MiRNA Profiling of Areca Nut-Induced Carcinogenesis in Head and Neck Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Arecoline Treatment
2.2. Screening of miRNAs Using miRNA Microarray
2.3. Determination of miR-499a-5p and Target Gene Expression by RT-qPCR Method
2.4. Overexpression of miR-499a-5p via miRNA-Mimics Transfection
2.5. Analysis of Cell Invasion Ability via Matrigel Invasion Assay
2.6. Analysis of Cell Migration Ability via In Vitro Wound Healing Assay
2.7. Assessment of Chemosensitivity by Cell Survival Assay
2.8. TCGA-HNSC Public Data, Bioinformatics Algorithms, and Pathway Analysis
3. Results
3.1. Identification of a miRNA Panel Induced by Areca Nut in HNC Cells
3.2. Identification of a miRNA Panel Relevant to HNC Development
3.3. Identification of miRNA Signatures Induced by Areca Nut and Contributing to HNC
3.4. Functional Pathways Regulation by Areca Nut-Modulated miRNAs
3.5. miR-499a-5p Regulates Multiple Genes Involved in Several Oncogenic Pathways in HNC
3.6. Critical Role of miR-499a-5p in Mitigating Areca Nut-Induced Carcinogenesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, H.; Kawakita, D.; Taniyama, Y.; Oze, I.; Koyanagi, Y.N.; Hori, M.; Nakata, K.; Sugiyama, H.; Miyashiro, I.; Oki, I.; et al. Subsite-Specific Trends in Mid- and Long-Term Survival for Head and Neck Cancer Patients in Japan: A Population-Based Study. Cancer Sci. 2024, 115, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Inoue-Choi, M.; Shiels, M.S.; McNeel, T.S.; Graubard, B.I.; Hatsukami, D.; Freedman, N.D. Contemporary Associations of Exclusive Cigarette, Cigar, Pipe, and Smokeless Tobacco Use with Overall and Cause-Specific Mortality in the United States. JNCI Cancer Spectr 2019, 3, pkz036. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Garavello, W.; Tramacere, I.; Pelucchi, C.; Galeone, C.; Bagnardi, V.; Corrao, G.; Islami, F.; Fedirko, V.; Boffetta, P.; et al. A Meta-Analysis of Alcohol Drinking and Oral and Pharyngeal Cancers: Results from Subgroup Analyses. Alcohol Alcohol. 2013, 48, 107–118. [Google Scholar] [CrossRef]
- Hu, Y.; Zhong, R.; Li, H.; Zou, Y. Effects of Betel Quid, Smoking and Alcohol on Oral Cancer Risk: A Case-Control Study in Hunan Province, China. Subst. Use Misuse 2020, 55, 1501–1508. [Google Scholar] [CrossRef]
- Miranda-Filho, A.; Bray, F. Global Patterns and Trends in Cancers of the Lip, Tongue and Mouth. Oral Oncol. 2020, 102, 104551. [Google Scholar] [CrossRef]
- Guha, N.; Warnakulasuriya, S.; Vlaanderen, J.; Straif, K. Betel Quid Chewing and the Risk of Oral and Oropharyngeal Cancers: A Meta-Analysis with Implications for Cancer Control. Int. J. Cancer 2014, 135, 1433–1443. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, K.W.; Fang, F.M.; Wu, D.C.; Tsai, S.M.; Chen, P.H.; Shieh, T.Y.; Chen, C.H.; Wu, I.C.; Huang, H.L.; et al. The Neoplastic Impact of Tobacco-Free Betel-Quid on the Histological Type and the Anatomical Site of Aerodigestive Tract Cancers. Int. J. Cancer 2012, 131, E733–E743. [Google Scholar] [CrossRef]
- Li, Y.C.; Cheng, A.J.; Lee, L.Y.; Huang, Y.C.; Chang, J.T. Multifaceted Mechanisms of Areca Nuts in Oral Carcinogenesis: The Molecular Pathology from Precancerous Condition to Malignant Transformation. J. Cancer 2019, 10, 4054–4062. [Google Scholar] [CrossRef]
- Cirillo, N.; Duong, P.H.; Er, W.T.; Do, C.T.N.; De Silva, M.E.H.; Dong, Y.; Cheong, S.C.; Sari, E.F.; McCullough, M.J.; Zhang, P.; et al. Are There Betel Quid Mixtures Less Harmful Than Others? A Scoping Review of the Association between Different Betel Quid Ingredients and the Risk of Oral Submucous Fibrosis. Biomolecules 2022, 12, 664. [Google Scholar] [CrossRef]
- Li, Y.C.; Chang, J.T.; Chiu, C.; Lu, Y.C.; Li, Y.L.; Chiang, C.H.; You, G.R.; Lee, L.Y.; Cheng, A.J. Areca Nut Contributes to Oral Malignancy through Facilitating the Conversion of Cancer Stem Cells. Mol. Carcinog. 2016, 55, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Uehara, O.; Takimoto, K.; Morikawa, T.; Harada, F.; Takai, R.; Adhikari, B.R.; Itatsu, R.; Nakamura, T.; Yoshida, K.; Matsuoka, H.; et al. Upregulated Expression of MMP-9 in Gingival Epithelial Cells Induced by Prolonged Stimulation with Arecoline. Oncol. Lett. 2017, 14, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Thangjam, G.S.; Kondaiah, P. Regulation of Oxidative-Stress Responsive Genes by Arecoline in Human Keratinocytes. J. Periodontal Res. 2009, 44, 673–682. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.Y.; Huang, L.; Yu, T.L.; Wan, S.Q.; Song, J.; Zhang, B.L.; Hu, M. Do Betel Quid and Areca Nut Chewing Deteriorate Prognosis of Oral Cancer? A Systematic Review, Meta-Analysis, and Research Agenda. Oral Dis. 2021, 27, 1366–1375. [Google Scholar] [CrossRef]
- Chen, C.H.; Lu, H.I.; Wang, Y.M.; Chen, Y.H.; Lo, C.M.; Huang, W.T.; Li, S.H. Areca Nut Is Associated with Younger Age of Diagnosis, Poor Chemoradiotherapy Response, and Shorter Overall Survival in Esophageal Squamous Cell Carcinoma. PLoS ONE 2017, 12, e0172752. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Dioguardi, M.; Spirito, F.; Sovereto, D.; Alovisi, M.; Troiano, G.; Aiuto, R.; Garcovich, D.; Crincoli, V.; Laino, L.; Cazzolla, A.P.; et al. MicroRNA-21 Expression as a Prognostic Biomarker in Oral Cancer: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 3396. [Google Scholar] [CrossRef]
- Qiang, H.; Zhan, X.; Wang, W.; Cheng, Z.; Ma, S.; Jiang, C. A Study on the Correlations of the Mir-31 Expression with the Pathogenesis and Prognosis of Head and Neck Squamous Cell Carcinoma. Cancer Biother. Radiopharm. 2019, 34, 189–195. [Google Scholar] [CrossRef]
- Lu, Y.C.; Chang, J.T.; Huang, Y.C.; Huang, C.C.; Chen, W.H.; Lee, L.Y.; Huang, B.S.; Chen, Y.J.; Li, H.F.; Cheng, A.J. Combined Determination of Circulating miR-196a and miR-196b Levels Produces High Sensitivity and Specificity for Early Detection of Oral Cancer. Clin. Biochem. 2015, 48, 115–121. [Google Scholar] [CrossRef]
- Tsai, Y.S.; Lin, C.S.; Chiang, S.L.; Lee, C.H.; Lee, K.W.; Ko, Y.C. Areca Nut Induces miR-23a and Inhibits Repair of DNA Double-Strand Breaks by Targeting FANCG. Toxicol. Sci. 2011, 123, 480–490. [Google Scholar] [CrossRef]
- Huang, H.H.; You, G.R.; Tang, S.J.; Chang, J.T.; Cheng, A.J. Molecular Signature of Long Non-Coding RNA Associated with Areca Nut-Induced Head and Neck Cancer. Cells 2023, 12, 873. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.J.; You, G.R.; Chang, J.T.; Cheng, A.J. Systematic Analysis and Identification of Dysregulated Panel Lncrnas Contributing to Poor Prognosis in Head-Neck Cancer. Front. Oncol. 2021, 11, 731752. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Chen, Y.J.; Wang, H.M.; Tsai, C.Y.; Chen, W.H.; Huang, Y.C.; Fan, K.H.; Tsai, C.N.; Huang, S.F.; Kang, C.J.; et al. Oncogenic Function and Early Detection Potential of miRNA-10b in Oral Cancer as Identified by microRNA Profiling. Cancer Prev. Res. (Phila.) 2012, 5, 665–674. [Google Scholar] [CrossRef] [PubMed]
- You, G.R.; Chang, J.T.; Li, H.F.; Cheng, A.J. Multifaceted and Intricate Oncogenic Mechanisms of NDRG1 in Head and Neck Cancer Depend on Its C-Terminal 3r-Motif. Cells 2022, 11, 1581. [Google Scholar] [CrossRef] [PubMed]
- You, G.R.; Chang, J.T.; Li, Y.L.; Huang, C.W.; Tsai, Y.L.; Fan, K.H.; Kang, C.J.; Huang, S.F.; Chang, P.H.; Cheng, A.J. MYH9 Facilitates Cell Invasion and Radioresistance in Head and Neck Cancer Via Modulation of Cellular ROS Levels by Activating the MAPK-Nrf2-GCLC Pathway. Cells 2022, 11, 2855. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repecka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and Interpreting Cancer Genomics Data Via the Xena Platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Yoshihara, K.; Shahmoradgoli, M.; Martinez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Trevino, V.; Shen, H.; Laird, P.W.; Levine, D.A.; et al. Inferring Tumour Purity and Stromal and Immune Cell Admixture from Expression Data. Nat. Commun. 2013, 4, 2612. [Google Scholar] [CrossRef]
- Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.; Bemis, L.; et al. The multiMiR R Package and Database: Integration of microRNA-Target Interactions Along with Their Disease and Drug Associations. Nucleic Acids Res. 2014, 42, e133. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Li, G.; Wu, F.; Yang, H.; Deng, X.; Yuan, Y. MiR-9-5p Promotes Cell Growth and Metastasis in Non-Small Cell Lung Cancer through the Repression of TGFBR2. Biomed. Pharmacother. 2017, 96, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hu, W.; Li, G.; Guo, Y.; Wan, Z.; Yu, J. Inhibition of miR-9-5p Suppresses Prostate Cancer Progress by Targeting StarD13. Cell. Mol. Biol. Lett. 2019, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.Q.; Jiao, X.L.; Zhang, S.Y.; Xu, Y.; Li, S.; Kong, B.H. MiR-9-5p Could Promote Angiogenesis and Radiosensitivity in Cervical Cancer by Targeting SOCS5. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7314–7326. [Google Scholar] [CrossRef] [PubMed]
- Babion, I.; Jaspers, A.; van Splunter, A.P.; van der Hoorn, I.A.E.; Wilting, S.M.; Steenbergen, R.D.M. miR-9-5p Exerts a Dual Role in Cervical Cancer and Targets Transcription Factor TWIST1. Cells 2019, 9, 65. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, X.; Tang, K.D.; Blick, T.; Kenny, L.; Thompson, E.W.; Punyadeera, C. Overexpression of miRNA-9 Enhances Galectin-3 Levels in Oral Cavity Cancers. Mol. Biol. Rep. 2021, 48, 3979–3989. [Google Scholar] [CrossRef]
- Stojkovic, G.; Jovanovic, I.; Dimitrijevic, M.; Jovanovic, J.; Tomanovic, N.; Stankovic, A.; Arsovic, N.; Boricic, I.; Zeljic, K. Meta-Signature Guided Investigation of miRNA Candidates as Potential Biomarkers of Oral Cancer. Oral Dis. 2023, 29, 1550–1564. [Google Scholar] [CrossRef]
- Zeljic, K.; Jovanovic, I.; Jovanovic, J.; Magic, Z.; Stankovic, A.; Supic, G. MicroRNA Meta-Signature of Oral Cancer: Evidence from a Meta-Analysis. Ups. J. Med. Sci. 2018, 123, 43–49. [Google Scholar] [CrossRef]
- Kinouchi, M.; Uchida, D.; Kuribayashi, N.; Tamatani, T.; Nagai, H.; Miyamoto, Y. Involvement of miR-518c-5p to Growth and Metastasis in Oral Cancer. PLoS ONE 2014, 9, e115936. [Google Scholar] [CrossRef]
- Lei, B.; Wang, D.; Zhang, M.; Deng, Y.; Jiang, H.; Li, Y. miR-615-3p Promotes the Epithelial-Mesenchymal Transition and Metastasis of Breast Cancer by Targeting PICK1/TGFBRI Axis. J. Exp. Clin. Cancer Res. 2020, 39, 71. [Google Scholar] [CrossRef]
- Tu, L.; Zhao, E.; Zhao, W.; Zhang, Z.; Tang, D.; Zhang, Y.; Wang, C.; Zhuang, C.; Cao, H. Hsa-miR-376c-3p Regulates Gastric Tumor Growth Both in Vitro and in Vivo. Biomed. Res. Int. 2016, 2016, 9604257. [Google Scholar] [CrossRef]
- Zhao, F.; Zhong, M.; Pei, W.; Tian, B.; Cai, Y. miR-376c-3p Modulates the Properties of Breast Cancer Stem Cells by Targeting RAB2A. Exp. Ther. Med. 2020, 20, 68. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.M.; Lin, Y.F.; Su, C.Y.; Peng, H.Y.; Chang, Y.C.; Lai, T.C.; Wu, G.H.; Hsu, Y.M.; Chi, L.H.; Hsiao, J.R.; et al. Dysregulation of RUNX2/Activin-A Axis Upon miR-376c Downregulation Promotes Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma. Cancer Res. 2016, 76, 7140–7150. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Gu, Y.; Wang, F.; Zhou, L.; Dai, Z.; Liu, H.; Wu, X.; Wang, X.; Liu, Y.; Chen, S.; et al. Upregulation of miRNA-154-5p Prevents the Tumorigenesis of Osteosarcoma. Biomed. Pharmacother. 2020, 124, 109884. [Google Scholar] [CrossRef] [PubMed]
- Shou, Y.; Wang, X.; Liang, Y.; Liu, X.; Chen, K. Exosomes-Derived miR-154-5p Attenuates Esophageal Squamous Cell Carcinoma Progression and Angiogenesis by Targeting Kinesin Family Member 14. Bioengineered 2022, 13, 4610–4620. [Google Scholar] [CrossRef]
- Chen, J.; Ma, C.; Zhang, Y.; Pei, S.; Du, M.; Zhang, Y.; Qian, L.; Wang, J.; Yin, L.; He, X. MiR-154-5p Suppresses Cell Invasion and Migration through Inhibiting KIF14 in Nasopharyngeal Carcinoma. Onco Targets Ther. 2020, 13, 2235–2246. [Google Scholar] [CrossRef]
- Tomaszewska, W.; Kozlowska-Maslon, J.; Baranowski, D.; Perkowska, A.; Szalkowska, S.; Kazimierczak, U.; Severino, P.; Lamperska, K.; Kolenda, T. Mir-154 Influences HNSCC Development and Progression through Regulation of the Epithelial-to-Mesenchymal Transition Process and Could Be Used as a Potential Biomarker. Biomedicines 2021, 9, 1894. [Google Scholar] [CrossRef]
- Winsel, S.; Maki-Jouppila, J.; Tambe, M.; Aure, M.R.; Pruikkonen, S.; Salmela, A.L.; Halonen, T.; Leivonen, S.K.; Kallio, L.; Borresen-Dale, A.L.; et al. Excess of miRNA-378a-5p Perturbs Mitotic Fidelity and Correlates with Breast Cancer Tumourigenesis in Vivo. Br. J. Cancer 2014, 111, 2142–2151. [Google Scholar] [CrossRef]
- Zou, H.; Yang, L. MiR-378a-5p Improved the Prognosis and Suppressed the Progression of Hepatocellular Carcinoma by Targeting the VEGF Pathway. Transl Cancer Res 2020, 9, 1558–1566. [Google Scholar] [CrossRef]
- Hu, G.; Che, P.; Deng, L.; Liu, L.; Liao, J.; Liu, Q. MiR-378a-5p Exerts a Radiosensitizing Effect on CRC through LRP8/beta-catenin Axis. Cancer Biol. Ther. 2024, 25, 2308165. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Zhang, M.; Wu, Y.; Lu, X.; Zhu, Y. MiR-378a-5p Inhibits the Proliferation of Colorectal Cancer Cells by Downregulating CDK1. World J. Surg. Oncol. 2021, 19, 54. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, Q.L.; Sun, S.Q.; Jiao, K.; Liu, D.R.; Zhou, X.C.; Huang, L. MiR-378a-5p Inhibits Angiogenesis of Oral Squamous Cell Carcinoma by Targeting KLK4. Neoplasma 2020, 67, 85–92. [Google Scholar] [CrossRef]
- Vimalraj, S.; Subramanian, R.; Saravanan, S.; Arumugam, B.; Anuradha, D. MicroRNA-432-5p Regulates Sprouting and Intussusceptive Angiogenesis in Osteosarcoma Microenvironment by Targeting PDGFB. Lab. Investig. 2021, 101, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Hu, Z.; Kong, Y.; Li, L. MicroRNA-432-5p Inhibits Cell Migration and Invasion by Targeting CXCL5 in Colorectal Cancer. Exp. Ther. Med. 2021, 21, 301. [Google Scholar] [CrossRef] [PubMed]
- Yun, Z.; Yue, M.; Kang, Z.; Zhang, P. Reduced Expression of microRNA-432-5p by DNA Methyltransferase 3b Leads to Development of Colorectal Cancer through Upregulation of CCND2. Exp. Cell Res. 2022, 410, 112936. [Google Scholar] [CrossRef]
- Chou, C.H.; Yen, C.H.; Liu, C.J.; Tu, H.F.; Lin, S.C.; Chang, K.W. The Upregulation of VGF Enhances the Progression of Oral Squamous Carcinoma. Cancer Cell Int. 2024, 24, 115. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, M.; Jin, H.; Peng, B.; Dai, L.; Wang, S.; Xing, H.; Wang, B.; Wu, Z. Synthetic Evaluation of MicroRNA-1-3p Expression in Head and Neck Squamous Cell Carcinoma Based on Microarray Chips and MicroRNA Sequencing. Biomed. Res. Int. 2021, 2021, 6529255. [Google Scholar] [CrossRef]
- Hou, Y.Y.; Lee, J.H.; Chen, H.C.; Yang, C.M.; Huang, S.J.; Liou, H.H.; Chi, C.C.; Tsai, K.W.; Ger, L.P. The Association between miR-499a Polymorphism and Oral Squamous Cell Carcinoma Progression. Oral Dis. 2015, 21, 195–206. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.F.; Ouyang, N.; Zhao, S.; Yao, H.; Guan, X.; Tong, J.; Chen, T.; Li, J.X. MicroRNA and mRNA Interaction Network Regulates the Malignant Transformation of Human Bronchial Epithelial Cells Induced by Cigarette Smoke. Front. Oncol. 2019, 9, 1029. [Google Scholar] [CrossRef]
- Wu, S.Y.; Wu, A.T.; Liu, S.H. MicroRNA-17-5p Regulated Apoptosis-Related Protein Expression and Radiosensitivity in Oral Squamous Cell Carcinoma Caused by Betel Nut Chewing. Oncotarget 2016, 7, 51482–51493. [Google Scholar] [CrossRef]
- Chuerduangphui, J.; Ekalaksananan, T.; Chaiyarit, P.; Patarapadungkit, N.; Chotiyano, A.; Kongyingyoes, B.; Promthet, S.; Pientong, C. Effects of Arecoline on Proliferation of Oral Squamous Cell Carcinoma Cells by Dysregulating c-Myc and miR-22, Directly Targeting Oncostatin M. PLoS ONE 2018, 13, e0192009. [Google Scholar] [CrossRef]
- Shiah, S.G.; Hsiao, J.R.; Chang, W.M.; Chen, Y.W.; Jin, Y.T.; Wong, T.Y.; Huang, J.S.; Tsai, S.T.; Hsu, Y.M.; Chou, S.T.; et al. Downregulated miR329 and miR410 Promote the Proliferation and Invasion of Oral Squamous Cell Carcinoma by Targeting Wnt-7b. Cancer Res. 2014, 74, 7560–7572. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.T.; Peng, H.Y.; Mo, K.C.; Hsu, Y.M.; Wu, G.H.; Hsiao, J.R.; Lin, S.F.; Wang, H.D.; Shiah, S.G. MicroRNA-486-3p Functions as a Tumor Suppressor in Oral Cancer by Targeting DDR1. J. Exp. Clin. Cancer Res. 2019, 38, 281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Han, S.; Wang, Y.; Liu, R.; Meng, F.; Su, Z.; Huo, F. Suppression of miR-886-3p Mediated by Arecoline (ARE) Contributes to the Progression of Oral Squamous Cell Carcinoma. J. Investig. Med. 2021, 69, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.W.; Yu, C.C.; Hsieh, P.L.; Liao, Y.W.; Chu, P.M.; Yu, C.H.; Fang, C.Y. Arecoline Enhances miR-21 to Promote Buccal Mucosal Fibroblasts Activation. J. Formos. Med. Assoc. 2021, 120, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.Y.; Yu, C.C.; Liao, Y.W.; Hsieh, P.L.; Ohiro, Y.; Chu, P.M.; Huang, Y.C.; Yu, C.H.; Tsai, L.L. Mir-10b Regulated by Twist Maintains Myofibroblasts Activities in Oral Submucous Fibrosis. J. Formos. Med. Assoc. 2020, 119, 1167–1173. [Google Scholar] [CrossRef]
- Yu, C.C.; Liao, Y.W.; Hsieh, P.L.; Chang, Y.C. Targeting lncRNA H19/miR-29b/COL1A1 Axis Impedes Myofibroblast Activities of Precancerous Oral Submucous Fibrosis. Int. J. Mol. Sci. 2021, 22, 2216. [Google Scholar] [CrossRef]
- Liao, Y.W.; Yu, C.C.; Hsieh, P.L.; Chang, Y.C. Mir-200b Ameliorates Myofibroblast Transdifferentiation in Precancerous Oral Submucous Fibrosis through Targeting ZEB2. J. Cell. Mol. Med. 2018, 22, 4130–4138. [Google Scholar] [CrossRef]
- Lu, M.Y.; Yu, C.C.; Chen, P.Y.; Hsieh, P.L.; Peng, C.Y.; Liao, Y.W.; Yu, C.H.; Lin, K.H. Mir-200c Inhibits the Arecoline-Associated Myofibroblastic Transdifferentiation in Buccal Mucosal Fibroblasts. J. Formos. Med. Assoc. 2018, 117, 791–797. [Google Scholar] [CrossRef]
- Tsai, Y.S.; Lee, K.W.; Huang, J.L.; Liu, Y.S.; Juo, S.H.; Kuo, W.R.; Chang, J.G.; Lin, C.S.; Jong, Y.J. Arecoline, a Major Alkaloid of Areca Nut, Inhibits p53, Represses DNA Repair, and Triggers DNA Damage Response in Human Epithelial Cells. Toxicology 2008, 249, 230–237. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Yang, C.C.; Lin, S.C.; Cheng, C.C.; Lin, S.H.; Liu, C.J.; Chang, K.W. Areca Nut Extract Upregulates Vimentin by Activating PI3K/AKT Signaling in Oral Carcinoma. J. Oral Pathol. Med. 2011, 40, 160–166. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, K.; Yin, Y.; Qi, Y.; Li, S.; Sun, H.; Luo, M.; Sun, Y.; Yu, Z.; Yang, J.; et al. Arecoline-Induced Hepatotoxicity in Rats: Screening of Abnormal Metabolic Markers and Potential Mechanisms. Toxics 2023, 11, 984. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, C.; Li, N.; Wang, F.; Xu, Y.; Shen, Z.; Yang, L.; Li, Z.; He, C. The circEPSTI1/mir-942-5p/LTBP2 Axis Regulates the Progression of OSCC in the Background of OSF Via EMT and the PI3K/Akt/mTOR Pathway. Cell Death Dis. 2020, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Chen, Y.J.; Chang, H.H.; Chan, C.P.; Yeh, C.Y.; Wang, Y.L.; Cheng, R.H.; Hahn, L.J.; Jeng, J.H. Areca Nut Components Affect COX-2, Cyclin B1/Cdc25c and Keratin Expression, PGE2 Production in Keratinocyte Is Related to Reactive Oxygen Species, CYP1A1, Src, EGFR and Ras Signaling. PLoS ONE 2014, 9, e101959. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jiang, P.; Zheng, H.; Chen, P.; Yang, M. Downregulation of miR-499a-5p Predicts a Poor Prognosis of Patients with Non-Small Cell Lung Cancer and Restrains the Tumorigenesis by Targeting Fibroblast Growth Factor 9. Technol. Cancer Res. Treat. 2020, 19, 1533033820957001. [Google Scholar] [CrossRef]
- Fan, D.; Ma, Y.; Qi, Y.; Yang, X.; Zhao, H. TMEM189 as a Target Gene of MiR-499a-5p Regulates Breast Cancer Progression through the Ferroptosis Pathway. J. Clin. Biochem. Nutr. 2023, 73, 154–160. [Google Scholar] [CrossRef]
- Jing, L.; Hua, X.; Yuanna, D.; Rukun, Z.; Junjun, M. Exosomal miR-499a-5p Inhibits Endometrial Cancer Growth and Metastasis Via Targeting VAV3. Cancer Manag. Res. 2020, 12, 13541–13552. [Google Scholar] [CrossRef]
- Gu, X.; Dong, M.; Liu, Z.; Yang, J.; Shi, Y. MiR-499a-5p Inhibits Proliferation, Invasion, Migration, and Epithelial-Mesenchymal Transition, and Enhances Radiosensitivity of Cervical Cancer Cells Via Targeting eIF4E. Onco Targets Ther. 2020, 13, 2913–2924. [Google Scholar] [CrossRef]
- Jishnu, P.V.; Shenoy, S.U.; Sharma, M.; Chopra, A.; Radhakrishnan, R. Comprehensive Analysis of microRNAs and Their Target Genes in Oral Submucous Fibrosis. Oral Dis. 2023, 29, 1894–1904. [Google Scholar] [CrossRef]
- Kondaiah, P.; Pant, I.; Khan, I. Molecular Pathways Regulated by Areca Nut in the Etiopathogenesis of Oral Submucous Fibrosis. Periodontol. 2000 2019, 80, 213–224. [Google Scholar] [CrossRef]
miRNA | TCGA-HNSC | ANE Induced Panel | |||
---|---|---|---|---|---|
T/N | p | OEC FC | SAS FC | Average FC | |
miR-513a-5p | 4.28 | 1.90 × 10−3 | 39.40 | 26.15 | 32.77 |
miR-483-3p | 1.80 | 8.71 × 10−4 | 1.94 | 54.03 | 27.99 |
miR-615-3p | 7.56 | 9.83 × 10−24 | 1.19 | 29.95 | 15.57 |
miR-636 | 1.58 | 4.40 × 10−4 | 8.35 | 3.54 | 5.95 |
miR-589-3p | 2.59 | 5.05 × 10−14 | 10.19 | 1.39 | 5.79 |
miR-135b-5p | 2.46 | 1.31 × 10−7 | 3.41 | 5.82 | 4.62 |
miR-508-3p | 2.72 | 2.85 × 10−2 | 4.88 | 4.11 | 4.49 |
miR-518c-5p | 2.98 | 2.03 × 10−2 | 3.36 | 3.96 | 3.66 |
miR-9-5p | 10.26 | 3.01 × 10−14 | 2.91 | 3.30 | 3.10 |
miR-663a | 2.80 | 8.42 × 10−6 | 1.43 | 3.87 | 2.65 |
miR-129-5p | 1.94 | 1.04 × 10−2 | 3.32 | 1.73 | 2.53 |
miR-454-5p | 2.00 | 6.92 × 10−11 | 1.53 | 3.35 | 2.44 |
miR-506-3p | 5.41 | 7.73 × 10−3 | 2.21 | 2.02 | 2.11 |
miR-509-3p | 3.76 | 4.58 × 10−3 | 2.58 | 1.59 | 2.08 |
miR-181a-5p | 1.46 | 3.75 × 10−9 | 1.21 | 2.91 | 2.06 |
miR-767-3p | 8.32 | 1.26 × 10−20 | 2.62 | 1.00 | 1.81 |
miR-324-3p | 1.66 | 5.75 × 10−12 | 2.20 | 1.26 | 1.73 |
miR-576-5p | 1.61 | 1.14 × 10−7 | 2.46 | 1.00 | 1.73 |
miR-33b-5p | 1.55 | 4.37 × 10−3 | 2.23 | 1.00 | 1.62 |
miR-105-5p | 48.05 | 1.52 × 10−16 | 2.14 | 1.00 | 1.57 |
miR-501-5p | 1.53 | 4.17 × 10−4 | 2.15 | 0.91 | 1.53 |
miR-142-3p | 1.69 | 6.95 × 10−5 | 1.95 | 1.10 | 1.53 |
miR-33a-5p | 1.70 | 5.59 × 10−4 | 0.87 | 2.13 | 1.50 |
miR-342-3p | 1.47 | 4.75 × 10−3 | 2.07 | 0.93 | 1.50 |
miR-629-3p | 2.18 | 7.85 × 10−16 | 1.20 | 1.72 | 1.46 |
miR-20b-5p | 2.67 | 1.04 × 10−2 | 1.47 | 1.31 | 1.39 |
miR-222-3p | 1.86 | 8.44 × 10−17 | 1.68 | 0.92 | 1.30 |
miR-551a | 1.55 | 1.03 × 10−2 | 1.00 | 1.55 | 1.28 |
miR-191-5p | 1.38 | 7.19 × 10−5 | 1.60 | 0.90 | 1.25 |
miR-301a-3p | 3.75 | 4.28 × 10−27 | 1.11 | 1.33 | 1.22 |
miR-590-5p | 1.44 | 3.50 × 10−6 | 0.98 | 1.42 | 1.20 |
miR-424-5p | 2.62 | 4.37 × 10−13 | 1.11 | 1.28 | 1.19 |
miR-181a-3p | 1.24 | 5.97 × 10−3 | 1.14 | 1.21 | 1.18 |
miR-20a-5p | 1.70 | 3.39 × 10−5 | 1.24 | 1.09 | 1.16 |
miR-455-5p | 2.25 | 5.93 × 10−21 | 1.23 | 1.04 | 1.14 |
miR-767-5p | 39.86 | 7.03 × 10−19 | 1.26 | 1.00 | 1.13 |
miR-196b-5p | 12.84 | 4.35 × 10−36 | 0.96 | 1.30 | 1.13 |
miR-19a-3p | 2.16 | 4.85 × 10−9 | 1.04 | 1.21 | 1.12 |
miR-141-3p | 1.40 | 1.42 × 10−3 | 0.86 | 1.37 | 1.11 |
miRNA | TCGA-HNSC | ANE Induced Panel | |||
---|---|---|---|---|---|
T/N | p | OEC FC | SAS FC | Average FC | |
miR-499a-5p | −7.97 | 5.04 × 10−4 | −5.68 | −4.08 | −4.75 |
miR-190a-5p | −2.83 | 2.83 × 10−8 | −2.75 | −16.09 | −4.69 |
miR-1-3p | −11.77 | 3.44 × 10−4 | −5.12 | −4.25 | −4.64 |
miR-154-5p | −2.52 | 1.61 × 10−6 | −9.82 | −1.96 | −3.26 |
miR-410-3p | −4.36 | 4.31 × 10−4 | −3.37 | −2.18 | −2.65 |
miR-329-3p | −1.87 | 4.52 × 10−4 | −2.43 | −2.76 | −2.59 |
miR-376b-3p | −1.63 | 1.29 × 10−2 | −4.45 | −1.69 | −2.45 |
miR-378a-5p | −3.96 | 7.84 × 10−5 | −1.48 | −7.02 | −2.44 |
miR-376c-3p | −4.48 | 7.18 × 10−4 | −3.43 | −1.86 | −2.41 |
miR-758-3p | −1.36 | 2.13 × 10−3 | −6.19 | −1.36 | −2.23 |
miR-432-5p | −2.47 | 2.09 × 10−5 | −1.18 | −7.20 | −2.03 |
miR-409-3p | −1.34 | 1.15 × 10−3 | −1.71 | −2.18 | −1.92 |
miR-382-5p | −1.62 | 6.75 × 10−4 | −2.33 | −1.63 | −1.92 |
miR-199b-5p | −2.39 | 3.64 × 10−8 | −3.52 | −1.29 | −1.88 |
miR-379-5p | −4.05 | 7.97 × 10−5 | −3.13 | −1.30 | −1.84 |
miR-377-3p | −1.99 | 3.27 × 10−4 | −2.75 | −1.34 | −1.80 |
miR-495-3p | −3.69 | 4.36 × 10−4 | −2.53 | −1.31 | −1.73 |
let-7b-5p | −1.43 | 1.27 × 10−6 | −1.30 | −1.97 | −1.57 |
miR-369-3p | −2.89 | 5.21 × 10−5 | −3.39 | −1.00 | −1.54 |
miR-548b-3p | −1.69 | 3.11 × 10−2 | −2.91 | −1.00 | −1.49 |
miR-337-3p | −3.86 | 3.99 × 10−4 | −1.00 | −2.87 | −1.48 |
miR-485-5p | −1.44 | 3.54 × 10−2 | −2.80 | −1.00 | −1.47 |
miR-376a-3p | −2.71 | 5.16 × 10−3 | −3.68 | −0.88 | −1.43 |
miR-23b-3p | −1.61 | 1.90 × 10−9 | −1.40 | −1.43 | −1.41 |
miR-206 | −4.94 | 8.71 × 10−4 | −2.31 | −0.99 | −1.38 |
miR-128-3p | −1.74 | 4.36 × 10−3 | −1.02 | −1.78 | −1.30 |
miR-27b-3p | −1.95 | 1.15 × 10−9 | −1.32 | −1.25 | −1.28 |
miR-299-3p | −2.08 | 4.51 × 10−3 | −1.75 | −1.00 | −1.27 |
miR-491-5p | −1.93 | 4.62 × 10−4 | −0.98 | −1.79 | −1.27 |
miR-369-5p | −3.35 | 2.58 × 10−6 | −1.72 | −1.00 | −1.26 |
miR-655-3p | −3.06 | 1.59 × 10−3 | −1.61 | −1.00 | −1.24 |
miR-215-5p | −1.82 | 4.93 × 10−6 | −1.67 | −0.97 | −1.23 |
miR-140-5p | −1.62 | 5.66 × 10−8 | −1.32 | −1.14 | −1.22 |
miR-199a-5p | −1.32 | 1.82 × 10−2 | −1.49 | −1.00 | −1.20 |
miR-107 | −1.24 | 2.25 × 10−3 | −1.13 | −1.27 | −1.20 |
miR-30e-3p | −2.29 | 2.42 × 10−11 | −1.31 | −1.08 | −1.19 |
miR-152-3p | −1.50 | 2.91 × 10−6 | −1.05 | −1.26 | −1.14 |
miR-30a-5p | −3.85 | 1.76 × 10−9 | −1.42 | −0.93 | −1.12 |
miR-30a-3p | −5.55 | 1.15 × 10−8 | −1.42 | −0.92 | −1.12 |
miR-100-5p | −3.72 | 1.02 × 10−16 | −0.91 | −1.45 | −1.12 |
miR-181c-5p | −1.28 | 8.72 × 10−4 | −1.42 | −0.91 | −1.11 |
miR-29a-3p | −2.85 | 4.19 × 10−14 | −1.00 | −1.24 | −1.11 |
let-7f-5p | −1.52 | 7.75 × 10−6 | −1.22 | −0.94 | −1.07 |
miR-30e-5p | −2.45 | 5.16 × 10−11 | −1.34 | −0.85 | −1.04 |
miR-532-5p | −1.20 | 3.58 × 10−3 | −0.87 | −1.28 | −1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-H.; Chang, J.T.; You, G.-R.; Fu, Y.-F.; Shen, E.Y.-L.; Huang, Y.-F.; Shen, C.-R.; Cheng, A.-J. MiRNA Profiling of Areca Nut-Induced Carcinogenesis in Head and Neck Cancer. Cancers 2024, 16, 3710. https://doi.org/10.3390/cancers16213710
Huang H-H, Chang JT, You G-R, Fu Y-F, Shen EY-L, Huang Y-F, Shen C-R, Cheng A-J. MiRNA Profiling of Areca Nut-Induced Carcinogenesis in Head and Neck Cancer. Cancers. 2024; 16(21):3710. https://doi.org/10.3390/cancers16213710
Chicago/Turabian StyleHuang, Hung-Han, Joseph T. Chang, Guo-Rung You, Yu-Fang Fu, Eric Yi-Liang Shen, Yi-Fang Huang, Chia-Rui Shen, and Ann-Joy Cheng. 2024. "MiRNA Profiling of Areca Nut-Induced Carcinogenesis in Head and Neck Cancer" Cancers 16, no. 21: 3710. https://doi.org/10.3390/cancers16213710
APA StyleHuang, H. -H., Chang, J. T., You, G. -R., Fu, Y. -F., Shen, E. Y. -L., Huang, Y. -F., Shen, C. -R., & Cheng, A. -J. (2024). MiRNA Profiling of Areca Nut-Induced Carcinogenesis in Head and Neck Cancer. Cancers, 16(21), 3710. https://doi.org/10.3390/cancers16213710