cancers

Systematic Review

The Evidence Base for Circulating Tumor DN A-Methylation
in Non-Small Cell Lung Cancer: A Systematic Review
and Meta-Analysis

Debora Maffeo 1'>*({), Angela Rina -3, Viola Bianca Serio 2%, Athina Markou (), Tomasz Powrézek 50,

Vera Constancio ©

, Sandra P. Nunes ¢, Carmen Jerénimo

6,7(5, Alfonso Calvo 32, Francesca Mari 3®,

Elisa Frullanti '2*(®, Diletta Rosati '>¥ and Maria Palmieri 124

check for
updates

Citation: Maffeo, D.; Rina, A.; Serio,
V.B.; Markou, A.; Powrézek, T.;
Constancio, V.; Nunes, S.P; Jerénimo,
C.; Calvo, A.; Mari, F,; et al. The
Evidence Base for Circulating Tumor
DNA-Methylation in Non-Small Cell
Lung Cancer: A Systematic Review
and Meta-Analysis. Cancers 2024, 16,
3641. https://doi.org/10.3390/
cancers16213641

Academic Editor: Peixin Dong

Received: 26 September 2024
Revised: 17 October 2024
Accepted: 25 October 2024
Published: 29 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena,

53100 Siena, Italy; debora.maffeo@dbm.unisi.it (D.M.); angela.rina@student.unisi.it (A.R.);

viola.serio@dbm.unisi.it (V.B.S.); diletta.rosati2@unisi.it (D.R.); maria.palmieri@dbm.unisi.it (M.P.)

Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena,

53100 Siena, Italy

UOC Laboratorio di Assistenza e Ricerca Traslazionale, Dipartimento di Terapie cellulari, Ematologia e

Medicina di Laboratorio, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;

francesca.mari@dbm.unisi.it

Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens,

15772 Athens, Greece; atmarkou@chem.uoa.gr

Department of Human Physiology, University of Lublin, 20080 Lublin, Poland; tomasz.powrozek@umlub.pl

6 Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/CI-IPOP@RISE (Health Research

Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel

Seruca (Porto.CCC), 4200-072 Porto, Portugal; vera.salvado.constancio@ipoporto.min-saude.pt (V.C.);

sandra.nunes@kuleuven.be (S.P.N.); carmenjeronimo@ipoporto.min-saude.pt (C.J.)

Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences,

University of Porto, 4099-002 Porto, Portugal

8 Program in Solid Tumors, CIMA, Cancer Center Clinica Universidad de Navarra (CCUN), Instituto de
Investigacion Sanitaria de Navarra (IDISNA), Department of Pathology, Anatomy and Physiology, School of
Medicine, University of Navarra, 31008 Pamplona, Spain; acalvo@unav.es

®  CIBERONC, ISCIII, 28029 Madrid, Spain

*  Correspondence: elisa.frullanti@dbm.unisi.it; Tel.: +39-05-7723-2595

These authors contributed equally to this work.

+ These authors contributed equally as last authors.

Simple Summary: Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer-related
deaths and early detection is crucial for better outcomes. This study focuses on methylation, a new
method for detecting and monitoring NSCLC using a blood test that looks for changes in DNA. These
changes can be found in tiny fragments of tumor DNA circulating in the blood. By analyzing existing
research, the authors found that this method is accurate and reliable, showing promise for early
diagnosis and the better management of NSCLC patients. The findings suggest that this approach
could be a valuable tool in clinical practice, potentially leading to improved survival rates by allowing
for earlier and more precise treatment.

Abstract: Background: Non-Small Cell Lung Cancer (NSCLC) remains a challenging disease to manage
with effectiveness. Early detection and precise monitoring are crucial for improving patient outcomes.
Circulating tumor DNA (ctDNA) offers a non-invasive cancer detection and monitoring method.
Emerging biomarkers, such as ctDNA methylation, have shown promise in enhancing diagnostic
accuracy and prognostic assessment in NSCLC. In this review, we examined the current evidence
regarding ctDNA methylation’s role in NSCLC detection through a systematic review of the existing
literature and meta-analysis. Methods: We systematically searched PubMed, Medline, Embase, and
Web of Science databases up to 26 June 2024 for studies on the role of ctDNA methylation analysis
in NSCLC patients. We included studies from 2010 to 2024 on NSCLC patients. We excluded case
reports, non-English articles, studies on cell lines or artificial samples, those without cfDNA detection,
prognostic studies, and studies with non-extractable data or mixed cancer types. Funnel plots were
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visually examined for potential publication bias, with a p value < 0.05 indicating bias. Meta-analysis
was conducted using R packages (meta, forestplot, and mada). Combined sensitivity, specificity,
positive likelihood ratio (LR+), negative likelihood ratio (LR—), positive and negative predictive
values, diagnostic odds ratio (DOR), and 95% confidence intervals (95% CI) were calculated. A
summary receiver operating characteristic curve (SROC) and area under the curve (AUC) with related
Standard Error (SE) were used to evaluate the overall diagnostic performance. Additionally, RASSF1A,
APC, SOX17, SEPT9, and RARB2 were analyzed, since their methylation was assessed in two or more
studies. Results: From 38 candidate papers, we finally identified 12 studies, including 472 NSCLC
patients. The pooled sensitivity was 0.62 (0.47-0.77) and the specificity was 0.90 (0.85-0.94). The
diagnostic odds ratio was 15.6 (95% CI 9.36-26.09) and the area under the curve was 0.249 (SE = 0.138).
The positive and negative predictive values were 5.38 (95% CI 3.89-7.44) and 0.34 (95% CI 0.22-0.54),
respectively. For single genes, the specificity reached 0.83~0.96, except for RARB2, but the sensitivity
was relatively low for each gene. Significant heterogeneity across the included studies, the potential
publication bias for specificity (p = 0.0231), and the need to validate the clinical utility of ctDNA
methylation for monitoring treatment response and predicting outcomes in NSCLC patients represent
the main limitations of this study. Conclusions: These results provide evidence of the significant
potential of ctDNA methylation as a valuable biomarker for improving the diagnosis of NSCLC,
advocating for its integration into clinical practice to enhance patient management.

Keywords: circulating free DNA; methylation; non-small cell lung cancer; early diagnosis

1. Introduction

Lung cancer is the leading cause of cancer-related mortality worldwide, with NSCLC
accounting for approximately 85% of all cases [1-3]. NSCLC represents a significant chal-
lenge in clinical practice. Early diagnosis and precise monitoring are crucial for improving
clinical outcomes in patients affected by this disease [4]. Traditional diagnostic methods,
such as tissue biopsies, are invasive and often challenging due to tumor location and patient
condition. Additionally, traditional biopsy carries inherent risks for the patient, including
infection and complications, as well as diagnostic challenges such as insufficient material
and sampling bias caused by tumor heterogeneity. In contrast to traditional biopsy, liquid
biopsy is less invasive, poses fewer complications, allows for more consistent long-term
monitoring, and enables rapid detection of clonal evolution and the emergence of resistance
in cancer cells [5].

Liquid biopsies provide a non-invasive method for evaluating cancer by examining
various circulating components. These include circulating nucleic acids such as circu-
lating tumor DNA (ctDNA) and cell-free RNA (cfRNA), as well as circulating tumor
cells (CTCs), microRNAs, extracellular vesicles, tumor-educated platelets, and methylated
tumor-specific cell-free DNA [6]. In recent years, liquid biopsies have emerged as a promis-
ing alternative method for detecting and monitoring lung neoplasms, enabling real-time
monitoring through a simple blood test [7,8] and overcoming the challenges arising from
tumor heterogeneity.

In this context, ctDNA methylation has emerged as a potential biomarker for NSCLC,
offering significant advantages over traditional diagnostic methods. DNA methylation
in gene promoters is involved in the silencing of tumor suppressor genes in human lung
cancers. This epigenetic modification, along with histone tail modifications, can alter
chromatin condensation: protein complexes that bind methylated DNA and deacetylate hi-
stones lead to the formation of chromatin that represses transcription. In addition to genetic
mutations, aberrant DNA methylation contributes to the inactivation of tumor suppressor
genes, according to Knudson’s two-hit hypothesis. Several abnormally methylated genes
have been identified in lung cancer, with methylation being an early event in tumorigene-
sis [9]. Studies indicate that DNA methylation changes can serve as diagnostic markers for
specific cancer types or stages, underscoring the utility of DNA methylation as a molecular
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indicator. For instance, the methylation of the p16 promoter is proposed as a biomarker for
the early detection of lung cancer and for monitoring prevention efforts [10,11].

Various methods are employed for ctDNA methylation analysis, including methylation-
specific PCR (MSP), droplet digital PCR (ddPCR), and quantitative methylation-specific
PCR (QMSP), each offering distinct levels of sensitivity and specificity. These differences
can significantly impact the detection of low-abundance ctDNA, influencing the overall
diagnostic accuracy. The choice of method is therefore a crucial factor in determining
the reliability of ctDNA methylation as a biomarker, making it essential to consider these
methodological variations when assessing diagnostic performance.

This systematic review aims to comprehensively examine the existing literature on
ctDNA methylation in NSCLC, evaluating its clinical utility and potential impact on clinical
practice. Current data regarding the diagnostic accuracy of ctDNA methylation will be
analyzed to provide a comprehensive overview of the available evidence.

2. Materials and Methods
2.1. Search Strategy, Inclusion Criteria, and Data Collection

The meta-analysis was conducted adhering to PRISMA guidelines [12], systematically
searching the PubMed, Medline, Embase, and Web of Science databases up to 26 June 2024
for studies reporting the role of ctDNA methylation analysis in NSCLC patients, using the
combination of the following keywords: “circulating free dna” and “methylation” and “non
small cell lung cancer”, without any restriction. Alternative spellings and abbreviations
were considered during the review process. Eligible studies were evaluated by examining
their titles and abstracts, while the references of all identified publications were checked
to uncover any additional relevant studies that might have been missed initially. Manual
searches were also conducted for pertinent reviews. Only those studies published in
English and accessible in full text were included. The publications were reviewed for
overlapping patient populations, and in instances where multiple articles from the same
research group contained overlapping datasets, only the most significant or recent study
was chosen for inclusion.

All the studies evaluating the application of ctDNA methylation analysis in NSCLC
patients were considered eligible for the meta-analysis. The inclusion criteria were as
follows: (i) studies published from 2010 to 2024; (ii) all NSCLC patients involved should
be diagnosed cytologically or histopathologically; (iii) studies analyzing cancer detec-
tion/diagnosis/screening; (iv) methylation measured on cfDNA or ctDNA from blood
plasma or serum.

During the evaluation of study eligibility, we initially eliminated case reports and
articles published in languages other than English and prior to 2010. We then excluded
studies that utilized cell lines or artificial samples, as well as those in which cfDNA was not
detected. Additionally, studies that focused exclusively on the prognostic implications of
cfDNA methylation were disregarded. Ultimately, studies that presented data in a manner
that prevented proper extraction were also excluded from the final analysis. For instance,
we omitted articles that contained mixed data from various cancer types beyond NSCLC or
those concerning lung cancer without clear histological classification.

The information gathered from the eligible studies encompassed various characteris-
tics, including the authors’ names, publication details (journal and date), study location,
and patient numbers. Clinical data collected included the stage of cancer and smoking
history, while results covered the cfDNA source and the methods used for methylation
analysis, along with sensitivity and specificity metrics, with corresponding 95% confidence
intervals. For studies providing only partial data, we obtained original information by
reaching out to the corresponding authors. Patient-specific data were collected using a
standardized form. Sensitivity was calculated as true positives divided by the sum of true
positives and false negatives, while specificity was determined by dividing true negatives
by the sum of true negatives and false positives. If such metrics were unavailable, we
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calculated the concordance rate as the ratio of the sum of true positives and true negatives
to the total sample size, along with its 95% confidence interval.

To avoid bias, all records were reviewed by two authors independently (DM and AR),
and a consensus was reached in each eligible study.

2.2. Methods for ctDNA Methylation Analysis

The analysis of ctDNA methylation employs various methods, each with distinct
sensitivity and specificity profiles. The choice of methodology is critical for the accurate de-
tection of methylation patterns and interpretation of clinical relevance. Methylation-specific
PCR (MSP) and its variant, methylation-dependent MSP (mdMSP), are common techniques
that use primers to differentiate between methylated and unmethylated sequences. While
mdMSP improves specificity by targeting methylated cytosines, both methods are limited
to predefined regions of interest.

Quantitative methylation-specific PCR (QMSP) enhances the sensitivity of conven-
tional MSP by allowing the quantitative assessment of methylation levels in specific gene
regions. Multiplex QMSP further improves efficiency by enabling the simultaneous quan-
tification of multiple methylation targets. Droplet digital PCR (ddPCR) is highly sensitive,
partitioning DNA into thousands of droplets, each undergoing PCR independently, which
is advantageous for detecting low-abundance methylated ctDNA. Real-time PCR monitors
the amplification of target DNA sequences in real-time, although it may struggle with low-
input DNA samples or rare methylation variants. Amplification of Quantitative Analysis of
Methylated Alleles-PCR (AQAMA-PCR) balances specificity and sensitivity by combining
methylation specificity with real-time quantification.

Each method has its advantages and limitations regarding sensitivity, specificity, and
the ability to detect low levels of ctDNA in plasma samples. Therefore, the selection
depends on the study’s aims, the quantity of ctDNA, and the regions of interest targeted
for methylation analysis.

2.3. Statistical Methods

Meta-analysis was carried out using the R packages (version 4.4.1) meta (version 7.0),
forestplot (version 3.1.3), and mada (version 0.5.11). For each eligible study, we calculated
various metrics, including the combined sensitivity, specificity, positive likelihood ratio
(LR+ = sensitivity divided by (1-specificity)), negative likelihood ratio (LR— = (1-sensitivity)
divided by specificity), positive predictive value, negative predictive value, and the diag-
nostic odds ratio (DOR = LR+/LR—). Additionally, we computed the corresponding 95%
confidence intervals (95% CI) for these values.

A bivariate random-effects model using the Reitsma approach was applied to assess
the diagnostic accuracy of the cfDNA test across multiple studies. This model considers the
correlation between sensitivity and specificity, while accounting for heterogeneity between
studies. A summary receiver operating characteristic (SROC) curve was generated, and the
area under the curve (AUC) was computed to evaluate overall diagnostic performance. Q%,
representing the point where sensitivity equals specificity, was used to measure the balance
between detecting true positives and minimizing false positives. Funnel plots were visually
examined for potential publication bias, with a p value < 0.05 indicating the presence of
such bias.

3. Results
3.1. Study Selection

Initially, 38 studies were identified as potential candidates for the meta-analysis based
on the bibliographic search results. Following a preliminary screening of titles and abstracts,
32 full-text articles were chosen for a more detailed assessment of their eligibility and were
thoroughly reviewed. The primary reasons for exclusion included the articles being reviews,
not focusing on NSCLC, lacking an evaluation of cfDNA, providing insufficient data, or
solely analyzing prognostic factors. After excluding studies, a total of 12 eligible studies
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were identified and included in our meta-analysis. A flowchart of the literature selection is

shown in Figure 1.
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Figure 1. PRISMA 2020 flow diagram of literature screening and study selection.
3.2. Characteristics of Eligible Studies

The twelve eligible studies for meta-analysis were published between 2010 and 2024
and included 472 NSCLC patients from eight countries. In the case of multiple publications
from the same research group of overlapping patient populations, only the largest cohort
was selected [13-19].

The mean number of patients for each study was 59 (range 38-110). Various methods
were applied to detect cf DNA methylation, and the quantitative methylation-specific
polymerase chain reaction (QMSP) was the most common method (7/12). The median
age was 63.5 years (range 30-89), 69.3% of patients were male, and 79.4% had a history
of smoking (former or current). Most of the patients were at an advanced stage (TNM
[I-IV). All publications were focused on ctDNA in plasma. The main characteristics of the
12 included studies are shown in Table 1.

Table 1. Characteristics of eligible studies included in meta- and pooled analyses.
No. of . % Smoker Specimen Detection
Reference NSCLC Country  Males/Females M?I(:I;n A)ge (Former or StNSC(IL_ (I:V) Type for Assay in
Cases ange Current) age ctDNA ctDNA
Zhao Y. et al. United
Adv. Sci. (Weinh) 39 € 18/21 68 (30-85) 97.4 LI IO, IV Plasma mdMSP
States
2023 [20]
Markou A et al.
Clin Epigenetics 42 Greece 32/10 69 (39-89) 78.6 [A-IITA Plasma QMSP

2022 [21]
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Table 1. Cont.
No. of . % Smoker Specimen Detection
Reference NSCLC Country = Males/Females M?Ic::;n gge (Former or StaNSeC(IL— (I:V) Type for Assay in
Cases 8 Current) & ctDNA ctDNA
Villalba M et al. |
Clin Med 2019 89 Spain 66/23 61.5 (30-86) 83.1 I, 10, IIL, IV Plasma ddPCR
[22]
Nunes SP et al. |
ConstindoV. QU
ot al. Clin 110 Portugal 75/35 66.5 (38-89) 75.5 I 1L 100, IV Plasma multiplex
Epigenetics 2019 QMSP
[13,14]
Yang Z et al. Adv
Clin Exp Med 39 China 24/15 51 (NA) 74.4 I Plasma QMSP
2019 [23]
Powrdzek T et al.
Exp Lung Res
“Tetar Cin 55 Poland 40/15 62 (NA) 88.6 LI 1A, Pl i
Transl Oncol 2016, oran ' 1B, IV asma rearime
B PCR
Powrdzek T et al.
Med Oncol 2014
[15-17]
Ponomaryova
AAetal. Lung
Cancer 2013,
Ponomaryova 60 Russia 52/8 NA 83.0 I 11, 11T Plasma QMSP
AAetal Eur]
Cancer Prev 2011
[18,19]
Vinayanuwattikun
Cetal J. Thorac. 38 Thailand 20/18 NA 50.0 I, IvV Plasma AQP[éll\{[A_
Oncol. 2011 [24]
Total of cases 472

NA, not available; MCED, multi-cancer early detection; MRD, minimal residual disease; timMRD, tumor-informed
methylation-based MRD; PCR, polymerase chain reaction; ddPCR, droplet digital PCR; MSP, methylation-specific
PCR; mdMSP, multiplex digital MSP; QMSP, quantitative MSP; 5hmC, 5-Hydroxymethylcytosine; AQAMA,
absolute quantitative analysis of methylated alleles.

3.3. Diagnostic Accuracy

Out of 32 assessed eligible papers, five were excluded because of review
papers [6,25-28], four because no NSCLC [29-32], four were excluded since no suffi-
cient data were reported in the published data and the raw data were not possible to
obtain [33-36], five were because of prognostic papers [37-41], and two were because they
did not concern cfDNA [42,43]. For the calculation of diagnostic accuracy, the number of
patients and controls used in each study to determine sensitivity values, specificity, and cor-
responding 95% Cls for the genes assessed for cfDNA methylation was considered. Of the
12 remaining studies, one [18] was excluded because the same group had already analyzed
the same gene in a more recent study involving overlapping populations [19]. Thus, the
diagnostic accuracy of cf DNA methylation in NSCLC shown in the Forest Plot (Figure 2)
was ultimately calculated from 11 studies, including 651 NSCLC patients and 604 controls.
The majority of publications examined the methylation of cfDNA of a combination of genes
(n = 7), though the remaining studies examined the methylation of single genes (n = 4).
Among the latter, genes commonly analyzed for methylation were RASSF1A, APC, SOX17,
SEPT9, and RARB2. The combined sensitivity and specificity of overall methylation in the
meta-analysis were 0.62 (0.47-0.77) and 0.90 (0.85-0.94) (Table 2).
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Sensitivity

Study Sensitivity (95% Cl)
Zhao Y. et al. Adv Sci (Weinh) 2023 0.9 (0.76-0.97) —a—
Markou A et al. Clin Epigenetics 2022 0.59 (0.33-0.82) _—,—
Villalba M et al. J Clin Med 2019 0.9 (0.84-0.96) ——
Nunes SP et al. J Clin Med 2019 0.34 (0.25-0.42) —a—
Constancio V et al. Clin Epigenetics 2019 0.22 (0.13-0.31) ——
Yang Z et al. Adv Clin Exp Med 2019 0.72 (0.55-0.85) —a—
Powrézek T et al. Exp Lung Res 2016 0.47 (0.33-0.6) ——
Powrézek T et al. Clin Transl Oncol 2016 0.39 (0.34-0.44) —i—
Powrézek T et al. Med Oncol 2014 0.53 (0.48-0.58) ——
Ponomaryova AA et al. Lung Cancer 2013 0.85 (0.76-0.94) —a—
Vinayanuwattikun C et al. J Thorac Oncol 2011 0.9 (0.85-0.94) —
RE Model RE Model 0.62 (0.47-0.77) —————

0 008 0.1 01502 025 03 035 04 sty 06507 075 08 088 00 085

Specificity

Study Specificity (95% Cl)
Zhao Y. et al. Adv Sci (Weinh) 2023 0.82 (0.65-0.93) ——
Markou A et al. Clin Epigenetics 2022 0.68 (0.47-0.85) —_—a—
Villalba M et al. J Clin Med 2019 0.65 (0.46-0.84) —
Nunes SP et al. J Clin Med 2019 0.96 (0.9-1) —
Constancio V et al. Clin Epigenetics 2019 0.97 (0.94-0.99) =
Yang Z et al. Adv Clin Exp Med 2019 0.91 (0.59-1) —_—
Powrézek T et al. Exp Lung Res 2016 0.95 (0.87-0.98) —
Powrézek T et al. Clin Trans| Oncol 2016 0.92 (0.9-0.94) -
Powr6zek T et al. Med Oncol 2014 0.92 (0.9-0.94) =
Ponomaryova AA et al. Lung Cancer 2013 0.75 (0.6-0.9) ——
Vinayanuwattikun C et al. J Thorac Oncol 2011 0.9 (0.87-0.94) o
RE Model RE Model 0.9 (0.85-0.94) -

Figure 2. A paired forest plot illustrating the sensitivity and specificity of cf DNA methylation in
NSCLC across 11 studies included in the meta—analysis [13-18,20-24]. A random—effects (RE) model
was employed for the analysis. Each square and horizontal bar denotes the sensitivity and specificity
for individual studies, accompanied by a 95% confidence interval (CI). The diamonds represent the
overall findings, with the pooled sensitivity calculated as 0.62 (ranging from 0.47 to 0.77) and the
pooled specificity at 0.90 (ranging from 0.85 to 0.94).
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Table 2. Synthesis of studies included in meta-analysis for genes assessed for cfDNA methylation.

N° NSCLC . 95% CI e 95% CI
Reference Gene . N° Controls  Sensitivity . Specificity .
Patients Sensitivity Specificity
Zhao Y. et al. Adv. Sci. SOX17,CDO1, 39 3 0.90 0.76-0.97 0.82 0.65-0.93
(Weinh) 2023 [20] TAC1, HOXA7 ’ ’ ' ’ ’ '
. APC, RASSF1A,
Markou A et al. Clin
. . FOXA1, SLFN11, 42 12 0.59 0.33-0.82 0.68 0.47-0.85
Epigenetics 2022 [21]
SHOX2
Villalba M et al. | Clin
TMPRSS4 89 25 0.90 0.84-0.96 0.65 0.46-0.84
Med 2019 [22]
Nunes SP et al. ] Clin
APC, RASSF1A 110 28 0.34 0.25-0.42 0.96 0.9-1
Med 2019 [13]
Constancio V et al.
. . . RARB2, SEPTY,
Clin Epigenetics SOX17 86 136 0.22 0.13-0.31 0.97 0.94-0.99
2019 [14]
CDH13, WT1,
Yang Z etal. Adv Clin  CDKN2A, HOXA9,
39 11 0.72 0.55-0.85 091 0.59-1
Exp Med 2019 [23] PITX2, CALCA,
RASSF1A, DLEC1
Powré6zek T et al. Exp
RTEL1, PCDHGB6 55 80 0.47 0.33-0.60 0.95 0.87-0.98
Lung Res 2016 [15]
Powrdézek T et al.
Clin Transl Oncol DCLK1 46 95 0.39 0.34-0.44 0.92 0.9-0.94
2016 [16]
Powrdzek T et al.
SEPT9 47 100 0.53 0.48-0.58 0.92 0.90-0.94
Med Oncol 2014 [17]
Ponomaryova AA
et al. Lung Cancer RARP2, RASSF1A 60 32 0.85 0.76-0.94 0.75 0.6-0.9
2013 [18]
Vinayanuwattikun C
et al. ] Thorac Oncol SHP1P2 38 52 0.90 0.85-0.94 0.90 0.87-0.94
2011 [24]
Total cases 651 604 0.62 0.47-0.77 0.90 0.85-0.94

The volume of plasma used for cfDNA extraction varied among the studies included
in this review. Some studies reported extracting cfDNA from as little as 0.5 mL of plasma,
while others used 1 mL, 2 mL, or larger volumes, such as between 0.5 and 2 mL, or between
2 and 3 mL. A few studies even utilized a minimum plasma volume of 3.5 mL or 4 mL.

Sensitivity results showed similar variation. In studies using 0.5 mL of plasma, the
sensitivity was reported as 0.72. For studies extracting cfDNA from 1 mL of plasma,
sensitivity values were 0.90, 0.90, and 0.85. When 2 mL of plasma was used, the sensitivity
ranged from 0.34 to 0.59. Studies that extracted cfDNA from 0.5 to 2 mL of plasma reported
a sensitivity of 0.90, while those using between 2 and 3 mL showed a sensitivity of 0.22. In
studies with a minimum plasma volume of 3.5 mL and 4 mL, the sensitivities were 0.39
and 0.53, respectively.

This variability in plasma volume and sensitivity underscores the need to carefully
consider these factors in the analysis of cfDNA methylation studies.

The LR+ and LR— of cfDNA were 5.38 (95% CI 3.89-7.44) and 0.34 (95% CI 0.22-0.54),
respectively, in the meta-analysis. The DOR was 15.6 (95% CI 9.36-26.09). Figure 3
showed the summary receiver operating characteristic (SROC) plot with an AUC of 0.249
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Sensitivity

1.0

0.8

0.6

0.4

0.2

0.0

(SE = 0.0138), indicating a limited diagnostic accuracy of cfDNA test. However, this result
reflects that the cfDNA test’s accuracy is limited by the variability in the studies, which
affects the overall diagnostic performance of the test.

SROC Curve

AUC = 0.249
SE(AUC) = 0.0138
Q* = 0.5545

SE(Q") = 0.0604

0.0

! ! I T !
0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3. Summary receiver operating characteristic (SROC) plot. The curve illustrates the diagnostic
accuracy of the cfDNA test across multiple studies. The red points represent individual study results,
while the black curve summarizes the overall diagnostic performance. Q* is the point on the curve
where sensitivity equals specificity, providing a measure of the test’s balance between detecting true
positives and minimizing false positives. The SE(Q*) is the standard error of Q*.

We then performed the same analysis focusing on individual genes. We considered
genes analyzed for methylation in at least two independent studies, namely RASSFI1A,
APC, SOX17, SEPT9, and RARB2 (Table 3).

The sensitivity and specificity for RASSF1A, APC, SOX17, and SEPT9 were 0.37 (95%
CI0.16-0.59) and 0.83 (95% CI 0.58-1.09), 0.25 (95% CI 0.17-0.33) and 0.96 (95% CI1 0.91-1.01),
0.43 (95% CI10.04-0.83) and 0.94 (95% CI 0.88-1.01), and 0.37 (95% CI 0.04-0.69) and 0.94 (95%
CI 0.89-1.02), respectively (Figure 4; Table 4). For RARB2, no significance was identified for
both sensitivity and specificity (0.47 (95% CI —0.02-0.96) and 0.8 (95% CI 0.47-1.13).
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Table 3. A summary of the genes assessed for methylation in at least two independent studies
included in the meta-analysis.

N° NSCLC . 95% CI . 95% CI
Gene Reference X N° Controls Sensitivity . Specificity .
Patients Sensitivity Specificity
Markou A et al. Clin
. . 42 12 0.24 0.07-0.50 0.92 0.74-0.99
Epigenetics 2022 [21]
Nunes SP et al. ] Clin
110 28 0.18 0.11-0.25 1 1-1
Med 2019 [13]
RASSF1A
Yang Z et al. Adv Clin
39 11 0.41 0.26-0.58 1 0.72-1
Exp Med 2019 [23]
Ponomaryova AA et al.
60 32 0.66 0.54-0.78 0.57 0.40-0.74
Lung Cancer 2013 [18]
Markou A et al. Clin
. . 42 12 0.24 0.07-0.50 0.96 0.80-1
Epigenetics 2022 [21]
APC
Nunes SP et al. | Clin
110 28 0.25 0.17-0.34 0.96 0.90-1
Med 2019 [13]
Zhao Y. et al. Adv Sci
. 39 33 0.64 0.47-0.79 0.88 0.72-0.97
(Weinh) 2023 [20]
SOX17
Constancio V et al. Clin
. ) 86 136 0.24 0.15-0.33 0.96 0.92-0.99
Epigenetics 2019 [14]
Constancio V et al. Clin
. . 86 136 0.20 0.11-0.28 0.99 0.97-1
Epigenetics 2019 [14]
SEPT9
Powrézek T et al. Med
47 100 0.53 0.48-0.58 0.92 0.90-0.94
Oncol 2014 [17]
Constancio V et al. Clin
. ) 86 136 0.22 0.13-0.31 0.96 0.93-0.99
Epigenetics 2019 [14]
RARPB2
Ponomaryova AA et al.
60 32 0.72 0.61-0.83 0.62 0.45-0.79

Lung Cancer 2013 [18]

Table 4. Combined sensitivity and specificity values for genes assessed for methylation in two or
more studies.

Gene Sensitivity 95% CI Sensitivity Specificity 95% CI Specificity
RASSF1A 0.37 0.16-0.59 0.83 0.58-1.09
APC 0.25 0.17-0.33 0.96 0.91-1.01
SOX17 0.43 0.04-0.83 0.94 0.88-1.01
SEPT9 0.37 0.04-0.69 0.96 0.89-1.02

RARP2 0.47 —0.02-0.96 0.80 0.47-1.13
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Figure 4. Paired Forest Plot of sensitivity and specificity of genes assessed for methylation in two or more
studies included in meta-analysis: RASSF1A, APC, SOX17, SEPT9, and RARB2 [13,14,17,18,20,21,23].
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3.4. Heterogeneity and Publication Bias

The threshold effect is a significant contributor to heterogeneity among studies. An
examination of the ROC plane indicated no notable threshold effect (Figure 5).

ROC Plane

e eeeed e neteeetnanee e et teeennnnae s te st e aennnnnss tesseannnsnse et s st ansnsssenressssashesssnrtenes sasssenassessnsassssnnestennsssssemarrennssssnasennnegpernnsmnmennensssissnsnanransssssensnnensnnssssanrnnnnsrnsennnnd]

Sensitivity = 0.6196501
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X2 =498.28

Specificity = 0.8958113
Range Specificity: 0.85 - 0.94
X2 =39.21
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1 - Specificity (False Positive Rate)

Figure 5. ROC plane of sensitivity and specificity of cfDNA methylation in NSCLC for 11 studies
included in meta—analysis [13-18,20-24].

To assess publication bias, we utilized a funnel plot (Figure 6). Visual analysis sug-
gested partial symmetry, with p-values of 0.6809 for sensitivity and 0.0231 for specificity.
This indicates no evidence of publication bias for sensitivity, while a weak publication bias
was observed for specificity.

The ROC plane plots the sensitivity against specificity (false positive rate), allowing the
visualization of the diagnostic performance across studies. The red diagonal line represents
the line of no-discrimination. The average sensitivity was 0.6197 (range: 0.47-0.77) and
the average specificity was 0.8958 (range: 0.85-0.94). The chi-square (x?) indicates the
measure of discrepancy between observed and expected data, with high values suggesting
the presence of significant heterogeneity among the studies analyzed.
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Figure 6. A funnel plot of the sensitivity and specificity of cfDNA methylation in NSCLC for the
11 studies included in the meta-analysis [13-18,20-24]. Deek’s test showed a p-value of 0.0231 for
specificity and a p-value of 0.6809 for sensitivity.

4. Discussion

This systematic review and meta-analysis assessed the diagnostic performance of
circulating tumor DNA (ctDNA) methylation as a biomarker for Non-Small Cell Lung
Cancer (NSCLC). The results indicate that ctDNA methylation has considerable promise as
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a non-invasive method for the early detection and monitoring of NSCLC, demonstrating
pooled sensitivity and specificity values of 0.62 (ranging from 0.47 to 0.77) and 0.90 (ranging
from 0.85 to 0.94), respectively. The diagnostic odds ratio (DOR) of 15.6 (95% CI 9.36-26.09)
and the area under the curve (AUC) of 0.249 (SE = 0.0138) highlight a discrepancy between
the test’s performance at an optimal threshold and its overall ability to correctly identify
NSCLC cases across multiple thresholds. The high DOR suggests that ctDNA methylation
is effective in distinguishing NSCLC patients from controls when a specific cut-off is used.
However, the low AUC reveals that the test performs inconsistently across a broader
range of thresholds. As a result, while ctDNA methylation shows promise in certain
controlled settings, its overall reliability as a diagnostic tool for NSCLC is limited when
applied more broadly. The combined sensitivity of 61.97% indicates that the evaluation
of ctDNA methylation can correctly identify approximately two-thirds of disease cases
(true positives), though with moderate accuracy. The combined specificity of 89.58%
suggests that ctDNA methylation is highly effective in identifying healthy individuals
(true negatives), demonstrating a strong ability to avoid false positives. However, the
large x? value for sensitivity (498.28) indicates substantial heterogeneity among the studies,
particularly for sensitivity, which could affect the overall reliability of these estimates.

Tumor heterogeneity, especially in the metastatic phase, is influenced by various
factors including histological subtypes (such as adenocarcinoma and squamous cell lung
cancer) and genetic mutations (such as those in EGFR, BRAF, KRAS, and ALK transloca-
tions). These variations contribute to significant interpersonal and intratumoral diversity,
depending on the histotype and tumor grade. However, most of the studies analyzed did
not provide detailed information on these genetic and histological characteristics, nor did
they consider their impact on cfDNA methylation results. This lack of detailed information
may partially explain the discrepancies observed in our findings compared to data reported
by other authors.

The sensitivity of cf DNA methylation analysis seems to be influenced by the volume
of plasma used, with higher sensitivities generally found in studies using smaller volumes,
though this trend is not consistent across all studies. Other factors, such as the specific
genes analyzed and the detection methods employed, also impact sensitivity. Given
the variability in methods and plasma volumes across studies, standardization in future
research is needed to better understand how plasma volume affects the sensitivity of ctDNA
methylation analysis.

These findings align with previous studies that have highlighted the value of ctDNA
methylation as a biomarker for lung cancer detection. Unlike traditional tissue biopsies,
which can be invasive and limited by tumor heterogeneity, ctDNA methylation offers a
more comprehensive assessment of the tumor genome from a simple blood sample. This
makes it especially valuable in clinical settings where repeated sampling is required, or
where tissue biopsies are not feasible due to tumor location or patient condition.

The high specificity observed suggests that ctDNA methylation is particularly effective
in correctly identifying patients without the disease, minimizing false positives. This is
crucial in screening high-risk populations, such as heavy smokers, to avoid unnecessary
invasive procedures or psychological distress. However, the sensitivity of 62% indicates
that a significant proportion of NSCLC cases might still go undetected using ctDNA
methylation alone. Therefore, combining ctDNA methylation with other diagnostic tools,
such as imaging or molecular biomarkers, could enhance overall detection rates.

The analysis also revealed variability in diagnostic performance across different methy-
lation markers. Table 4 presents combined sensitivity and specificity values for several
genes assessed for methylation in at least two independent studies. RASSF1A has a sensi-
tivity of 0.37 (95% CI: 0.16-0.59) and a specificity of 0.83 (95% CI: 0.58-1.09). APC shows a
sensitivity of 0.25 (95% CI: 0.17-0.33) and a specificity of 0.96 (95% CI: 0.91-1.01). SOX17
has a sensitivity of 0.43 (95% CI: 0.04-0.83) and a specificity of 0.94 (95% CI: 0.88-1.01).
SEPT9 demonstrates a sensitivity of 0.37 (95% CI: 0.04-0.69) and a specificity of 0.96 (95%
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CI: 0.89-1.02). For RARB?2, no significance was identified for both sensitivity and specificity
(0.47 (95% CI —0.02-0.96) and 0.8 (95% CI 0.47-1.13).

Among these markers, APC appears to be the most specific (0.96), with a relatively
narrow confidence interval, indicating high reliability in correctly identifying non-diseased
individuals. However, its sensitivity is relatively low (0.25), meaning it may miss a signifi-
cant number of true positive cases. SOX17 presents the highest sensitivity (0.43), suggesting
it has the potential to identify more true positive cases compared to the other genes, though
its specificity is slightly lower (0.94). Despite these individual performances, relying on a
single biomarker is not ideal due to the limitations in sensitivity and specificity. A panel
of genes, combining the strengths of multiple markers, would likely offer a more compre-
hensive and reliable diagnostic tool. Utilizing a combination of these methylation markers,
possibly alongside other biomarkers or diagnostic tests, can enhance overall accuracy,
providing a better balance between sensitivity and specificity.

The choice of methods for ctDNA methylation analysis significantly impacts the
sensitivity and specificity of the results. Techniques like ddPCR offer high sensitivity for
detecting low-abundance ctDNA, but they can be expensive and technically challenging
to implement on a large scale. Conversely, methods such as QMSP and multiplex QMSP
allow for the quantification of multiple regions of interest, though they may be less effective
when ctDNA levels are low.

Technical limitations, such as low sensitivity, can lead to false negatives, especially in
early-stage disease or when ctDNA is scarce. On the other hand, more specific methods like
AQAMA-PCR and mdMSP reduce the risk of false positives but are restricted to predefined
genomic regions.

It is crucial to consider how the variability in these methods affects the comparability
of studies, underscoring the need for standardization to ensure reproducible and reliable
results. Future research should focus on optimizing and integrating these approaches to
enhance their clinical applicability.

This approach can lead to more effective detection and diagnosis, reducing the chances
of false positives and false negatives.

One of the key strengths of this meta-analysis is the large number of patients included,
which enhances the reliability of the pooled estimates. However, several limitations need
to be addressed. First, significant heterogeneity was observed across the included studies.
Although meta-regression analyses did not identify specific covariates (such as country,
study design, sample size, or detection methods) as contributors to this heterogeneity, likely
differences in patient populations, sample processing techniques, and ctDNA methylation
detection methods played a role. Future studies should aim for standardization in method-
ology to reduce heterogeneity and improve the comparability of results across studies.

Another limitation is the potential for publication bias for specificity (p value = 0.0231).
This could be because studies with negative results were underreported or not published,
which could skew the meta-analysis findings toward more favorable results.

In terms of clinical application, while ctDNA methylation holds promise, there are still
challenges to be addressed before it can be widely implemented in clinical practice. The
cost of ctDNA assays, the need for highly sensitive detection methods, and the interpre-
tation of results in the context of tumor heterogeneity and clonal evolution are important
considerations. Moreover, prospective clinical trials are necessary to validate the clinical
utility of ctDNA methylation for monitoring treatment response and predicting outcomes
in NSCLC patients.

5. Conclusions

In conclusion, this systematic review and meta-analysis provide strong evidence
supporting the use of ctDNA methylation as a diagnostic biomarker in NSCLC. Its high
specificity, coupled with moderate sensitivity, makes it a valuable tool for early detection,
particularly in high-risk populations. However, further research is needed to refine its ap-
plication, standardize detection methods, and explore its prognostic potential. Integrating
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ctDNA methylation analysis into clinical practice has the potential to revolutionize NSCLC
management, offering a less invasive, yet highly informative, approach to cancer detection
and monitoring.

Author Contributions: E.F. and M.P. designed the meta-analysis and wrote the manuscript; D.M.
and A.R. searched databases, collected full-text papers, extracted and analyzed data, and wrote the
manuscript; D.R. and V.B.S. performed the bioinformatic and statistical analysis; A.M., T.P, V.C.,
S.PN., CJ.,, and A.C. provided their unpublished data; EM. wrote the manuscript. All authors
contributed to drafting and revising the article, and gave final approval of the version to be published.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NextGenerationEU, under the PNRR, “Piano Nazionale di
Ripresa e Resilienza” Missione 4 Componente 2—M4C2a—Project THE—Tuscany Health Ecosystem—
SPOKE 6—CUP B63C22000680007 (MILESTONE n. 6.3.2: Innovative tools for target genes, disease
pathways and therapeutic strategies discovery). This work was supported by the EU funding within
the NextGenerationEU, with the Italian Ministry of University and Research (MUR) for “Fondo
per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)”"—PRIN
2022—Project 2022 ARXHR2_002—CUP B53D23007910006. The funders had no role in the design or
conduct of the study; in the collection, analysis or interpretation of the data; or in the preparation,
review, or approval of the manuscript.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author/s.

Acknowledgments: The authors thank NextGenerationEU and the PNRR “Piano Nazionale di
Ripresa e Resilienza” Missione 4 Componente 2—M4C2a—Project THE—Tuscany Health Ecosystem—
SPOKE 6—CUP B63C22000680007 (MILESTONE n. 6.3.2: Innovative tools for target genes, dis-
ease pathways and therapeutic strategies discovery) (E.E.); the EU funding within the NextGenera-
tionEU project for the Italian Ministry of University and Research (MUR), specifically for “Fondo
per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)”"—PRIN
2022—Project 2022 ARXHR2_002—CUP B53D23007910006 (E.F.); the EU funding for the NextGenera-
tionEU project Piano Nazionale di Ripresa e Resilienza (PNRR)—Missione 4 “Istruzione e Ricerca”—
Componente 2—M4C2a Investimento 1.1, “Fondo per il Programma Nazionale di Ricerca e Pro-
getti di Rilevante Interesse Nazionale (PRIN)”—PRIN 2022 PNRR—Project P2022NLEBP—CUP
B53D23025110001 (E.E.); the “INAIL (BRiC—2022) Piano Attivita di Ricerca 2022-2024" (E.F); and the
Italian Ministry of University and Research for PNRR—National Center for Gene Therapy and Drugs
based on RNA Technology—CN00000041 (E.M.).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Torre, L.A,; Siegel, R.L.; Jemal, A. Lung Cancer Statistics. Adv. Exp. Med. Biol. 2016, 893, 1-19. [CrossRef] [PubMed]

2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7-30. [CrossRef] [PubMed]

3. Chen, Z,; Fillmore, C.M.; Hammerman, P.S.; Kim, C.E; Wong, K.-K. Non-small-cell lung cancers: A heterogeneous set of diseases.
Nat. Rev. Cancer 2015, 15, 247. [CrossRef]

4. Wei, Z,; Shah, N.; Deng, C.; Xiao, X.; Zhong, T.; Li, X. Circulating DNA addresses cancer monitoring in non small cell lung cancer
patients for detection and capturing the dynamic changes of the disease. SpringerPlus 2016, 5, 1-9. [CrossRef] [PubMed]

5. Law, EW,; Settell, M.L.; Kurani, S.S.; Eckert, E.C.; Liu, M.C.; Greenberg-Worisek, A.]. Liquid Biopsy: Emergence of an Alternative
Cancer Detection Method. Clin. Transl. Sci. 2020, 13, 845-847. [CrossRef]

6.  Shields, M.D.; Chen, K.; Dutcher, G.; Patel, L; Pellini, B. Making the Rounds: Exploring the Role of Circulating Tumor DNA
(ctDNA) in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2022, 23, 9006. [CrossRef]

7. Reina, C.; Sabanovi¢, B.; Lazzari, C.; Gregorc, V.; Heeschen, C. Unlocking the future of cancer diagnosis—Promises and challenges
of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl. Res. 2024, 272, 41-53. [CrossRef]

8.  Diaz, L.A, Jr,; Bardelli, A. Liquid Biopsies: Genotyping Circulating Tumor DNA. |. Clin. Oncol. 2014, 32, 579-586. [CrossRef]

9.  Risch, A; Plass, C. Lung cancer epigenetics and genetics. Int. |. Cancer 2008, 123, 1-7. [CrossRef]


https://doi.org/10.1007/978-3-319-24223-1_1
https://www.ncbi.nlm.nih.gov/pubmed/26667336
https://doi.org/10.3322/caac.21590
https://www.ncbi.nlm.nih.gov/pubmed/31912902
https://doi.org/10.1038/nrc3931
https://doi.org/10.1186/s40064-016-2141-5
https://www.ncbi.nlm.nih.gov/pubmed/27186495
https://doi.org/10.1111/cts.12776
https://doi.org/10.3390/ijms23169006
https://doi.org/10.1016/j.trsl.2024.05.014
https://doi.org/10.1200/JCO.2012.45.2011
https://doi.org/10.1002/ijc.23605

Cancers 2024, 16, 3641 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Belinsky, S.A.; Nikula, K.J.; Palmisano, W.A.; Michels, R.; Saccomanno, G.; Gabrielson, E.; Baylin, S.B.; Herman, J.G. Aberrant
methylation of p16 INK42 s an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA
1998, 95, 11891-11896. [CrossRef]

Nuovo, G.J.; Plaia, T.W.; Belinsky, S.A.; Baylin, S.B.; Herman, J.G. In situ detection of the hypermethylation-induced inactivation
of the p16 gene as an early event in oncogenesis. Proc. Natl. Acad. Sci. USA 1999, 96, 12754-12759. [CrossRef] [PubMed]
PRISMA. PRISMA 2020 Statement. Available online: https:/ /www.prisma-statement.org/prisma-2020-statement (accessed on
26 June 2024).

Nunes, S.P; Diniz, F.; Moreira-Barbosa, C.; Constancio, V.; Silva, A.V.; Oliveira, J.; Soares, M.; Paulino, S.; Cunha, A.L.; Rodrigues,
J.; et al. Subtyping Lung Cancer Using DNA Methylation in Liquid Biopsies. J. Clin. Med. 2019, 8, 1500. [CrossRef] [PubMed]
Constancio, V.; Nunes, S.P.; Moreira-Barbosa, C.; Freitas, R.; Oliveira, J.; Pousa, 1.; Oliveira, ].; Soares, M.; Dias, C.G.; Dias, T,; et al.
Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin. Epigenetics
2019, 11, 175. [CrossRef] [PubMed]

Powrdzek, T.; Krawczyk, P.; Kuznar-Kamiriska, B.; Batura-Gabryel, H.; Milanowski, J. Analysis of RTEL1 and PCDHGB6 promoter
methylation in circulating-free DNA of lung cancer patients using liquid biopsy: A pilot study. Exp. Lung Res. 2016, 42, 307-313.
[CrossRef] [PubMed]

Powroézek, T.; Krawczyk, P; Nicos, M.; KuzZnar-Kaminska, B.; Batura-Gabryel, H.; Milanowski, J. Methylation of the DCLK1
promoter region in circulating free DNA and its prognostic value in lung cancer patients. Clin Transl Oncol. 2016, 18, 398—404.
[CrossRef] [PubMed]

Powroézek, T.; Krawczyk, P.; Kucharczyk, T.; Milanowski, J. Septin 9 promoter region methylation in free circulating DNA—
potential role in noninvasive diagnosis of lung cancer: Preliminary report. Med. Oncol. 2014, 31, 917. [CrossRef]

Ponomaryova, A.A.; Rykova, E.Y.; Cherdyntseva, N.V.; Skvortsova, T.E.; Dobrodeev, A.Y.; Zav’yalov, A.A.; Bryzgalov, L.O;
Tuzikov, S.A.; Vlassov, V.V.; Laktionov, P.P. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-
treatment follow-up of lung cancer patients. Lung Cancer 2013, 81, 397—403. [CrossRef]

Ponomaryova, A.A.; Rykova, E.Y.; Cherdyntseva, N.V.; Skvortsova, T.E.; Dobrodeev, A.Y.; Zav’yalov, A.A.; Tuzikov, S.A.; Vlassov,
V.V.; Laktionov, PP. RAR(2 gene methylation level in the circulating DNA from blood of patients with lung cancer. Eur. ]. Cancer
Prev. 2011, 20, 453-455. [CrossRef]

Zhao, Y.; O’Keefe, C.M.; Hsieh, K.; Cope, L.; Joyce, S.C.; Pisanic, T.R.; Herman, J.G.; Wang, T. Multiplex Digital Methylation-
Specific PCR for Noninvasive Screening of Lung Cancer. Adv. Sci. 2023, 10, €2206518. [CrossRef]

Markou, A.; Londra, D.; Tserpeli, V.; Kollias, I.; Tsaroucha, E.; Vamvakaris, I.; Potaris, K.; Pateras, I.; Kotsakis, A.; Georgoulias, V.;
et al. DNA methylation analysis of tumor suppressor genes in liquid biopsy components of early stage NSCLC: A promising tool
for early detection. Clin. Epigenetics 2022, 14, 61. [CrossRef]

Villalba, M.; Exposito, F.; Pajares, M.].; Sainz, C.; Redrado, M.; Remirez, A.; Wistuba, L.; Behrens, C.; Jantus-Lewintre, E.; Camps,
C.; et al. TMPRSS4: A Novel Tumor Prognostic Indicator for the Stratification of Stage IA Tumors and a Liquid Biopsy Biomarker
for NSCLC Patients. |. Clin. Med. 2019, 8, 2134. [CrossRef] [PubMed]

Yang, Z.; Qi, W.; Sun, L.; Zhou, H.; Zhou, B.; Hu, Y. DNA methylation analysis of selected genes for the detection of early-stage
lung cancer using circulating cell-free DNA. Adv. Clin. Exp. Med. 2018, 28, 355-360. [CrossRef] [PubMed]

Vinayanuwattikun, C.; Sriuranpong, V.; Tanasanvimon, S.; Chantranuwat, P.; Mutirangura, A. Epithelial-specific methylation
marker: A potential plasma biomarker in advanced non-small cell lung cancer. |. Thorac. Oncol. 2011, 6, 1818-1825. [CrossRef]
[PubMed]

Shen, H.; Jin, Y.; Zhao, H.; Wu, M.; Zhang, K.; Wei, Z.; Wang, X.; Wang, Z.; Li, Y.; Yang, F,; et al. Potential clinical utility of liquid
biopsy in early-stage non-small cell lung cancer. BMC Med. 2022, 20, 480. [CrossRef] [PubMed]

Kerachian, M.A.; Azghandi, M.; Mozaffari-Jovin, S.; Thierry, A.R. Guidelines for pre-analytical conditions for assessing the
methylation of circulating cell-free DNA. Clin. Epigenetics 2021, 13, 193. [CrossRef]

Cree, I.A.; Uttley, L.; Woods, H.B.; Kikuchi, H.; Reiman, A.; Harnan, S.; Whiteman, B.L.; Philips, 5.T.; Messenger, M.; Cox, A.; et al.
The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: A systematic mapping
review. BMC Cancer 2017, 17, 697. [CrossRef]

Nie, K,; Jia, Y.; Zhang, X. Cell-free circulating tumor DNA in plasma/serum of non-small cell lung cancer. Tumor Biol. 2014, 36,
7-19. [CrossRef]

Heeke, S.; Gay, C.M.; Estecio, M.R.; Tran, H.; Morris, B.B.; Zhang, B.; Tang, X.; Raso, M.G.; Rocha, P; Lai, S.; et al. Tumor- and
circulating-free DNA methylation identifies clinically relevant small cell lung cancer subtypes. Cancer Cell 2024, 42, 225-237 .e5.
[CrossRef]

Hagq, S.U.; Schmid, S.; Aparnathi, M.K.; Hueniken, K.; Zhan, L.J.; Sacdalan, D.; Li, ].].; Meti, N.; Patel, D.; Cheng, D.; et al. Cell-free
DNA methylation-defined prognostic subgroups in small-cell lung cancer identified by leukocyte methylation subtraction.
iScience 2022, 25, 105487. [CrossRef]

Chemi, F; Pearce, S.P; Clipson, A.; Hill, S.M.; Conway, A.-M.; Richardson, S.A.; Kamieniecka, K.; Caeser, R.; White, D.]J.; Mohan,
S.; et al. fDNA methylome profiling for detection and subtyping of small cell lung cancers. Nat. Cancer 2022, 3, 1260-1270.
[CrossRef]


https://doi.org/10.1073/pnas.95.20.11891
https://doi.org/10.1073/pnas.96.22.12754
https://www.ncbi.nlm.nih.gov/pubmed/10535995
https://www.prisma-statement.org/prisma-2020-statement
https://doi.org/10.3390/jcm8091500
https://www.ncbi.nlm.nih.gov/pubmed/31546933
https://doi.org/10.1186/s13148-019-0779-x
https://www.ncbi.nlm.nih.gov/pubmed/31791387
https://doi.org/10.1080/01902148.2016.1214191
https://www.ncbi.nlm.nih.gov/pubmed/27485611
https://doi.org/10.1007/s12094-015-1382-z
https://www.ncbi.nlm.nih.gov/pubmed/26311076
https://doi.org/10.1007/s12032-014-0917-4
https://doi.org/10.1016/j.lungcan.2013.05.016
https://doi.org/10.1097/CEJ.0b013e3283498eb4
https://doi.org/10.1002/advs.202206518
https://doi.org/10.1186/s13148-022-01283-x
https://doi.org/10.3390/jcm8122134
https://www.ncbi.nlm.nih.gov/pubmed/31817025
https://doi.org/10.17219/acem/84935
https://www.ncbi.nlm.nih.gov/pubmed/30516882
https://doi.org/10.1097/JTO.0b013e318226b46f
https://www.ncbi.nlm.nih.gov/pubmed/21964525
https://doi.org/10.1186/s12916-022-02681-x
https://www.ncbi.nlm.nih.gov/pubmed/36514063
https://doi.org/10.1186/s13148-021-01182-7
https://doi.org/10.1186/s12885-017-3693-7
https://doi.org/10.1007/s13277-014-2758-3
https://doi.org/10.1016/j.ccell.2024.01.001
https://doi.org/10.1016/j.isci.2022.105487
https://doi.org/10.1038/s43018-022-00415-9

Cancers 2024, 16, 3641 22 of 22

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Pietanza, M.C.; Waqar, S.N.; Krug, L.M.; Dowlati, A.; Hann, C.L.; Chiappori, A.; Owonikoko, TK.; Woo, K.M.; Cardnell, R.J.;
Fujimoto, J.; et al. Randomized, Double-Blind, Phase II Study of Temozolomide in Combination with Either Veliparib or Placebo in
Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 2386-2394. [CrossRef] [PubMed]
Metzenmacher, M.; Hegedyis, B.; Forster, J.; Schramm, A.; Horn, PA.; Klein, C.A.; Bielefeld, N.; Ploenes, T.; Aigner, C.; Theegarten,
D.; et al. Combined multimodal ctDNA analysis and radiological imaging for tumor surveillance in Non-small cell lung cancer.
Transl. Oncol. 2021, 15, 101279. [CrossRef] [PubMed]

Mastoraki, S.; Balgkouranidou, I.; Tsaroucha, E.; Klinakis, A.; Georgoulias, V.; Lianidou, E. KMT2C promoter methylation
in plasma-circulating tumor DNA is a prognostic biomarker in non-small cell lung cancer. Mol. Oncol. 2020, 15, 2412-2422.
[CrossRef] [PubMed]

Zhang, J.; Han, X,; Gao, C; Xing, Y.; Qi, Z; Liu, R.; Wang, Y.; Zhang, X.; Yang, Y.-G.; Li, X,; et al. 5-Hydroxymethylome in
Circulating Cell-Free DNA as A Potential Biomarker for Non-Small-Cell Lung Cancer. Genom. Proteom. Bioinform. 2018, 16,
187-199. [CrossRef] [PubMed]

Fumagalli, C.; Bianchi, F; Raviele, PR.; Vacirca, D.; Bertalot, G.; Rampinelli, C.; Lazzeroni, M.; Bonnani, B.; Veronesi, G.; Fusco, N.;
et al. Circulating and tissue biomarkers in early-stage non-small. Ecancermedicalscience 2017, 11, 717. [CrossRef]

Bossé, Y.; Dasgupta, A.; Abadier, M.; Guthrie, V,; Song, F.; Armero, V.S.; Gaudreault, N.; Orain, M.; Lamaze, F.C.; Melton, C.; et al.
Prognostic implication of methylation-based circulating tumor DNA detection prior to surgery in stage I non-small cell lung
cancer. Cancer Lett. 2024, 594, 216984. [CrossRef]

Chen, K,; Kang, G.; Zhang, Z.; Lizaso, A.; Beck, S.; Lyskjeer, I.; Chervova, O.; Li, B.; Shen, H.; Wang, C.; et al. Individualized
dynamic methylation-based analysis of cell-free DNA in postoperative monitoring of lung cancer. BMC Med. 2023, 21, 255.
[CrossRef]

Wen, S.W.C.; Nederby, L.; Andersen, R.F.; Nyhus, C.H.; Hilberg, O.; Jakobsen, A.; Hansen, T.F. NK cell activity and methylated
HOXAO9 ctDNA as prognostic biomarkers in patients with non-small cell lung cancer treated with PD-1/PD-L1 inhibitors. Br. J.
Cancer 2023, 129, 135-142. [CrossRef]

Guo, D,; Yang, L.; Yang, ].; Shi, K. Plasma cell-free DNA methylation combined with tumor mutation detection in prognostic
prediction of patients with non-small cell lung cancer (NSCLC). Medicine 2020, 99, e20431. [CrossRef]

Balgkouranidou, I.; Chimonidou, M.; Milaki, G.; Tsarouxa, E.G.; Kakolyris, S.; Welch, D.R.; Georgoulias, V.; Lianidou, E.S. Breast
cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung
cancer. Br. J. Cancer 2014, 110, 2054-2062. [CrossRef]

Coyne, G.O.; Wang, L.; Zlott, J.; Juwara, L.; Covey, ].M.; Beumer, ].H.; Cristea, M.C.; Newman, E.M.; Koehler, S.; Nieva, J.].;
et al. Intravenous 5-fluoro-2’ -deoxycytidine administered with tetrahydrouridine increases the proportion of pl6-expressing
circulating tumor cells in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2020, 85, 979-993. [CrossRef]
[PubMed]

Zhao, M; Zhang, Y,; Li, J.; Li, X;; Cheng, N.; Wang, Q.; Cai, W.; Zhao, C.; He, Y.; Chang, J.; et al. Histone deacetylation, as
opposed to promoter methylation, results in epigenetic BIM silencing and resistance to EGFR TKI in NSCLC. Oncol. Lett. 2017, 15,
1089-1096. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1200/JCO.2018.77.7672
https://www.ncbi.nlm.nih.gov/pubmed/29906251
https://doi.org/10.1016/j.tranon.2021.101279
https://www.ncbi.nlm.nih.gov/pubmed/34800919
https://doi.org/10.1002/1878-0261.12848
https://www.ncbi.nlm.nih.gov/pubmed/33159839
https://doi.org/10.1016/j.gpb.2018.06.002
https://www.ncbi.nlm.nih.gov/pubmed/30010036
https://doi.org/10.3332/ecancer.2017.717
https://doi.org/10.1016/j.canlet.2024.216984
https://doi.org/10.1186/s12916-023-02954-z
https://doi.org/10.1038/s41416-023-02285-z
https://doi.org/10.1097/MD.0000000000020431
https://doi.org/10.1038/bjc.2014.104
https://doi.org/10.1007/s00280-020-04073-5
https://www.ncbi.nlm.nih.gov/pubmed/32314030
https://doi.org/10.3892/ol.2017.7411
https://www.ncbi.nlm.nih.gov/pubmed/29399169

	Introduction 
	Materials and Methods 
	Search Strategy, Inclusion Criteria, and Data Collection 
	Methods for ctDNA Methylation Analysis 
	Statistical Methods 

	Results 
	Study Selection 
	Characteristics of Eligible Studies 
	Diagnostic Accuracy 
	Heterogeneity and Publication Bias 

	Discussion 
	Conclusions 
	References

