with 100% sensitivity by an algorithm, but with less specificity (75.9%) [19].

Until recently, studies in this field were mainly undertaken on retrospective data
and algorithms were sometimes even assessed as independently working entities without
pathologist supervision, which is unimaginable and undesirable in a real-world clinical
setting [20]. A retrospective study by Steiner et al. showed the potential of an AI-assisted
workflow. Pathologists in their study considered the review of nodal micrometastases in
breast cancer significantly easier when assisted by an algorithm compared to the unassisted
review [11]. A recent prospective study in breast cancer using AI assistance in the clinical
workflow of SLN assessment highlighted that AI-assisted pathologists not only reduced
the use of IHC and costs but also felt that AI saved time and made their work more
enjoyable [13].

As shown in the aforementioned prospective study, an AI-based algorithm detecting
micrometastases in SLNs may obviate the need for IHC on step sections, saving up to
~€25 per slide [13]. Research in cervical cancer sentinel lymph nodes showed that routine
use of IHC adds clinical value in terms of detecting micrometastases and affects the thera-
peutic strategy-decisions in about 1% of patients but comes with substantial costs [7]. A
deep learning algorithm aiding the pathologist in adequately searching the serial H&E
sections could replace the need for IHC and could thereby benefit the cost-effectiveness of
pathologic ultrastaging. As also argued by Challa et al., a combined approach of algorith-
mic analysis followed by a pathologist review, the number of cases that require IHC can be
significantly reduced [12].

Although the studied algorithm was not trained on frozen sections, our results showed
that the algorithm correctly detected metastases in frozen sections in almost all cases (the
algorithm missed visible tumor cells in one frozen section). In daily clinical practice,
challenges arise for pathologists when reviewing frozen sections due to various artifacts
affecting this tissue, such as folds and compression resulting in low image quality and
the time constraints given the intraoperative consultation setting. Kim et al. proposed a
method utilizing transfer learning to train deep learning models effectively for identifying
metastatic breast cancer cells on WSIs of frozen sections [21]. Transfer learning involves
adapting a pre-trained model from one task to another by making adjustments. The authors
used annotated WSIs from frozen sections of breast cancer SLNs to train the model. Their
best algorithm achieved an area under the curve of the receiver operation characteristic
of 0.805 with an acceptable processing time of 10.8 min [22]. Further evaluation in clinical
practice is needed, but these first results are promising for a future AI-assisted workflow,
not only in conventional H&E sections but also in frozen sections.

Despite the promising perspectives of AI-assisted pathology in cancer diagnostics,
several challenges remain [23]. Firstly, there is a crucial need for robust validation of AI
algorithms using multi-institutional data before their clinical adoption, preferably as part of
the certification procedure. This necessitates comprehensive quality control and standard-
ization tools, as well as data sharing and validation with multi-institutional data to enhance
the generalizability and reliability of these algorithms. Additionally, after implementation,
continuous validation and refinement of AI algorithms by expert pathologists are impera-
tive. Secondly, the implementation of AI assistance in clinical pathology workflows requires
some hard work by information technologists and prospective studies to demonstrate the
true quality and cost benefits of AI. Despite promising results from AI-based algorithms
over the past five years, their integration into clinical workflows remains limited. The
recent results of the CONFIDENT-B trial show the potential added value of AI assistance
in daily pathology practice [24]. However, legal and ethical issues regarding the extent of
pathologists’ responsibility when utilizing AI for assisted review remain unresolved. Lastly,
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the requirement for high-spec hardware for storage and processing all WSI output presents
practical, financial, and sustainability challenges, while accreditation of the software by
regulatory agencies adds another layer of complexity to the adoption of AI. Addressing all
these multifaceted challenges is essential for the successful integration of an AI-assisted
workflow into clinical pathology practice.

One limitation of our study is that we selected only patients with proven SLN metas-
tasis. Thereby, the up-front probability of detecting metastases by the algorithm is high,
facilitating its high sensitivity. Having perfect sensitivity means that there will be false AI
alerts, substantiated by the seemingly high number of annotations we found. However,
many of the annotations cluster and do not take much time to review, which was also shown
in a previous breast cancer study where AI-guided review was faster [13]. Nevertheless,
at present, the application used in this study works in such a way that the pathologist
sees all annotations at once for a WSI, and then zooms in on the annotations separately
for review. When applied in the clinical setting, however, it must remain workable for
the pathologist and the display must be further optimized, e.g., by displaying annotations
of the confidence classes in three galleries for rapid review. We considered all outlined
areas (either red, orange, or yellow) equal as the most important within an AI-assisted
workflow is that the pathologist’s attention is drawn to the area, regardless of the level of
suspicion. At this stage, assessing specificity was not within the scope of our manuscript as
the true-negative rate of the algorithm is considered less important than the true-positive
rate, to make sure no positive cases are missed by the algorithm. Now that we have shown
a proof of principle, a larger prospective study reflecting the daily practice and population
is needed to accurately assess the impact of the confidence classes, assess false alerts and,
more importantly, false-negative rates. Another aim of such a study would be to assess
potential superior sensitivity and cost savings with an AI-assisted pathology assessment
of SLN nodes. Together with the developers behind the algorithm, we should further
investigate how the algorithm can be certified for use outside the targeted population and
whether the confidence cut-off points for cervical carcinoma histological types might be
different than those for breast and colon cancer, as well as how to cluster the annotations in
one metastatic area.

5. Conclusions

In this proof-of-principle study, a deep learning algorithm, developed for detecting
nodal metastases in adenocarcinomas of the breast and colon, performed with a 100%
sensitivity for detecting SLN metastases in early-stage cervical cancer patients. No false-
negative slides were observed, which shows that the application could be a useful aid to
the pathologist. Our findings highlight the potential of investigating existing algorithms
for off-label metastasis detection in cervical cancer and encourage prospective validation of
this promising and clinically valuable application in a larger population.
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