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Simple Summary: Cardiovascular diseases are among the most frequent, although rare, long-term
sequalae in adolescents and young adult survivors of breast cancer. However, no dedicated tool
exists to help clinicians with planning personalized follow-up strategies for these patients. To make
up for this lack, in this work, we developed a Bayesian network, an artificial intelligence model, to
predict the 5-year risk for cardiovascular diseases in these patients, leveraging real-world data from
two different cohorts. The model showed a very good ability to identify patients at risk and select
those that should be prioritized because they are at higher risk, making it useful for guiding clinicians
in everyday practice. Finally, the methodological approach proposed in this work is particularly
interesting for all researchers who aim at developing causally interpretable tools, also dealing with
real-world data and their biases.
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Abstract: Background: In the last decades, the increasing number of adolescent and young adult
(AYA) survivors of breast cancer (BC) has highlighted the cardiotoxic role of cancer therapies, making
cardiovascular diseases (CVDs) among the most frequent, although rare, long-term sequalae. Lever-
aging innovative artificial intelligence (AI) tools and real-world data (RWD), we aimed to develop a
causally interpretable model to identify young BC survivors at risk of developing CVDs. Methods:
We designed and trained a Bayesian network (BN), an AI model, making use of expert knowledge
and data from population-based (1036 patients) and clinical (339 patient) cohorts of female AYA (i.e.,
aged 18 to 39 years) 1-year survivors of BC, diagnosed in 2009–2019. The performance achieved by
the BN model was validated against standard classification metrics, and two clinical applications
were proposed. Results: The model showed a very good classification performance and a clear
causal semantic. According to the predictions made by the model, focusing on the 25% of AYA BC
survivors at higher risk of developing CVDs, we could identify 81% of the patients who would
actually develop it. Moreover, a desktop-based app was implemented to calculate the individual
patient’s risk. Conclusions: In this study, we developed the first causal model for predicting the
CVD risk in AYA survivors of BC, also proposing an innovative AI approach that could be useful
for all researchers dealing with RWD. The model could be pivotal for clinicians who aim to plan
personalized follow-up strategies for AYA BC survivors.

Keywords: adolescents and young adults; survivorship; breast cancer; cardiotoxic treatments; risk
prediction; personalized follow-up; artificial intelligence

1. Introduction

The increasing number of cancer survivors in recent decades has moved researchers’
attention from cancer treatment to its long-term outcomes. In this context, artificial in-
telligence (AI) has achieved remarkable results in identifying cancer patients at risk of
developing long-term outcomes, based on different types of data (such as omics and imag-
ing data) [1,2]. Such results can be exploited to minimize therapy-related morbidity by
offering tailored treatments and, at the same time, ensure the most appropriate manage-
ment for high risk. However, AI models are known to be computationally intensive and
to require large amounts of data to perform optimally. Moreover, real-world data (RWD)
used to develop and train these models are often scarce, especially if the outcome of inter-
est is rare or biased. Additionally, healthcare data are typically heterogeneous given the
granularity of the information collected and are stored in silos which do not communicate
with each other. In this framework, data fusion is needed to provide accurate predictions
by combining heterogeneous data with expert knowledge.

Bayesian networks (BNs) are probabilistic graphical models which use graphical
representations to describe conditional probability dependence relationships [3]. These
AI models are well suited to prognostication and can be applied even when events are
rare and some information is missing [4]. Moreover, BNs are able to merge information
retrieved from different sets of data, handle the biases in RWD, and integrate domain
knowledge coming from experts or the literature; all these properties make them an
excellent candidate to build effective predictive models using RWD [5]. Moreover, besides
the fact that the decision-making processes behind the most used AI tools are so complex
as to make them perceived as black boxes by humans, BNs allow for the study of the cause–
effect relationships of all the variables with one another and thereby resemble clinical
reasoning [6].

Adolescents and young adults (AYAs) (15–39 years at first cancer diagnosis) are a
heterogeneous group of cancer patients whose needs, expectations, and treatment deserve
special consideration [7]. As in older women, breast cancer (BC) is the most common cancer
in AYA females, with very high survival rates [8]. Compared to their older counterparts,
however, female AYA patients present more aggressive forms of BC [9,10]. Cardiovascular
diseases (CVDs) are the most common, although rare, long-term outcome in these patients.
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The main causes of CVDs in these survivors (as in older women) include not only intensive
cardiotoxic treatments [11–13] but also lifestyle and socioeconomic factors (e.g., smoking,
obesity) and genetics [14,15].

Despite the large availability of data on older BC patients, no study has characterized
the CVD risk in AYAs. Nevertheless, predictive AI tools developed for older patients are not
directly transportable to this peculiar group of younger patients. Against this background,
the project “pRedicting cardiOvascular diSeAses iN adolescent and young breast caNcer pAtients”
(ROSANNA) is aimed at building a causally interpretable AI-based model to identify AYA
BC survivors at higher risk of developing CVDs. In practice, we used a BN to estimate
the CVD risk by solving a maximum a posteriori query via approximate inference. This
allowed us to leverage the patient-specific conditions given by the observed covariates,
mitigating the impact of the missing ones.

2. Materials and Methods
2.1. Population-Based Cohort (PBC)

A retrospective cohort of about 70,000 AYA patients was collected in the context
of a previous project, named the Ada cohort [16]. To develop this cohort, 34 Italian
population-based cancer registries (CRs) were asked to identify AYA cases and link several
administrative datasets (i.e., hospital discharge records, outpatients, and drug flows) for
long-term outcome identification. Among the Ada cohort, we identified 1036 BC patients,
diagnosed between 2009 and 2014, with the following criteria:

• Female patients aged 18–39 years at first BC diagnosis;
• One primary tumor only;
• Malignant carcinomas only;
• 1-year survivors;
• No metastases at diagnosis;
• No CVD before cancer diagnosis.

We retrieved information on treatments, CVDs, and major cardiovascular risk factors
from the administrative databases based on previously used, validated algorithms [17,18],
described in the Supplementary Material, Table S1.

2.2. Clinic-Based Cohort (CBC)

The PBC had several advantages, such as the high number of patients and the possi-
bility of tracking patients for long-term outcomes, but it lacked cancer prognostic factors
and treatment details that are essential to drive causal interpretations. To overcome this
limitation, we collected an additional retrospective single-institution (Fondazione IRCCS
Istituto Nazionale dei Tumori, Milano, Italy) CBC of 339 AYA BC patients, diagnosed in
2011–2019. Patients were identified in the INT BC registry applying the same criteria as in
the population-based cohort, and detailed clinical information on the BC treatment and
BC prognostic factors was collected via the clinical charts. In contrast to the PBC, in the
CBC, it was not possible to link the administrative datasets; thus, the information on the
CVD follow-up is completely missing. Data from the two cohorts were not directly linkable
because, even though some patients may overlap, privacy constraints made it impossible
to de-identify the patients.

2.3. Variables Analyzed

As opposed to standard statistical techniques, the properties of the BN model make it
possible to deal with data sparsity and low numbers of events; thus, no formal statistical
restriction was made on the list of variables to be included in the model. The selection
of the variables was made according to expert opinion to maximize the model’s causal
interpretability. All the variables selected for the analysis are described in Table 1.
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Table 1. Variables used for the construction of the Bayesian network model.

Variable
Type

Label in the
Model Description Format Values

Selection node

[cohort] Cohort identification label Discrete Population-based cohort; clinic-based
cohort

Cancer survival prognostic factors

[age35] Patient aged 35 years or older at
the date of breast cancer diagnosis Dichotomous Yes/No

[histology] Tumor morphology, according to
ICD-O-3 1 morphology codes Discrete

Ductal and lobular neoplasm
(ICD-O-3 M = 8500–8504, 8508, 8510,

8513, 8514, 8520–8523, 8530, 8540,
8541, 8543); epithelial neoplasms, NOS

(ICD-O-3 M = 8010, 8015);
adenocarcinomas (ICD-O-3 M = 8140,

8201, 8211, 8230); neoplasms, NOS
(ICD-O-3 M = 8000, 8001, 8005); other
histologies (ICD-O-3 M = 8050, 8070,

8575)

[grade] Tumor grading, according to
ICD-O-3 codes Discrete Grade 1; Grade 2; Grade 3

[vascular] Tumor spread to the vascular
system at the time of diagnosis Dichotomous Yes/No

[ki67] Ki67 index higher than 14% Dichotomous Yes/No

[receptors] Tumor receptor status Discrete

Luminal; Luminal A;
Luminal B;

Luminal HER2;
HER 2-enriched;
triple-negative

[pT] Tumor size at the time of diagnosis
(according to pathological stage) Discrete

pT1 (<2 cm);
pT2 (2–5 cm);
pT3 (>5 cm);

pt4 (spread to other organs)

[pN]
Lymph nodes at the time of

diagnosis (according to
pathological stage)

Discrete pN0 (no lymph node involvement);
pN+ (lymph node involvement)

Cancer prognosis

[death_in_5y] Death in the 5 years after cancer
diagnosis Dichotomous Yes/No

Cancer treatments

[chemo_neo]

Neoadjuvant chemotherapy, i.e.,
the chemotherapy was

administered within 6 months
before the main surgical procedure

Dichotomous Yes/No

[radio_neo]

Neoadjuvant radiotherapy, i.e., the
radiotherapy was administered

within 6 months before the main
surgical procedure

Dichotomous Yes/No

[target_neo]

Neoadjuvant target therapy, i.e.,
the targeted therapy was

administered within 6 months
before the main surgical procedure

Dichotomous Yes/No
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Table 1. Cont.

Variable
Type

Label in the
Model Description Format Values

[hormon_neo]

Neoadjuvant hormone therapy,
i.e., hormone therapy was

administered within 6 months
before the main surgical procedure

Dichotomous Yes/No

[surgery] Surgery type Discrete Conservative; radical (i.e.,
mastectomy)

[chemo_adju]

Adjuvant chemotherapy, i.e., the
chemotherapy was administered

within 1 year after the main
surgical procedure

Dichotomous Yes/No

[radio_adju]

Adjuvant radiotherapy, i.e., the
radiotherapy was administered

within 1 year after the main
surgical procedure

Dichotomous Yes/No

[target_adju]

Adjuvant target therapy, i.e., the
target therapy was administered

within 1 year after the main
surgical procedure

Dichotomous Yes/No

[hormons_adiu]

Adjuvant hormone therapy, i.e.,
the hormone therapy was

administered within 1 year after
the main surgical procedure

Dichotomous Yes/No

Other cardiovascular risk factors

[dyslipidemia] Diagnosis of dyslipidemia Discrete

Pre (diagnosis of dyslipidemia within
1 year before the cancer diagnosis

date);
Post (diagnosis of dyslipidemia within

5 years after the cancer diagnosis
date);

No (no diagnosis of dyslipidemia)

[hypertension] Diagnosis of hypertension Discrete

Pre (diagnosis of hypertension within
1 year before the cancer diagnosis

date);
Post (diagnosis of hypertension within

5 years after the cancer diagnosis
date);

No (no diagnosis of hypertension)

[t2db] Diagnosis of type 2 diabetes Discrete

Pre (diagnosis of type 2 diabetes
within 1 year before the cancer

diagnosis date);
Post (diagnosis of type 2 diabetes

within 5 years after the cancer
diagnosis date);

No (no diagnosis of type 2 diabetes)

Target variables

[cardiotoxicity]

The patient showed any sign of
cardiotoxicity (i.e., conduction
disorders and arrhythmias or

heart failure due to
chemo-/radiotherapy) within

5 years after the cancer diagnosis

Dichotomous Yes/No
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Table 1. Cont.

Variable
Type

Label in the
Model Description Format Values

[ischemic_heart
_disease]

Diagnosis of ischemic heart
disease within 5 years after the

cancer diagnosis
Dichotomous Yes/No

[cvds]
Diagnosis of any cardiovascular
disease within 5 years after the

cancer diagnosis
Dichotomous Yes/No

1 ICD-O-3: International Classification of Diseases for Oncology, 3rd edition.

Preoperative clinical and histopathological variables with prognostic value for the pre-
diction of the 5-year survival of the tumor were identified according to standard treatment
guidelines [19].

BC treatments (chemotherapy, radiotherapy, target therapy, and hormone therapy)
were divided, according to the date of surgery, between neoadjuvant (i.e., pre-surgery)
and adjuvant (i.e., post-surgery) treatments. All the treatments can, through different
mechanisms, induce several types of cardiac events, which were further stratified as cardiac
toxicities (i.e., conduction disorders, arrhythmias, or heart failure) and ischemic heart
diseases (i.e., acute myocardial infarction or other forms of ischemic heart disease). In more
detail, chemotherapy, radiotherapy, and targeted drugs exert a wide range of effects on the
cardiac structure and function, with damage to cardiomyocytes and/or endothelial cells,
resulting in various clinical alterations, including left-ventricular dysfunction, coronary
artery diseases, pericarditis and pericardial effusion, cardiomyopathy, valvular disease and
arrhythmias, and, in turn, heart failure in the most severe cases.

Hormone therapy blocks the body’s ability to produce hormones, particularly estrogen,
which has a cardioprotective effect in young females. Thus, the loss of estrogen during
menopause is associated with an increased risk of ischemic heart disease either directly
through vascular cells and cardiac myocytes or indirectly through systemic pathways,
such as by altering lipid profiles and inducing major cardiovascular risk factors such as
hypertension and dyslipidemia.

The distribution of the two cohorts’ characteristics is illustrated in the Supplementary
Material, Table S2. Missing data significantly impacted this analysis and depended strongly
on the cohort of origin (missing not at random); thus, for example, cancer prognostic factors
are completely missing in the PBC, and the same applies to the CVD follow-up in the CBC.

2.4. Model Development and Evaluation

The workflow for the model development is illustrated in the Supplementary Material,
Figure S1. A BN consists of two parts: (i) a directed acyclic graph (DAG) and (ii) a set of
conditional probability tables (CPTs) [20]. The DAG represents dependencies among the
variables, and the conditional probability distributions quantify these dependencies. Our
work focused on a discrete BN, such that all the included variables were dichotomous or
discrete (as shown in Table 1). Given the limited follow-up period of the most recently
diagnosed patients, we set a 5-year time span for the CVD follow-up. We split the overall
combined dataset (PBC + CBC) into two subsets: 339 patients from the CBC + 623 patients
from the PBC (approx. 70% of the overall sample) contributed to the training set, while
the remaining 413 patients from the PBC (approx. 30% of the overall sample) contributed
to the validation set. The CBC did not include CVD information, so it contributed to the
training set only.

Learning the BN model only from training data was not advisable due to the rarity
of the events. To overcome data scarcity, we firstly designed a basic structure of the
DAG using prior knowledge taken from the domain literature and discussed with clinical
experts. Secondly, we used the Structural Expectation–Maximization algorithm to handle
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the missing-not-at-random issue. Structural Expectation–Maximization works when data
are missing completely at random (MCAR) and missing at random (MAR) but can also
be used when data are missing not at random (MNAR) if the missingness mechanism is
modeled correctly, as in our case since the initial DAG was specified using prior knowledge.
Then, the DAG was extended learning new causal relations directly from the training data
(i.e., causal discovery) [21]. To ensure that the relationships identified in the RWD could be
interpreted as causal, making it possible to leap from a probabilistic model to a causal BN,
we subsequently validated them according to the existing literature before adding them
as new arcs (i.e., arrows) to the model. We then estimated the CPTs using the training set.
More technical details on the algorithms used to build the model are described in the work
by Bernasconi et al. [22].

The validation set was used to validate the results and illustrate the possible model
applications. To assess the model classification performance, i.e., its ability to correctly
predict survivors not developing a CVD as not at risk and those developing a CVD as at
risk, we used the standard classification metrics: the Area Under the Receiving Operator
Characteristic Curve (AUC), True Positive Rate (TPR), True Negative Rate (TNR), Positive
Predictive Value (PPV), Negative Predictive Value (NPV), Matthew’s correlation coefficient
(MCC), and accuracy. Accuracy, although popular, can generate overoptimistic results,
especially if the dataset suffers from class imbalance (e.g., rare events, such as CVDs in
AYAs with BC). Accordingly, we also assessed the accuracy rebalanced for the minority
class (i.e., balanced accuracy, or BA). References to all the metric formulas can be found
in the paper by Chicco et al. [23]. We used a normal approximation for proportions to
calculate 95% confidence intervals (CIs).

We plotted a lift chart to illustrate how the model predictions could be used to sort
patients by their risk. In the validation set, we placed survivors in descending order of the
predicted probability of developing a CVD (x-axis), while we plotted the corresponding
observed proportion of survivors who actually developed a CVD, namely, the TPR, on
the y-axis. The faster the growth of the cumulative gain curve, the better the model is at
prioritizing those patients at higher risk. Finally, to support clinicians in everyday practice,
we developed an app-based tool which allows for an estimation of the probability of the
5-year CVD risk for individual AYA BC patients.

For the BN development, training, and validation phases, we used the “bnlearn”
package freely available in R [24].

3. Results
3.1. Model Structure and Validity

The DAG of the final model is shown in Figure 1. All the probability distributions
are displayed using frequency bars in the nodes (i.e., squares), and the dependencies are
indicated by the arcs connecting the nodes. Nodes linked to each other, either directly
(when one direct arc connects them) or indirectly (when the arc connecting two nodes
passes through a third node, namely, a mediator), are assumed to be dependent. If no direct
or indirect arcs connecting two nodes are present, the nodes are assumed to be independent.
Arcs pointing from one node toward another one indicate that the first node is the cause of
the second (e.g., neoadjuvant treatments-->surgery). The direction of the arcs represents
the flow of causation. The cohort of origin ([cohort])—PBC or CBC—is a context variable
(i.e., it represents the context in which the data were collected). By placing this variable
as the root node (i.e., the first node, with no incoming arc), we can describe the missing
mechanism arising from the data’s different contexts of origin and allow the model to
handle the selection bias; thus, patients in the CBC may differ from those in the PBC due to
the selection mechanism. The node [death_in_5y], representing the patient’s death within
5 years of diagnosis, is included in the model to take into consideration its competing
role with CVDs. In the upper part of the DAG, we included by design all the nodes
representing the prognostic factors that mainly impact it; these nodes were included to
describe which factors directly or indirectly determined the choice of neoadjuvant treatment
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and show their interplay, and how, in turn, they indirectly influenced the type of surgery
and adjuvant treatment. The cardiotoxic role of chemotherapy, radiotherapy, and targeted
drugs is illustrated in the left part of the DAG. On the opposite side, the hormone-induced
risk of ischemic heart disease, hypertension, and dyslipidemia (which, together with type
2 diabetes, are among the major CVD risk factors) is described. The distribution of the
latter may also depend on the cohort of origin, which accounts for the inclusion of the
incoming arcs.
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Figure 1. Final Bayesian network model structure. The figure illustrates the directed acyclic graph
behind the model. Briefly, the cohort of origin is set as the root context node, followed by three
subsequent lines that illustrate the cancer prognostic factors which affect both the 5-year survival and
treatment decisions (neoadjuvant if pre-surgery, or adjuvant if post-surgery). Type 2 diabetes (t2db),
dyslipidemia, and hypertension (bottom right in the figure) can already be present prior to the cancer
diagnosis or can be induced by the cancer treatments. Finally, at the bottom of the model, the nodes
can be seen describing cardiotoxicity induced by treatments and ischemic heart diseases, pointing to
the target variable (i.e., cardiovascular diseases (CVDs)).

Figure 2 summarizes the overall performance of the BN. The BN model showed a high
classification performance in the validation set, with an AUC, which is the measure of the
model’s ability to distinguish between survivors at risk of developing a CVD and those not
at risk, very close to 90%. The high level of accuracy (i.e., the probability of a given survivor
being correctly identified as at risk or not at risk by the model) is strongly influenced by
the perfect TNR (i.e., the probability of a survivor without a CVD being identified correctly
by the model), being the negative value of the most frequent class of the target variable
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due to the rarity of the CVD event. In contrast, the model showed the lowest performance
in terms of the TPR, which is the probability of a survivor with a CVD being identified
correctly by the model, due to the low number of events the model was trained on. Thus,
upon controlling for class imbalance and adjusting the accuracy accordingly (as it is for the
balanced accuracy and MCC), the performances drop, even though they are maintained
above 80%.
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Figure 2. Bayesian network classification performances. Each classification metric is represented
by a bar and the error bars are the 95% confidence intervals. Generally speaking, the model had
good classification performances (AUC = 88% and accuracy = 99%). The model showed an almost
perfect ability to correctly predict survivors not developing a CVD as not at risk (TNR, NPV), while
identifying those developing a CVD as at risk is more complex due to the outcome rarity (TPR). When
class imbalance is taken into consideration (BA and MCC), the performances decrease but remain
very high (>80%).

3.2. Clinical Applications

The lift chart (Figure 3) illustrates how the probability values given by the model can
be used to sort BC survivors according to their risk of developing a CVD in the 5 years
following cancer diagnosis. As illustrated in the figure, the cumulative gain curve (depicted
in bold black) suddenly increases. Thus, focusing on the 25% of patients predicted by
the BN model to be at higher risk of developing a CVD enabled the identification of
approximately 81% of patients who will actually develop it. The latter percentage rises to
88% when focusing on the first 50% of patients.

Moreover, if the evidence is set, i.e., if the BN model is provided with information
about an individual patient (for example, information about the neoadjuvant and/or
adjuvant treatments received), the probability distributions are automatically updated,
and the model allows for a prediction of the individual probability of developing a CVD
within five years from the cancer diagnosis. To support clinicians in everyday practice, we
designed and developed an app-based tool which allows for an estimation of the probability
of 5-year CVD risk for individual AYA BC patients (the user interface of the application is
shown in Figure 4).
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(CVD). While the cumulative distribution of the survivors increases, the corresponding True Positive
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5 years) is plotted on the y-axis. The sharp rise in the lift chart highlights the model’s good ability to
identify survivors who should be prioritized for CVD follow-up.

Cancers 2024, 16, x FOR PEER REVIEW 10 of 14 
 

 

Figure 3. Lift chart obtained using Bayesian network model predictions. In this graph, survivors are 
sorted (x-axis), in decreasing order, according to their risk of developing a cardiovascular disease 
(CVD). While the cumulative distribution of the survivors increases, the corresponding True Posi-
tive Rate (i.e., the proportion of survivors in the validation set who actually developed a CVD within 
5 years) is plotted on the y-axis. The sharp rise in the lift chart highlights the model’s good ability to 
identify survivors who should be prioritized for CVD follow-up. 

Moreover, if the evidence is set, i.e., if the BN model is provided with information 
about an individual patient (for example, information about the neoadjuvant and/or ad-
juvant treatments received), the probability distributions are automatically updated, and 
the model allows for a prediction of the individual probability of developing a CVD 
within five years from the cancer diagnosis. To support clinicians in everyday practice, we 
designed and developed an app-based tool which allows for an estimation of the proba-
bility of 5-year CVD risk for individual AYA BC patients (the user interface of the applica-
tion is shown in Figure 4). 

 
Figure 4. Concept draft of the interface (a) and the output (b) of the app-based tool. The figure illus-
trates the interface of the desktop-based app based on Bayesian network model probabilities. When 
the user inputs the patient’s information into the data entry window (a), the baseline model proba-
bility estimates for the 5-year cardiovascular disease risk are updated. Subsequently, in a new win-
dow (b), the user is provided with the individual predicted patient probability, together with an 
illustration that helps the user interpret the predicted value according to the risk classes. 

4. Discussion 
In this work, we developed and validated the first AI-based causal model for estimat-

ing the CVD risk in AYA females surviving BC. The model very accurately identified the 
patients who would develop CVDs (classification metrics), correctly ranking them by their 
risk probability (lift chart) and providing a causal interpretation of the variables involved. 

Figure 4. Concept draft of the interface (a) and the output (b) of the app-based tool. The figure
illustrates the interface of the desktop-based app based on Bayesian network model probabilities.



Cancers 2024, 16, 3643 11 of 14

When the user inputs the patient’s information into the data entry window (a), the baseline model
probability estimates for the 5-year cardiovascular disease risk are updated. Subsequently, in a new
window (b), the user is provided with the individual predicted patient probability, together with an
illustration that helps the user interpret the predicted value according to the risk classes.

4. Discussion

In this work, we developed and validated the first AI-based causal model for esti-
mating the CVD risk in AYA females surviving BC. The model very accurately identified
the patients who would develop CVDs (classification metrics), correctly ranking them
by their risk probability (lift chart) and providing a causal interpretation of the variables
involved. Moreover, using practical applications, we showed that the results obtained by
our model could be pivotal for clinicians who aim at planning effective, tailored follow-up
interventions for this particular group of patients.

4.1. Strengths

In the proposed BN, the context node accounted for the selection and missingness
mechanism in the two cohorts, making it possible to combine them. Unfortunately, the
same approach cannot be used for other machine learning (ML) techniques; therefore,
standard ML models can only use multiple imputation approaches. Despite being very
helpful, multiple imputation requires strong assumptions, such as data missing at random,
which was not valid in this framework.

A crucial task for predictive models is to determine the minimal subset of variables
needed to maximize the performance, which is what interests most clinicians and epidemi-
ologists, especially when many variables are involved and the power set is limited. This
can be easily performed in our model given its visual and interpretable causal structure,
validated by medical knowledge [3].

Due to the AYA distinctive tumor case mix, biology, and treatments, it is not possible
to identify, in the literature, any work that can be used for direct comparison. Despite this,
the BN model proved very good at correctly prioritizing and classifying whether patients
were at risk. In this setting, most classification metrics, such as the TNR and accuracy, are
not informative, being biased by the rarity of CVDs in AYA BC survivors. The same also
applies to the interpretation of the AUC, which is the classification metric most frequently
presented in the scientific literature. Therefore, when dealing with rare events, preference
should be given to metrics such as the balanced accuracy and MCC in view of their ability to
summarize the classification performance while also considering the event prevalence [23].

Finally, classification is just one of the tasks that the BN model can accomplish. Indeed,
we are currently working on applications of causal inference, such as the estimation of the
causal effect of cancer treatments and counterfactual explanations [25].

4.2. Limitations

Like all AI models, the main limitations of this model are its assumptions.
First of all, the causal discovery algorithm used to train the BN has its own set of

assumptions that must hold in order to obtain a sensible DAG. First, causal discovery
assumes causal sufficiency. This assumption requires that all the causes related to the
outcome of interest must be measured. In our case, being able to track adjuvant treatments,
neoadjuvant treatments, type 2 diabetes, dyslipidemia, and hypertension allowed us to
restrict the set of possible unobserved causes and investigate the potential impact of
these variables on CVD. Nevertheless, this assumption is unlikely to hold in a real-world
setting; hence, further methodological work is needed to extend the model to explicitly
include latent confounders, like socioeconomic and lifestyle factors [26] and also genetic
aspects [15,16] that can play an important role in the CVD risk of these patients. Moreover,
it is not only important to include these quantities in the causal discovery process but
also to correctly codify them so that the causal relationships are still valid. However, the
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expert domain knowledge required to perform this is difficult to achieve, especially in new,
emerging fields such as cardio-oncology. Finally, causal discovery is known to be affected
by the discretization process; hence, deciding the discretization thresholds is challenging
and arbitrary.

Another strong assumption is the “no-multiple-versions-of-treatment assumption”, i.e.,
the definition of treatment is the same for all individuals. The BC treatments did not change
during the considered period (diagnosis years 2009–2019); therefore, the treatments were
not expected to be different in the CBC [19,27]. The same assumption may not be valid in the
PBC, where different versions of treatment may be present, since the patients were treated
in different hospitals. We do not expect major differences as national recommendations
guide the treatment of BC patients and medical oncologists follow them not only for
evidence-based standards but also for legal reasons. Nevertheless, attention should also be
paid to the generalizability of the results to more recently diagnosed cases. Thus, the impact
on the CVD risk profile of new schemes and therapies (e.g., immunotherapy) introduced in
the 2020s needs to be further explored. In this regard, a new call for data collection on a
more recent cohort of patients is envisioned in the next few years.

Finally, in advance of the validation performed internally in the data, the model needs
external validation to confirm the transportability of the results to all AYAs with BC [28]. In
this respect, work is already ongoing to externally validate the model in similar cohorts of
AYA BC survivors in six different areas of Italy (Veneto, Friuli-Venezia-Giulia, Tuscany, the
Apulia regions, and two Sicilian provinces). Moreover, the plan is to extend this work to
four additional European countries thanks to a pilot study nested in an international Joint
Action, namely, The Innovative Partnership for Action Against Cancer Joint Action and
Joint Action PreventNCDs.

5. Conclusions

It is expected that further improvement in the interpretability of the BN model will
be obtained while enriching it with more clinical and biological variables. Additional
information on both treatments (e.g., drugs and doses) and lifestyle risk factors (i.e., body
mass index, systolic pressure, cholesterol levels, and smoking) has already been collected for
the CBC. In addition, in the ROSANNA project, a work package is analyzing preoperative
circulating microRNAs to identify those associated with CVDs in patients treated in the
NeoALTTO trial (NCT00553358) [29]. The circulating microRNA(s) identified in this dataset
will be confirmed on independent case series collected in the prospective phase II NeoGENE
trial (as the testing dataset), a multicenter, academic Italian study aimed at profiling HER2-
positive tumor tissues before and after conventional trastuzumab-based therapy with the
aim of studying tumor tissue and the plasma biomarkers of the response to treatment.
Finally, the results will be validated using RWD extracted from a single-institution clinical
cohort at the INT. The feasibility of the integration of microRNA results will also be assessed
during the last year of the project (2025).

To conclude, in this paper, we propose an effective and innovative AI approach that
makes it possible to compensate for data scarcity to overcome the missing-not-at-random
and selection bias issues, also combining domain knowledge together with data gathered
from different cohorts. This work could be a useful use case for all researchers dealing
with RWD and rare events who aim at identifying and causally explaining the long-term
outcomes in chronic patients.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cancers16213643/s1, Table S1: Algorithms used to retrieve patients’
information in the administrative databases; Table S2: Absolute (N) and relative (%) distributions of
the patients included in the analysis, by cohort type; Figure S1: Flow chart followed for the model
development.
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