Delayed and Concurrent Stereotactic Radiosurgery in Immunotherapy-Naïve Melanoma Brain Metastases
Simple Summary
Abstract
1. Introduction
2. Epidemiology of Metastatic Melanoma
3. Therapies for Brain Metastases in Melanoma
3.1. Surgery
3.2. Cytotoxic Chemotherapy
3.3. Radiation Treatment in Metastatic Melanoma
3.3.1. Whole Brain Radiation Therapy
3.3.2. Stereotactic Radiosurgery
3.4. Targeted Therapy in Metastatic Melanoma
3.4.1. Interleukin-2
3.4.2. Immunotherapy Checkpoint Inhibitors
4. Combination Immunotherapy
Nivolumab/Ipilimumab Combined Therapy
5. Concurrent Stereotactic Radiosurgery and Immune Checkpoint Therapy
6. Ongoing Clinical Trials
7. Delayed Radiation Therapy
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cancer Stat Facts: Melanoma of the Skin. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 21 February 2024).
- Tas, F. Metastatic Behavior in Melanoma: Timing, Pattern, Survival, and Influencing Factors. J. Oncol. 2012, 2012, 647684. [Google Scholar] [CrossRef]
- Yusuf, M.; Rattani, A.; Gaskins, J.; Oliver, A.L.; Mandish, S.F.; Burton, E.; May, M.E.; Williams, B.; Ding, D.; Sharma, M.; et al. Stereotactic radiosurgery for melanoma brain metastases: Dose-size response relationship in the era of immunotherapy. J. Neurooncol. 2022, 156, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Yousaf, N.; Larkin, J. Melanoma epidemiology, biology and prognosis. Eur. J. Cancer Suppl. 2013, 11, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Vosoughi, E.; Lee, J.M.; Miller, J.R.; Nosrati, M.; Minor, D.R.; Abendroth, R.; Lee, J.W.; Andrews, B.T.; Leng, L.Z.; Wu, M.; et al. Survival and clinical outcomes of patients with melanoma brain metastasis in the era of checkpoint inhibitors and targeted therapies. BMC Cancer 2018, 18, 490. [Google Scholar] [CrossRef]
- Fife, K.M.; Colman, M.H.; Stevens, G.N.; Firth, I.; Moon, D.; Shannon, K.; Harman, R.; Petersen-Schaefer, K.; Zacest, A.; Besser, M.; et al. Determinants of Outcome in Melanoma Patients With Cerebral Metastases. J. Clin. Oncol. 2004, 22, 1293–1300. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A Randomized Trial of Surgery in the Treatment of Single Metastases to the Brain. N. Engl. J. Med. 1990, 322, 494–500. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Boutros, C.; Kok, D.; Robert, C.; McArthur, G. New Era in the Management of Melanoma Brain Metastases. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 741–750. [Google Scholar] [CrossRef]
- Chukwueke, U.; Batchelor, T.; Brastianos, P. Management of Brain Metastases in Patients with Melanoma. J. Oncol. Pract. 2016, 12, 536–542. [Google Scholar] [CrossRef]
- Rutkowski, P.; Kiprian, D.; Dudzisz-Śledź, M.; Świtaj, T.; Michalik, R.; Spałek, M.; Kozak, K.; Mandat, T. Management of melanoma metastases in the brain. Nowotw. J. Oncol. 2019, 69, 86–96. [Google Scholar] [CrossRef]
- Wroński, M.; Arbit, E. Surgical treatment of brain metastases from melanoma: A retrospective study of 91 patients. J. Neurosurg. 2000, 93, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Skibber, J.M.; Soong, S.J.; Austin, L.; Balch, C.M.; Sawaya, R.E. Cranial irradiation after surgical excision of brain metastases in melanoma patients. Ann. Surg. Oncol. 1996, 3, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, W.S.; Pommier, R.F.; Lum, S.; Wilmarth, T.J. Surgical treatment of metastatic melanoma. Am. J. Surg. 1998, 175, 413–417. [Google Scholar] [CrossRef]
- Alvarez-Breckenridge, C.; Giobbie-Hurder, A.; Gill, C.M.; Bertalan, M.; Stocking, J.; Kaplan, A.; Nayyar, N.; Lawrence, D.P.; Flaherty, K.T.; Shih, H.A.; et al. Upfront Surgical Resection of Melanoma Brain Metastases Provides a Bridge Toward Immunotherapy-Mediated Systemic Control. Oncologist 2019, 24, 671–679. [Google Scholar] [CrossRef]
- Bafaloukos, D.; Gogas, H. The treatment of brain metastases in melanoma patients. Cancer Treat. Rev. 2004, 30, 515–520. [Google Scholar] [CrossRef]
- Becco, P.; Gallo, S.; Poletto, S.; Frascione, M.P.M.; Crotto, L.; Zaccagna, A.; Paruzzo, L.; Caravelli, D.; Carnevale-Schianca, F.; Aglietta, M. Melanoma Brain Metastases in the Era of Target Therapies: An Overview. Cancers 2020, 12, 1640. [Google Scholar] [CrossRef]
- Agarwala, S.S.; Kirkwood, J.M.; Gore, M.; Dreno, B.; Thatcher, N.; Czarnetski, B.; Atkins, M.; Buzaid, A.; Skarlos, D.; Rankin, E.M. Temozolomide for the Treatment of Brain Metastases Associated with Metastatic Melanoma: A Phase II Study. J. Clin. Oncol. 2004, 22, 2101–2107. [Google Scholar] [CrossRef]
- Sun, W.; Schuchter, L.M. Metastatic melanoma. Curr. Treat. Opt. Oncol. 2001, 2, 193–202. [Google Scholar] [CrossRef]
- Fogarty, G.B.; Hong, A. Radiation therapy for advanced and metastatic melanoma. J. Surg. Oncol. 2014, 109, 370–375. [Google Scholar] [CrossRef]
- Jiang, C.; Kleber, T.J.; Switchenko, J.M.; Khan, M.K. Single institutional outcomes of whole brain radiotherapy for metastatic melanoma brain metastases. Radiat. Oncol. 2021, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- McHugh, F.A.; Kow, C.Y.; Falkov, A.; Heppner, P.; Law, A.; Bok, A.; Schweder, P. Metastatic melanoma: Surgical treatment of brain metastases—Analysis of 110 patients. J. Clin. Neurosci. 2020, 73, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.M.; Fogarty, G.B.; Dolven-Jacobsen, K.; Burmeister, B.H.; Lo, S.N.; Haydu, L.E.; Vardy, J.L.; Nowak, A.K.; Dhillon, H.M.; Ahmed, T.; et al. Adjuvant Whole-Brain Radiation Therapy Compared With Observation After Local Treatment of Melanoma Brain Metastases: A Multicenter, Randomized Phase III Trial. J. Clin. Oncol. 2019, 37, 3132–3141. [Google Scholar] [CrossRef] [PubMed]
- Carron, R.; Gaudy-Marqueste, C.; Amatore, F.; Padovani, L.; Malissen, N.; Balossier, A.; Loundou, A.; Bonnet, N.; Muracciole, X.; Régis, J.-M.; et al. Stereotactic radiosurgery combined with anti-PD1 for the management of melanoma brain metastases: A retrospective study of safety and efficacy. Eur. J. Cancer 2020, 135, 52–61. [Google Scholar] [CrossRef]
- Goyal, S.; Silk, A.W.; Tian, S.; Mehnert, J.; Danish, S.; Ranjan, S.; Kaufman, H.L. Clinical Management of Multiple Melanoma Brain Metastases: A Systematic Review. JAMA Oncol. 2015, 1, 668. [Google Scholar] [CrossRef]
- La Fuente, M.D.; Beal, K.; Carvajal, R.; Kaley, T.J. Whole-brain radiotherapy in patients with brain metastases from melanoma. CNS Oncol. 2014, 3, 401–406. [Google Scholar] [CrossRef]
- Thomson, H.M.; Ensign, S.P.F.; Edmonds, V.S.; Sharma, A.; Butterfield, R.J.; E Schild, S.; Ashman, J.B.; Zimmerman, R.S.; Patel, N.P.; Bryce, A.H.; et al. Clinical Outcomes of Stereotactic Radiosurgery-Related Radiation Necrosis in Patients with Intracranial Metastasis from Melanoma. Clin. Med. Insights Oncol. 2023, 17, 11795549231161878. [Google Scholar] [CrossRef]
- Feng, R.; Oermann, E.K.; Shrivastava, R.; Gold, A.; Collins, B.T.; Kondziolka, D.; Collins, S.P. Stereotactic Radiosurgery for Melanoma Brain Metastases: A Comprehensive Clinical Case Series. World Neurosurg. 2017, 100, 297–304. [Google Scholar] [CrossRef]
- Mori, Y.; Kondziolka, D.; Flickinger, J.C.; Kirkwood, J.M.; Agarwala, S.; Lunsford, L.D. Stereotactic radiosurgery for cerebral metastatic melanoma: Factors affecting local disease control and survival. Int. J. Radiat. Oncol. 1998, 42, 581–589. [Google Scholar] [CrossRef]
- Kasper, E.; Lam, F.; Mahadevan, A.; Wong, E.; Chen, C.; Christ, S.; Floyd, S. Stereotactic radiosurgery for brain metastases from malignant melanoma. Surg. Neurol. Int. 2015, 6, 355. [Google Scholar] [CrossRef]
- Redmond, K.J.; Gui, C.; Benedict, S.; Milano, M.T.; Grimm, J.; Vargo, J.A.; Soltys, S.G.; Yorke, E.; Jackson, A.; El Naqa, I.; et al. Tumor Control Probability of Radiosurgery and Fractionated Stereotactic Radiosurgery for Brain Metastases. Int. J. Radiat. Oncol. 2021, 110, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Stege, H.; Haist, M.; Schultheis, M.; Fleischer, M.I.; Mohr, P.; Meier, F.; Schadendorf, D.; Ugurel, S.; Livingstone, E.; Zimmer, L.; et al. Discontinuation of BRAF/MEK-Directed Targeted Therapy after Complete Remission of Metastatic Melanoma—A Retrospective Multicenter ADOReg Study. Cancers 2021, 13, 2312. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ahmed, T.; Maurichi, A.; Di Guardo, L.; Stagno, A.M.; Warburton, L.; Taylor, A.M.; Livingstone, E.; Rehman, S.; Khattak, A.; et al. BRAF inhibitor cessation prior to disease progression in metastatic melanoma: Long-term outcomes. Eur. J. Cancer 2023, 179, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Gutzmer, R.; Guerry, D. Gene therapy for melanoma in humans. Hematol. Oncol. Clin. N. Am. 1998, 12, 519–538. [Google Scholar] [CrossRef]
- Bonnekoh, B.; Bickenbach, J.R.; Roop, D.R. Immunological Gene Therapy Approaches for Malignant Melanoma. Skin Pharmacol. Physiol. 1997, 10, 49–62. [Google Scholar] [CrossRef]
- Rosenberg, S.A. Treatment of 283 Consecutive Patients With Metastatic Melanoma or Renal Cell Cancer Using High-Dose Bolus Interleukin 2. JAMA J. Am. Med. Assoc. 1994, 271, 907. [Google Scholar] [CrossRef]
- Atkins, M.B.; Lotze, M.T.; Dutcher, J.P.; Fisher, R.I.; Weiss, G.; Margolin, K.; Abrams, J.; Sznol, M.; Parkinson, D.; Hawkins, M.; et al. High-Dose Recombinant Interleukin 2 Therapy for Patients With Metastatic Melanoma: Analysis of 270 Patients Treated Between 1985 and 1993. J. Clin. Oncol. 1999, 17, 2105. [Google Scholar] [CrossRef]
- Rausch, M.P.; Hastings, K.T. Immune checkpoint inhibitors in the treatment of melanoma: From basic science to clinical application. In Cutaneous Melanoma: Etiology and Therapy; Exon Publications: Brisbane, Australia, 2017; pp. 121–142. [Google Scholar] [CrossRef]
- Tawbi, H.A.; A Forsyth, P.; Hodi, F.S.; Algazi, A.P.; Hamid, O.; Lao, C.D.; Moschos, S.J.; Atkins, M.B.; Lewis, K.; A Postow, M.; et al. Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): Final results of an open-label, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 1692–1704. [Google Scholar] [CrossRef]
- Long, G.V.; Atkinson, V.G.; Lo, S.; Sandhu, S.K.; Brown, M.; Gonzalez, M.; Guminski, A.; Scolyer, R.A.; Emmett, L.; Menzies, A.M.; et al. Long-term outcomes from the randomized phase II study of nivolumab (nivo) or nivo+ipilimumab (ipi) in patients (pts) with melanoma brain metastases (mets): Anti-PD1 brain collaboration (ABC). Ann. Oncol. 2019, 30, v534. [Google Scholar] [CrossRef]
- Long, G.V.; Trefzer, U.; Davies, M.A.; Kefford, R.F.; Ascierto, P.A.; Chapman, P.B.; Puzanov, I.; Hauschild, A.; Robert, C.; Algazi, A.; et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.A.; Saiag, P.; Robert, C.; Grob, J.J.; Flaherty, K.T.; Arance, A.; Chiarion-Sileni, V.; Thomas, L.; Lesimple, T.; Mortier, L.; et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): A multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 863–873. [Google Scholar] [CrossRef]
- McArthur, G.A.; Maio, M.; Arance, A.; Nathan, P.; Blank, C.; Avril, M.F.; Garbe, C.; Hauschild, A.; Schadendorf, D.; Hamid, O.; et al. Vemurafenib in metastatic melanoma patients with brain metastases: An open-label, single-arm, phase 2, multicentre study. Ann. Oncol. 2017, 28, 634–641. [Google Scholar] [CrossRef]
- Kluger, H.M.; Chiang, V.; Mahajan, A.; Zito, C.R.; Sznol, M.; Tran, T.; Weiss, S.A.; Cohen, J.V.; Yu, J.; Hegde, U.; et al. Long-Term Survival of Patients with Melanoma with Active Brain Metastases Treated with Pembrolizumab on a Phase II Trial. J. Clin. Oncol. 2019, 37, 52–60. [Google Scholar] [CrossRef]
- Di Giacomo, A.M.; Chiarion-Sileni, V.; Del Vecchio, M.; Ferrucci, P.F.; Guida, M.; Quaglino, P.; Guidoboni, M.; Marchetti, P.; Cutaia, O.; Amato, G.; et al. Primary Analysis and 4-Year Follow-Up of the Phase III NIBIT-M2 Trial in Melanoma Patients with Brain Metastases. Clin. Cancer Res. 2021, 27, 4737–4745. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.A.; Nathan, P.; Robert, C.; Schadendorf, D. Rationale for Immune Checkpoint Inhibitors Plus Targeted Therapy in Metastatic Melanoma: A Review. JAMA Oncol. 2020, 6, 1957. [Google Scholar] [CrossRef]
- da Silva, I.P.; Zakria, D.; Ahmed, T.; Trojanello, C.; Dimitriou, F.; Allayous, C.; Gerard, C.; Zimmer, L.; Lo, S.; Michielin, O.; et al. Efficacy and safety of anti-PD1 monotherapy or in combination with ipilimumab after BRAF/MEK inhibitors in patients with BRAF mutant metastatic melanoma. J. Immunother. Cancer 2022, 10, e004610. [Google Scholar] [CrossRef]
- Samlowski, W.; Adajar, C. Cautious addition of targeted therapy to PD-1 inhibitors after initial progression of BRAF mutant metastatic melanoma on checkpoint inhibitor therapy. BMC Cancer 2021, 21, 1187. [Google Scholar] [CrossRef] [PubMed]
- Marconcini, R.; Fava, P.; Nuzzo, A.; Manacorda, S.; Ferrari, M.; De Rosa, F.; De Tursi, M.; Tanda, E.T.; Consoli, F.; Minisini, A.; et al. Comparison Between First Line Target Therapy and Immunotherapy in Different Prognostic Categories of BRAF Mutant Metastatic Melanoma Patients: An Italian Melanoma Intergroup Study. Front. Oncol. 2022, 12, 917999. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, F.; Zaremba, A.; Allayous, C.; Kähler, K.C.; Gerard, C.L.; Festino, L.; Schäfer, S.; Toussaint, F.; Heinzerling, L.; Hassel, J.C.; et al. Sustainable responses in metastatic melanoma patients with and without brain metastases after elective discontinuation of anti-PD1-based immunotherapy due to complete response. Eur. J. Cancer 2021, 149, 37–48. [Google Scholar] [CrossRef]
- Hong, A.M.; Waldstein, C.; Shivalingam, B.; Carlino, M.S.; Atkinson, V.; Kefford, R.F.; McArthur, G.A.; Menzies, A.M.; Thompson, J.F.; Long, G.V. Management of melanoma brain metastases: Evidence-based clinical practice guidelines by Cancer Council Australia. Eur. J. Cancer 2021, 142, 10–17. [Google Scholar] [CrossRef]
- Schvartsman, G.; Ma, J.; Bassett, R.L.; Haydu, L.E.; Amaria, R.N.; Hwu, P.; Wong, M.K.; Hwu, W.; Diab, A.; Patel, S.P.; et al. Incidence, patterns of progression, and outcomes of preexisting and newly discovered brain metastases during treatment with anti–PD-1 in patients with metastatic melanoma. Cancer 2019, 125, 4193–4202. [Google Scholar] [CrossRef]
- Long, G.V.; Atkinson, V.; Lo, S.; Sandhu, S.; Guminski, A.D.; Brown, M.P.; Wilmott, J.S.; Edwards, J.; Gonzalez, M.; Scolyer, R.A.; et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018, 19, 672–681. [Google Scholar] [CrossRef]
- Tawbi, H.A.H.; Forsyth, P.A.J.; Hodi, F.S.; Lao, C.D.; Moschos, S.J.; Hamid, O.; Atkins, M.B.; Lewis, K.D.; Thomas, R.P.; Glaspy, J.A.; et al. Efficacy and safety of the combination of nivolumab (NIVO) plus ipilimumab (IPI) in patients with symptomatic melanoma brain metastases (CheckMate 204). J. Clin. Oncol. 2019, 37 (Suppl. 15), 9501. [Google Scholar] [CrossRef]
- Wilmott, J.S.; Tawbi, H.; Engh, J.A.; Amankulor, N.M.; Shivalingam, B.; Banerjee, H.; Vergara, I.A.; Lee, H.; Johansson, P.A.; Ferguson, P.M.; et al. Clinical Features Associated with Outcomes and Biomarker Analysis of Dabrafenib plus Trametinib Treatment in Patients with BRAF-Mutant Melanoma Brain Metastases. Clin. Cancer Res. 2023, 29, 521–531. [Google Scholar] [CrossRef]
- Margolin, K.; Ernstoff, M.S.; Hamid, O.; Lawrence, D.; McDermott, D.; Puzanov, I.; Wolchok, J.D.; Clark, J.I.; Sznol, M.; Logan, T.F.; et al. Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. Lancet Oncol. 2012, 13, 459–465. [Google Scholar] [CrossRef]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Minniti, G.; Anzellini, D.; Reverberi, C.; Cappellini, G.C.A.; Marchetti, L.; Bianciardi, F.; Bozzao, A.; Osti, M.; Gentile, P.C.; Esposito, V. Stereotactic radiosurgery combined with nivolumab or Ipilimumab for patients with melanoma brain metastases: Evaluation of brain control and toxicity. J. Immunother. Cancer 2019, 7, 102. [Google Scholar] [CrossRef]
- Hadi, I.; Roengvoraphoj, O.; Bodensohn, R.; Hofmaier, J.; Niyazi, M.; Belka, C.; Nachbichler, S.B. Stereotactic radiosurgery combined with targeted/ immunotherapy in patients with melanoma brain metastasis. Radiat. Oncol. 2020, 15, 37. [Google Scholar] [CrossRef]
- Bodensohn, R.; Werner, S.; Reis, J.; Escudero, M.P.; Kaempfel, A.-L.; Hadi, I.; Forbrig, R.; Manapov, F.; Corradini, S.; Belka, C.; et al. Stereotactic radiosurgery and combined immune checkpoint therapy with ipilimumab and nivolumab in patients with melanoma brain metastases: A retrospective monocentric toxicity analysis. Clin. Transl. Radiat. Oncol. 2023, 39, 100573. [Google Scholar] [CrossRef]
- Alhumaid, M.; Dinakaran, D.; Smylie, M.; Walker, J.; Joseph, K. Can radiation restore immunotherapy response in metastatic melanoma refractory to checkpoint inhibitors: An institutional experience in salvaging immunotherapy resistant disease. Radiother. Oncol. 2023, 185, 109712. [Google Scholar] [CrossRef]
- Lehrer, E.J.; Peterson, J.; Brown, P.D.; Sheehan, J.P.; Quiñones-Hinojosa, A.; Zaorsky, N.G.; Trifiletti, D.M. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: An international meta-analysis of individual patient data. Radiother. Oncol. 2019, 130, 104–112. [Google Scholar] [CrossRef]
- Backlund, E.; Grozman, V.; Egyhazi Brage, S.; Lewensohn, R.; Lindberg, K.; Helgadottir, H. Radiotherapy with or without immunotherapy in metastatic melanoma: Efficacy and tolerability. Acta Oncol. 2023, 62, 1921–1930. [Google Scholar] [CrossRef]
- Hwang, W.L.; Pike, L.R.G.; Royce, T.J.; Mahal, B.A.; Loeffler, J.S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 2018, 15, 477–494. [Google Scholar] [CrossRef]
- Weichselbaum, R.R.; Liang, H.; Deng, L.; Fu, Y.X. Radiotherapy and immunotherapy: A beneficial liaison? Nat. Rev. Clin. Oncol. 2017, 14, 365–379. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. Immunotherapy or Targeted Therapy with or without Stereotactic Radiosurgery for Patients with Brain Metastases from Melanoma or Non-Small Cell Lung Cancer (USZ-STRIKE). NCT05522660. Available online: https://clinicaltrials.gov/study/NCT05522660?cond=Brain%20Metastasis&intr=radiation%20nivolumab&term=melanoma&rank=7&tab=table (accessed on 5 June 2024).
- National Library of Medicine. Bevacizumab and ICIs + hSRT in Symptomatic Melanoma Brain Metastases (BETTER). NCT06163820. Available online: https://clinicaltrials.gov/study/NCT06163820?cond=Brain%20Metastasis&intr=radiation,%20nivolumab&rank=1 (accessed on 5 June 2024).
- National Library of Medicine. Phase II Study of Nivolumab in Combination with Relatlimab in Patients with Active Melanoma Brain Metastases. NCT05704647. Available online: https://www.clinicaltrials.gov/study/NCT05704647 (accessed on 5 June 2024).
- Liermann, J.; Winkler, J.K.; Syed, M.; Neuberger, U.; Reuss, D.; Harrabi, S.; Naumann, P.; Ristau, J.; Weykamp, F.; El Shafie, R.A.; et al. Stereotactic Radiosurgery with Concurrent Immunotherapy in Melanoma Brain Metastases Is Feasible and Effective. Front. Oncol. 2020, 10, 592796. [Google Scholar] [CrossRef]
- Rulli, E.; Legramandi, L.; Salvati, L.; Mandala, M. The impact of targeted therapies and immunotherapy in melanoma brain metastases: A systematic review and meta-analysis. Cancer 2019, 125, 3776–3789. [Google Scholar] [CrossRef]
Reference | Study Type | Treatment Group(s) | Details | Median PFS | Median OS | Median Follow-Up (Months) | Other Results |
---|---|---|---|---|---|---|---|
Tawbi et al. [40] | Phase 2 (CheckMate 204) | Cohort A: Asymptomatic MBM | Combination nivolumab plus ipilimumab | IC PFS at 36 months was 54.1% (95% CI 42.7–64.1). | At 36 months was 71.9% (95% CI 61.8–79.8). | 34.3 | |
Cohort B: Symptomatic MBM | Combination nivolumab plus ipilimumab | IC PFS at 36 months was 18.9% (95% CI 4.6–40.5). | At 36 months was 36.6% (95% CI 14.0–59.8). | 7.5 | |||
Long et al. [41] | Phase 2 (ABC) | Cohort A: Asymptomatic MBM with no prior local therapy | Ipilimumab + Nivolumab | 12 and 24 mo IC PFS were 49% and 49%, respectively. | 12 and 24 mo OS were 63% and 63%, respectively. | 34 | TRAEs grade 3/4 toxicity was 54%. |
Cohort B: Asymptomatic MBM with no prior local therapy | Nivolumab | 12 and 24 mo IC PFS were 20% and 15%, respectively. | 12 and 24 mo OS were 60% and 51%, respectively. | TRAEs grade 3/4 toxicity was 20%. | |||
Cohort C: Patients who failed local therapy | Nivolumab | 12 and 24 mo IC PFS were 6% and 6%, respectively. | 12 and 24 mo OS were 31% and 19%, respectively. | TRAEs grade 3/4 toxicity was 13%. | |||
Long et al. [42] | Phase 2 (BREAK-MB) | Cohort A: No previous local treatment for MBM | Dabrafenib | Median PFS 8.1 (3.1–16.1) | Median OS, 16.3 (6.9–22.4) | TRAEs grade 4 toxicity was 4%. | |
Cohort B: Progressive MBM after local treatment | Dabrafenib | Median PFS, 15.9 (7.9–22.4) | Median OS, 21.9 (15.3–NR) | TRAEs grade 4 toxicity was 2%. | |||
Davies et al. [43] | Phase 2 (COMBI-MB) | Cohort A: BRAFV600E-positive, asymptomatic MBM, with no previous local therapy, and an ECOG of 0 or 1 | Dabrafenib plus trametinib | Median PFS, 5.6 (5.3–7.4) | Median OS, 10.8 (8.7–19.6) | 8.5 | |
Cohort B: BRAFV600E-positive, asymptomatic MBM, with previous local therapy, and an ECOG of 0 or 1. | Dabrafenib plus trametinib | Median PFS, 7.2 (4.7–14.6) | Median OS, 24.3 (7.9–NR) | ||||
Cohort C: BRAFV600D/K/R-positive, asymptomatic MBM, with or without previous local therapy, and an ECOG of 0 or 1. | Dabrafenib plus trametinib | Median PFS, 4.2 (1.7–6.5) | Median OS, 10.1 (4.6–17.6) | ||||
Cohort D: BRAFV600D/E/K/R-positive, symptomatic MBM, with or without previous local therapy, and an ECOG of 0, 1, or 2. | Dabrafenib plus trametinib | Median PFS, 5.5 (2.8–7.3) | Median OS, 11.5 (6.8–22.4) | ||||
McArthur et al. [44] | Phase 2 | Cohort 1: Previously untreated MBM, BRAFV600 mutated | Vemurafenib | Median PFS, 3.7 months (range, 0.03–33.4; IQR 1.9–5.6) | Median OS, 8.9 months (range 0.6–34.5; IQR 4.9–17.0) | 9.6 (95% CI 7.2–11.5) | TRAEs grade 3/4 in 59 (66%). |
Cohort 2: Previously treated MBM, BRAFV600 mutated | Median PFS, 4.0 months (range, 0.3–27.4; IQR 2.2–7.4) | Median OS, 9.6 months (range 0.7–34.3; IQR 4.5–18.4) | TRAEs grade 3/4 in 36 (64%). | ||||
Kluger et al. [45] | Phase 2 | One or more asymptomatic, untreated 5 to 20 mm MBM not requiring corticosteroids | Pembrolizumab | Median PFS, 2 months | Median OS, 17 months | 34 | TRAEs grade 3/4 in 36 (64%). |
Di Giacomo et al. [46] | Phase 3 (NIBIT-M2) | Group 1: Fotemustine | Median PFS, 3.0 (95% CI 2.3–3.6) | Median OS was 8.5 months. (95% CI 4.8–12.2) | TRAEs grade 3/4 in 11 (48%). | ||
Group 2: Ipilimumab plus fotemustine | Median PFS, 3.3 (95% CI 1.2–5.4) | Median OS, 8.2 months (95% CI, 2.2–14.3) | TRAEs grade 3/4 in 18 (69%). | ||||
Group 3: Ipilimumab plus nivolumab | Median PFS, 8.7 (95% CI 0.0–19.9) | Median OS, 29.2 months (95% CI, 0–65.1) | TRAEs grade 3/4 in 8 (30%). |
Study | Phase | Status | Title | ICIs | Description | Primary outcomes |
---|---|---|---|---|---|---|
NCT05522660 | 3 | Recruiting | Immunotherapy or Targeted Therapy With or Without SRS for Patients With MBM or NSCLC | anti-PD1/L1 ± Ipilimumab | ICIs plus SRS vs. ICIs alone for MBM. | CNS-specific PFS |
NCT06163820 | ½ | Not yet recruiting | Bevacizumab and ICIs + hSRT in Symptomatic Melanoma Brain Metastases (BETTER) | Nivolumab + Ipilimumab | Symptomatic MBM evaluating safety and efficacy of combination bevacizumab, Nivo + Ipi, and hSRT. | DLT |
NCT05341349 | 1 | Recruiting | Stereotactic Radiosurgery and Immune Checkpoint Inhibitors With NovoTTF-100M for the Treatment of Melanoma Brain Metastases | Pembrolizumab | Side effects and possible benefit of SRS and ICIs with NovoTTF-100 M for the treatment of MBM. | Percent of grade 3 CNS toxicity |
NCT05669352 | ½ | Not yet recruiting | A Study of Oral IRAK-4 Inhibitor CA-4948 in Combination With Pembrolizumab Following SRS in Patients With MBM | Pembrolizumab | IRAK-4 inhibitor CA-4948 in combination with Pembro following SRS in patients with MBM. | IC intervention 1 year after initial SRS |
NCT05703269 | 3 | Recruiting | Comparing Single vs. Multiple Dose Radiation for Cancer Patients With Brain Metastasis and Receiving Immunotherapy (HYPOGRYPHE) | anti-PD1/L1 ± CTLA-4 agent | Compare SSRS vs. FSRS in patients with brain metastases (including MBM) on ICI therapy. | Grade 2+ ARE |
NCT04074096 | 2 | Recruiting | Binimetinib Encorafenib Pembrolizumab +/− SRS in BRAFV600 MBM (BEPCOME-MB) | Pembrolizumab | Assess the tolerability of binimetinib–encorafenib–pembrolizumab combination therapy +/− SRS. | IC PFS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadley, C.E.; Matsui, J.K.; Blakaj, D.M.; Beyer, S.; Grecula, J.C.; Chakravarti, A.; Thomas, E.; Raval, R.R.; Elder, J.B.; Wu, K.; et al. Delayed and Concurrent Stereotactic Radiosurgery in Immunotherapy-Naïve Melanoma Brain Metastases. Cancers 2024, 16, 3733. https://doi.org/10.3390/cancers16223733
Hadley CE, Matsui JK, Blakaj DM, Beyer S, Grecula JC, Chakravarti A, Thomas E, Raval RR, Elder JB, Wu K, et al. Delayed and Concurrent Stereotactic Radiosurgery in Immunotherapy-Naïve Melanoma Brain Metastases. Cancers. 2024; 16(22):3733. https://doi.org/10.3390/cancers16223733
Chicago/Turabian StyleHadley, Christine E., Jennifer K. Matsui, Dukagjin M. Blakaj, Sasha Beyer, John C. Grecula, Arnab Chakravarti, Evan Thomas, Raju R. Raval, James B. Elder, Kyle Wu, and et al. 2024. "Delayed and Concurrent Stereotactic Radiosurgery in Immunotherapy-Naïve Melanoma Brain Metastases" Cancers 16, no. 22: 3733. https://doi.org/10.3390/cancers16223733
APA StyleHadley, C. E., Matsui, J. K., Blakaj, D. M., Beyer, S., Grecula, J. C., Chakravarti, A., Thomas, E., Raval, R. R., Elder, J. B., Wu, K., Kendra, K., Giglio, P., & Palmer, J. D. (2024). Delayed and Concurrent Stereotactic Radiosurgery in Immunotherapy-Naïve Melanoma Brain Metastases. Cancers, 16(22), 3733. https://doi.org/10.3390/cancers16223733