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Simple Summary: This review explores the potential of engineered bacteria as a novel approach to
cancer therapy. These microscopic organisms can target and infiltrate tumors, delivering medications
and activating the body’s immune system to fight cancer cells. Early research shows promise, but
more studies are needed to ensure safety and efficacy. If successful, this approach could lead to new
treatments that are less harmful and more effective for many people with cancer. By understanding
how these bacteria work and overcoming potential challenges, it may be possible to develop powerful
new tools in the fight against this disease.

Abstract: Cancer immunotherapy has revolutionized cancer treatment by leveraging the immune
system to attack tumors. However, its effectiveness is often hindered by the immunosuppressive
tumor microenvironment (TME), where a complex interplay of tumor, stromal, and immune cells
undermines antitumor responses and allows tumors to evade immune detection. This review explores
innovative strategies to modify the TME and enhance immunotherapy outcomes, focusing on the
therapeutic potential of engineered bacteria. These bacteria exploit the unique characteristics of the
TME, such as abnormal vasculature and immune suppression, to selectively accumulate in tumors.
Genetically modified bacteria can deliver therapeutic agents, including immune checkpoint inhibitors
and cytokines, directly to tumor sites. This review highlights how bacterial therapeutics can target
critical immune cells within the TME, such as myeloid-derived suppressor cells and tumor-associated
macrophages, thereby promoting antitumor immunity. The combination of bacterial therapies with
immune checkpoint inhibitors or adoptive cell transfer presents a promising strategy to counteract
immune suppression. Continued research in this area could position bacterial agents as a powerful
new modality to reshape the TME and enhance the efficacy of cancer immunotherapy, particularly
for tumors resistant to conventional treatments.

Keywords: cancer immunotherapy; tumor microenvironment; engineered bacteria; immunosuppression;
immune checkpoint inhibitors; bacterial therapeutics; antitumor immunity

1. Introduction

Immunotherapy has revolutionized cancer treatment by harnessing the body’s im-
mune system to identify and eliminate tumor cells. Unlike traditional treatments like
chemotherapy and radiation, which directly target cancer cells, immunotherapy empowers
the immune system to recognize and attack tumors more effectively [1]. However, the
success of immunotherapy is often impeded by the tumor microenvironment (TME), a
complex and hostile setting that suppresses immune responses.

Cancers 2024, 16, 3810. https://doi.org/10.3390/cancers16223810 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16223810
https://doi.org/10.3390/cancers16223810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8376-1416
https://orcid.org/0009-0006-2397-6219
https://orcid.org/0000-0002-9734-6176
https://doi.org/10.3390/cancers16223810
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16223810?type=check_update&version=1


Cancers 2024, 16, 3810 2 of 24

The TME is a sophisticated network of tumor, stromal, and various immune cells
collaborating to create an immunosuppressive environment [2]. Tumor cells within the
TME evade immune detection and suppress antitumor immunity through mechanisms
such as cytokine secretion, recruitment of regulatory immune cells, and expression of
checkpoint molecules that inhibit immune cell function [3]. This interaction supports tumor
growth and progression and contributes to resistance against immunotherapy.

Cancer cells actively shape the TME to support their survival and proliferation. They
manipulate stromal cells and immune cells within the TME to create a favorable environ-
ment for tumor growth, inducing angiogenesis and remodeling the extracellular matrix
to facilitate invasion and metastasis [4]. Furthermore, the TME is highly adaptable and
responds to various intrinsic and extrinsic stresses, complicating efforts to target tumors
effectively [5].

Given the critical role of the TME in cancer progression and immune evasion, de-
veloping strategies to alter its immunosuppressive nature is essential for improving im-
munotherapy outcomes. One innovative approach involves the use of engineered bacteria
as therapeutic agents. Bacteria can be modified to specifically target and modulate the
TME, enhancing the immune system’s ability to recognize and destroy tumor cells [6].
These bacterial therapies can deliver anti-cancer agents directly to the tumor site, produce
immunostimulatory molecules, and disrupt the tumor’s protective environment, making
them a promising adjunct to existing immunotherapy regimens.

This review delves into how bacterial agents and components affect immune cells
and contribute to altering the TME. We explore different types of bacteria currently being
used in therapeutic applications, their mechanisms of action, and the potential benefits and
challenges associated with their use in cancer treatment. By understanding how bacterial
therapies can influence immune responses and reshape the TME, we aim to provide insights
into new avenues for enhancing the efficacy of cancer immunotherapy.

2. Background

The idea of stimulating the immune system with an infection to treat cancer originated
from the development of Coley’s toxins by William Coley, a bone sarcoma surgeon, during
the late 1800s and early 1900s [7]. Coley pioneered modern immunotherapy by adminis-
tering a mixture of heat-killed Streptococcus bacteria and Serratia marcescens, known as
Coley’s Toxins [8]. He observed that his patients experienced tumor regression, earning
him the title “The Father of Immunotherapy” [9].

The application of Coley’s toxins, along with bacterial therapy as a whole, experienced
a decline in the early 20th century due to inconsistencies in Coley’s work and other con-
tributing factors, such as other leading bone sarcoma surgeons disavowing his work. In
1962, the FDA prohibited the use of this treatment for cancer. Nonetheless, Coley’s children
contributed to changing public perception of their father’s methods through research and
publications, thereby facilitating the subsequent acceptance of immunotherapy by the
scientific community [10].

Building on this foundation of early immunotherapy research, subsequent decades
saw the development and refinement of various bacterial-based approaches to cancer
treatment. One of the most prominent examples of bacterial immunotherapy is the use of
Bacillus Calmette–Guérin (BCG) in treating bladder cancer, which received FDA approval
for this indication. Originally developed as a vaccine for tuberculosis (TB) in 1921, BCG’s
potential as a cancer therapeutic emerged in 1929 when it was observed that patients
with a history of TB exhibited lower cancer incidence compared to control groups. Inter-
est in BCG as an anticancer agent surged in the 1970s, as numerous preclinical models
demonstrated remarkable efficacy, with some studies reporting up to 90% success rates in
treating melanoma. However, subsequent large-scale randomized clinical trials failed to
consistently replicate these results across various cancer types, limiting the use of BCG to
high-risk, non-muscle-invasive bladder cancer [11].
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Despite these setbacks in broader applications, the potential of bacterial immunother-
apy remained an area of interest, prompting researchers to explore new avenues and
technologies. In recent years, advancements in gene engineering tools such as specialized
animal models, Next Gen Sequencing (NGS), or CRISPR-Cas9 have helped revive bacterial
immunotherapy as a viable alternative to chemotherapy and other standards of care [12].
NGS has been used to understand much larger sequences of DNA and their relation to can-
cer, while specialized animal models have been used to test and prove concepts [13]. Over
time, these tools have brought back bacteria as a more advanced possible immunotherapy
treatment. Immunotherapy uses bacteria to activate several factors, such as immunomod-
ulatory agents, immune checkpoint inhibitors, or cytokines. Modern bacterial therapies
have been engineered to activate these factors more efficiently to target various diseases,
including cancer [14].

Research into targeting diseases with bacterial therapeutics has advanced in recent
years [15]. For example, Lactococcus lactis was proven to be a useful treatment for cholera by
converting simple carbohydrates into lactic acid, which would go on to harm Vibrio cholera
inside the gut microbiome [16]. Another example is genetically engineered probiotics,
which were found to increase gut health by producing antimicrobial substances such as
bacteriocin [17]. Genetically engineered Bifidobacterium longum is being researched as
a potential treatment for ulcerative colitis, an inflammatory disease affecting the colon.
This approach utilizes the bacteria as a delivery system to distribute recombinant human
manganese superoxide dismutase (rhMnSOD), a potent antioxidant enzyme with anti-
inflammatory properties. In experimental mouse models, this engineered probiotic has
shown promise in suppressing colitis by delivering rhMnSOD directly to the affected areas
of the colon [18]. Other examples include Lactobacillus reuteri being used to lower fatty
liver disease by delivering Interleukin-22 to the active site, or E. coli Nissle, being used to
treat inflammatory bowel disease for its protection against other bacterial strains such as
Salmonella, Yersinia enterocolitica, and Listeria pneumophila [19,20].

While these applications demonstrate the versatility of bacterial therapies in treating
various conditions, the potential of engineered bacteria in oncology has garnered partic-
ular attention in recent years. Bacterial therapies are being actively explored for various
cancers, with several notable examples in clinical trials. VNP20009, an attenuated strain of
Salmonella typhimurium, entered phase I human trials in 1999 for patients with metastatic
melanoma and renal cell carcinoma. While tumor colonization was observed at the highest
tolerated dose, no significant antitumor effects were seen, indicating the need for further
refinement [21,22]. Another promising approach involves Listeria-based vaccines targeting
human papilloma virus (HPV)-related cancers, including cervical cancer. ADXS11-001,
one such vaccine, has progressed through phase II and III studies [23]. The development
of these therapies continues, with ongoing efforts to improve their efficacy and safety
profiles [24]. Clostridium novyi-NT, an anaerobic bacterium, has also entered clinical trials
for solid tumor malignancies. Phase I trials (NCT01118819 and NCT01924689) began ear-
lier than 2019, evaluating its ability to germinate in and destroy hypoxic tumors [25,26]
(Figure 1).

Given the versatility and effectiveness of genetically engineered bacteria, their ap-
plication in cancer treatment holds tremendous promise. The burden of cancer in the
United States remains significant, with projections indicating a continued high incidence
and mortality rate. By the end of 2024, it is estimated that approximately 2,001,140 new
cancer cases will be diagnosed across all sites in the United States, while cancer is pro-
jected to claim an estimated 611,720 lives during the same year [8]. From 1999 to 2016,
the number of reported cases of cancer increased from 1.3 million to 1.7 million, with a
peak at 1.8 million [27]. As the incidence of cancer increases, bacteria that can affect the
TME’s immunosuppressive elements will be critical. These staggering statistics underscore
the urgent need for innovative treatments, such as combination therapies that incorporate
genetically engineered bacteria to boost the body’s immune response against cancer in
conjunction with standard treatments like chemotherapy or checkpoint blockade. This ap-
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proach brings exciting possibilities and hope to millions affected by this disease worldwide,
representing a significant step forward in the fight against cancer.
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3. Why Is TME Immunosuppressive?

In understanding the complexities of the tumor microenvironment (TME), it becomes
evident that its immunosuppressive nature stems from several key factors. These include
immune suppressor cells, the secretion of immunosuppressive cytokines, the expression of
immune checkpoint molecules, and the hypoxic environment. Each of these components
plays a critical role in shaping a hostile environment that supports tumor survival and
hinders effective anticancer immune responses.

3.1. Presence of Immunosuppressive Cells

Immune suppressor cells such as myeloid-derived suppressor cells (MDSCs), regula-
tory T cells (Tregs), and tumor-associated macrophages (TAMs) play a role in the immune
suppressive nature of the TME (Figure 2).

MDSCs: These are a diverse group of immature myeloid cells that actively suppress
the immune system. This feature allows them to play a significant role in helping tumors
evade immune responses, particularly in cancer. They function through a variety of mech-
anisms, such as the expression of NADPH oxidase (Nox2) proteins, S100A8/9, arginase
1 (Arg-1), and oxide synthase 2 (Nos2). They are divided into two different subtypes:
polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs) [28]. Al-
though PMN-MDSCs are non-abundant in a healthy individual, they expand to various
degrees in cancer patients [29]. In cases of inflammation and tumor progression, MDSCs
can suppress the activity of CD4+ T cells, CD8+ T cells, and NK cells, thereby inhibiting the
innate and adaptive immune responses [30–32]. For example, in breast cancer cells, MSDCs
are recruited along with Tregs and type 3 macrophages, which downregulate antitumor
immunity [33].
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Tregs: A critical component of the immunosuppressive environment, this subset of
CD4+ T cells is characterized by the expression of the transcription factor FoxP3 [34].
They are essential for maintaining immune homeostasis and preventing autoimmune re-
sponses [35]. In the context of cancer, Tregs are recruited to the TME, where they suppress
effector T cells and other immune cells through mechanisms such as secreting immuno-
suppressive cytokines (e.g., IL-10, TGF-β), expressing immune checkpoint molecules (e.g.,
CTLA-4, PD-1), and altering metabolic pathways. Recent data show that Tregs also sup-
press bacteria-driven inflammation that promotes carcinogenesis in cancers like colorectal
carcinoma (CRC), potentially benefiting the host. This dual role of Tregs helps explain why
their frequency and function are linked to poor prognosis in some cancers but favorable
outcomes in others [36]. Given their complex roles in both suppressing antitumor immunity
and modulating inflammation, understanding Tregs’ functions within the TME is crucial for
developing targeted immunotherapeutic strategies that can either harness their beneficial
effects or mitigate their adverse impacts on cancer progression.

TAMs: Macrophages within the TME comprise diverse populations of myeloid cells
that play critical roles in tumor progression, immune evasion, and metastasis. Increasing
evidence indicates that TAMs contribute to tumor angiogenesis, enhance the motility of
tumor cells, and facilitate extracellular matrix remodeling [37]. Based on their functional
roles and marker expression, TAMs can be categorized into two main types, M1 and
M2 [38,39]. However, TAMs exhibit significant phenotypic diversity and plasticity, with
many subsets expressing a mix of M1 and M2 polarization markers [40,41].
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Figure 2. Components of the TME. The TME comprises a diverse collection of cancer cells, stromal
cells, immune cells, the extracellular matrix (ECM), blood vessels, and various signaling molecules.
Cancer-associated fibroblasts (CAFs), adipocytes, and the ECM provide structural support and
promote tumor growth. Immune cells, such as tumor-associated macrophages (TAMs), dendritic
cells, NK cells, CD8+ T cells, B cells, regulatory T cells (Tregs), and myeloid-derived suppressor
cells (MDSCs), play complex roles, either supporting or inhibiting tumor progression. Blood vessels
within the TME are often abnormal, contributing to hypoxia. Cytokines, chemokines, and growth
factors facilitate cell communications, influencing tumor behavior and response to treatment [42].
This intricate interplay within the TME profoundly impacts cancer development, immune evasion,
and therapeutic outcomes.
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3.2. Secretion of Immunosuppressive Cytokines

Chronic inflammation can be found in the TME as it is mainly initiated by the pres-
ence of malignant cells. This can cause proinflammatory mediators like cytokines and
chemokines to be elevated, thereby establishing crosstalk between various cells that can
establish a tumor-supporting environment [43]. Interleukin (IL)-6, IL-17, IL-22, and IL-23
are certain cytokines essential to linking inflammation to tumorigenesis in colitis-associated
colorectal cancer (CRC) mouse models [44–46]. Transforming growth factor-beta (TGF-β),
IL-10, and vascular endothelial growth factor (VEGF) are some immunosuppressive cy-
tokines that the cancer cells and the surrounding stromal cells secrete. It has been reported
that cancer patients produce a large amount of VEGF, which is detectable in the serum of
patients [47]. Increased VEGF expression leads to immune suppression in multiple ways,
including reducing T cell infiltration into the TME, inhibiting dendritic cells, and promoting
inhibitory cell types in the TME. In animal and human tumor models, it has been shown
that the inhibition of VEGF significantly increases the number of tumor-infiltrating lympho-
cytes [48]. Like VEGF, the tumor produces increased TGF-β, which acts on the cytotoxic
T lymphocytes (CTLs) and inhibits specific cytolytic gene products. TGF-β dysfunction
mainly affects three main areas: evasion of immune surveillance, loss of growth inhibitory
control, and acquisition of mutagenicity [49]. It has been shown that mice whose T cells
have been rendered resistant to TGF-β through the production of a dominant-negative
TGF-β receptor transgene can develop an immunological response, eradicate the tumor
burden, and survive with TGF-β-producing tumors [50,51].

3.3. Expression of Immune Checkpoint Molecules

Immune checkpoint molecules play a crucial role in cancer treatment by regulating
the immune system’s response to cancer cells. These molecules can activate or inhibit
immune responses, influencing how effectively the body can target and destroy cancer
cells. Key immune checkpoint molecules include PD-1, PD-L1, CTLA-4, CD28, LAG-3, and
TIM-3 [52]. The expression of immune checkpoint markers can vary depending on the
cancer. Nonetheless, several common high and low expression patterns of these markers
are seen in various cancer types.

Below is a summary of important immunological checkpoint markers:
PD-1/PD-L1: Even though a full understanding of the mechanisms of the evasion

of cancer cells from the immune system has remained elusive, one of the key signaling
pathways involves the programmed death-1 (PD-1) receptor and its ligands PD-L1 and PD-
L2. The results of multiple clinical studies with anti-PD-1 blockade monoclonal antibodies
have validated that targeting the immune checkpoint of the host through PD-1 receptor
blockade produces strong antitumor immune responses, which results in higher survival
rates [53]. However, these checkpoint treatments are only beneficial for a subset of patients.
By further understanding the immune system features within the TME that influence
responses and resistance, it will be easier to identify which patients will benefit most from
anti-PD-1 treatment alone. Furthermore, this understanding can uncover other immune
factors that could be targeted along with PD-1 to improve outcomes [54].

CTLA-4/CD28: CTLA-4 is a protein receptor that functions as an immune checkpoint.
It is expressed on the surface of T cells and is primarily involved in downregulating immune
responses by ensuring that T cells do not become overactive. It is homologous to CD28 [55].
CTLA-4 competes with CD28 for binding to CD80/CD 86. When CTLA-4 binds to these
molecules, it switches off antigen-presenting cells (APCs) [56] (Figure 3).
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Figure 3. CTLA-4 and CD28 interaction with CD80/86. CTLA-4 competes with the costimulatory
molecule CD28 for the CD80/86 ligands, where it has a higher affinity and avidity [55,57]. Because
CD80 and CD86 both use CD28 to provide a positive costimulatory signal, CTLA-4’s function in com-
petitively inhibiting CD28 is crucial for reducing T cell activation and adjusting the immunological
response [57].

LAG-3: LAG-3 is encoded by the LAG-3 gene and is expressed on the cell surface
of natural killer cells (NK cells) [58], B cells cells [59], tumor-infiltrating lymphocytes
(TILs), and a subset of T cells [60], as well as dendritic cells (DCs) [61,62]. LAG-3 interacts
specifically with tumor cells and antigen-presenting cells (APCs) via the major histocompat-
ibility complex class II (MHC-II) [63,64], which triggers co-inhibitory signaling pathways
and ultimately results in T cell alterations [65,66]. CTLA-4 and LAG-3 have comparable
roles in immune regulation [67]. While CTLA-4 increases cell cycle arrest, decreases T
cell receptor signaling, and inhibits T cell activation [61,67–69], LAG-3 influences T cell
function differently; for instance, activated LAG-3−/− T cells exhibit increased mortality
and extended cell cycle progression [70]. It has been reported that LAG-3 and PD-1/PD-L1
work cooperatively. Inhibiting PD-1 and LAG-3 increased helper T cells and B cells while
activating CD4+ T cells, which also eliminated blood-stage malaria in mice [71].

TIM-3: A 2001 investigation of the genes linked to asthma susceptibility in congenic
inbred mice led to the discovery of TIM-3, a member of the TIM gene family [72]. T cells
(apart from Th2 cells) and other immune cells, including NK cells, macrophages, DCs,
MDSCs, and mast cells, have all been shown to express TIM-3 [73,74]. High expression
levels of TIM-3 are associated with T cell exhaustion, which is the progressive loss of T cell
activity in a hierarchical fashion during long-term viral infections and tumor formation [75].

3.4. Hypoxic Environment

Hypoxia is a state of low oxygen concentration due to the lack of blood supply within
the TME. This state is a hallmark feature of solid tumors and is a significant contributor
to cancer progression, treatment resistance, and poor patient prognosis [76]. To cope
with hypoxia, tumor cells develop resistance to low oxygen levels, marked by changes
in signaling, gene expression, and metabolism [77]. These phenotypic changes help the
cancer cells survive, proliferate, and ultimately invade distant sites [78]. Recent research
has further elucidated the mechanisms by which hypoxia promotes tumor aggressiveness,
highlighting the role of hypoxia-inducible factors (HIFs) in regulating these adaptive
responses. Targeting hypoxic regions within tumors has become a focal point for developing
novel therapeutic strategies aimed at disrupting these adaptive mechanisms and improving
treatment outcomes [79,80].

One promising approach involves the use of bacterial agents in cancer therapy. By
leveraging their natural ability to interact with the immune system, bacterial agents and
their components can disrupt the immunosuppressive TME, particularly by targeting
hypoxic regions and immune suppressor cells. Studies have demonstrated that engineered
bacteria can be tailored to enhance immune detection and response, lysing tumor cells and
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thereby improving the efficacy of existing immunotherapies. This dual strategy not only
alleviates the immunosuppressive conditions but also introduces a novel method to deliver
therapeutic agents directly to the tumor site, marking a significant advancement in cancer
treatment modalities [80–82].

4. Bacterial Agents in Immunomodulation
4.1. Bacterial Components

Bacterial components such as RNA, DNA, peptidoglycan, lipoteichoic acid, lipopolysac-
charide, and flagellum can be recognized by pattern recognition receptors on neutrophils,
dendritic cells, and macrophages. This recognition generates the appropriate immunologi-
cal defense response. Lipopolysaccharide (LPS) found in Gram-negative bacteria’s outer
membrane is a powerful immunogenic microbial-associated molecular pattern (MAMP)
that predominantly binds to TLRs or on immune cell membranes [83]. Elevated LPS levels
can cause amplification of IL-6, activation of the NF-κB and TLR pathways, and phosphory-
lation of STAT3 [84]. These activities promote dendritic cell (DC) maturity and immune cell
division, strengthening antitumor immunity. Similarly, bacterial flagella can stimulate the
innate immune response via TLR5 [85]. Gram-positive bacteria lacking LPS or flagella, such
as Bifidobacterium, activate macrophages, natural killer (NK) cells, dendritic cells (DCs), and
B lymphocytes through components like peptidoglycan, extracellular polysaccharides, and
DNA [86]. These effector cells generate immune-active cytokines or chemicals such as IL-1,
IL-6, IL-12, TNF-α, IFN-γ, and nitric oxide (Figure 4).
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Figure 4. Representation of bacteria and bacterial components. Bacterial agents used in cancer
therapy are intended to boost the immune system, allowing it to better detect and fight cancer cells.
These agents are important in cancer therapy because of their ability to interact with the immune
system, disrupt the immunosuppressive tumor microenvironment, and lyse tumor cells, thereby
improving the immune response and the efficacy of existing immunotherapies and providing a
promising avenue for novel cancer treatments. In recent years, advancements in technology and the
attenuation of pathogenic strains have led researchers to concentrate on biochemical and molecular
techniques to manipulate bacteria in the fight against cancer. These bacteria can be engineered to
selectively target tumors and deliver anticancer medications, proteins, antibodies, enzymes, antigens,
and cytokines straight to the cancer cells, thanks to developments in synthetic biology and genetic
engineering [87].

4.2. Bacterial Targeting in Tumors

Some bacteria, such as Salmonella and E. coli, utilize their flagellar motility to target
cancer regions. These bacteria, including facultative and obligate anaerobes, find the TME
to be nutrient-rich, providing an ideal setting for their growth and activity [88]. Within
the tumor, engineered variants of these bacteria exert anticancer effects by activating both
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innate and adaptive immune responses against cancer cells. The therapeutic agents they
produce include immunomodulators, cytotoxic proteins, angiogenesis modulators, small
interfering RNAs, and prodrug-converting enzymes [6]. Toll-like receptors (TLRs), which
play a crucial role in innate immunity as the body’s first line of defense against pathogens,
are also involved. TLRs identify infections and stimulate the innate immune system,
bridging the gap between initial pathogen recognition by innate immune cells and the
subsequent activation of the adaptive immune response. They facilitate the connection
between innate and adaptive immunity by regulating antigen-presenting cells and key
cytokines [89].

Various mechanisms have been reported to explain how bacteria specifically target
tumors: (a) bacteria are stimulated by conditions in the TME [90], (b) bacteria become
trapped in tumors due to their disordered vasculature [91], and (c) bacteria are attracted to
specific components of the TME [92]. Investigators found that injecting Salmonella enterica
Serovar Typhimurium intravenously resulted in a considerable rise in TNF-α concentrations
in the blood in an ectopic tumor model [93]. This disrupted blood arteries inside the tumors,
resulting in bleeding and allowing bacteria to enter the tumor. Neutralizing TNF-α in tumor-
bearing mice serum reduced blood input into tumors and delayed bacterial colonization.
These findings highlight the crucial function of TNF-α and induced bleeding in the early
phases of bacterial interactions with cancer tissue [93].

Bacteria can infiltrate tumor tissue through both passive and active pathways. In the
passive pathway, bacteria get trapped in the disordered tumor vasculature and migrate
within the tumor due to inflammation from a rapid surge in TNF-α [93]. The active pathway
involves chemotaxis toward chemicals from dying tumor tissue and the low oxygen content
in hypoxic tumors [94,95]. These pathways are not strain-dependent or mutually exclusive,
allowing bacteria to selectively target tumors.

Low oxygen levels attract obligate anaerobes like Clostridium and facultative anaerobes
like Bifidobacterium [96,97]. The deoxygenated tissue of tumors allows these anaerobes to
accumulate in hypoxic zones [95]. Studies confirm this selectivity, as injecting Clostridium
into tumor-bearing mice resulted in infection-related death only in those animals [94].
Facultative anaerobes like E. coli and Salmonella typhimurium use chemoreceptors to sense
nutrient-rich conditions at tumor sites, causing them to accumulate on the tumor’s edges
and within the tumor area [98] (Figure 5).
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Figure 5. The mechanism by which bacteria target tumors. Bacterial toxins and components such
as those from Salmonella, Listeria, Clostridium, and Brucella melitensis induce tumor cytotoxicity by
triggering autophagy, apoptosis, and immune responses. These bacteria enhance CD8+ T cell
activation, reduce regulatory T cells, and promote cytokine production (e.g., IL-1β, TNF-α, IFN-
γ), ultimately boosting antitumor immunity through various mechanisms, including gap junction
formation, inflammasome activation, and increased neutrophil activity.
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Bacteria localize inside the TME, interacting intricately with the tumor microenviron-
ment, malignant cells, and bacterial cells. These interactions (Figure 5) facilitate tumor
suppression by altering cytokines, chemokines, and immune cells infiltrating the tumor.
Toxins from bacteria like Salmonella, Listeria, and Clostridium induce cytotoxicity in tumors
by triggering autophagy or apoptosis [99–102]. Salmonella toxins upregulate Connexin
43 (Cx43), forming gap junctions between tumor and dendritic cells (DCs), facilitating
tumor antigen cross-presentation to DCs [103,104]. DCs release IL-1β in response to tumor
antigens and bacterial components, activating CD8+ T cell lymphocytes [104,105]. Bacterial
flagellin activates TLR5, boosting the antitumor response of activated CD8+ T cells [85].
Perforin and granzyme proteins from activated CD8+ T cells [102,104] destroy tumor cells
in both primary and metastatic sites. Flagellin and TLR5 signaling reduces CD4+, CD25+,
and Tregs, enhancing the antitumor response [85]. A modified strain of Brucella melitensis
lacking the vjbR gene stimulates macrophages to release IL-6, IL-1β, and TNF-α, activating
CD8+ T cells [106]. Flagellin from S. typhimurium increases interferon-γ (IFN-γ) production
by natural killer (NK) cells, which is essential for both adaptive and innate immunity [103].
Listeria-infected MDSCs transform into an immune-stimulating phenotype with increased
IL-12 production, strengthening NK and CD8+ T cell responses [107]. Infections with S.
typhimurium and Clostridium significantly increase neutrophils, which secrete more TNF-α
and TRAIL, enhancing the immune response and tumor cell death [87,93,105,108]. When
Salmonella damages cancer cells and bacterial components like flagellin and LPS are encoun-
tered, the macrophage inflammasome is activated, increasing IL-1β and TNF-α production
in the tumor microenvironment [105,109].

4.3. Bacterial Engineering in Cancer Immunotherapy

Bacteria-based cancer immunotherapy has gained significant attention recently due to
its innovative mechanisms and versatile applications in enhancing the body’s antitumor
responses. Certain bacteria, such as Brucella [106], S.typhimurium [87], Bifidobacterium [110],
Clostridium [26,111], and E. coli coli [112], possess a unique ability to target and invade
the core of tumors, thriving in the low-oxygen, high-nutrient environments that tumors
provide. These bacteria are rich in pathogen-associated molecular patterns, which can
activate immune cells even within the immunosuppressive tumor microenvironment,
thereby boosting the immune system’s ability to detect and destroy cancer cells. However,
when using bacteria to treat cancer, it is critical to minimize their harmful effects on
the immune system while preserving their natural anticancer properties. Achieving this
balance is challenging, but it has been accomplished with certain virulent strains by deleting
key virulence genes, resulting in safe yet effective bacterial variants [106]. To dig deeper
into how bacteria might help fight cancer, we describe the anticancer activities of various
bacterial strains as well as their unique roles in boosting anti-tumor responses.

A. Salmonella

The deletion of the msbB and purI genes in S.typhimurium developed the VNP20009
strain, which is commonly employed in anticancer research in tumor-bearing mice [113].
The deletion of the msbB gene in Salmonella dramatically decreases LPS-induced septic
shock. Strains with lower virulence and increased therapeutic efficiency were produced by
incorporating the LPS gene into the chromosome at the araBAD locus [21]. This method also
downregulates genes linked with endotoxin, resulting in the development of a non-toxic
Salmonella strain with increased therapeutic potential [114]. Furthermore, in the SL1344
strain, co-administration of Pimozide and sh-PD-1 boosted T cell infiltration, spleen CD4 +
T Cells, CD8 + T cells, and NK cells, and decreased spleen Tregs in animal models. Addi-
tionally, the combined therapy enhanced survival and induced tumor death as compared
to single monotherapies [115]. Also, Salmonella strains with relA and spoT gene mutations
exhibit low toxicity due to a lack of ppGpp, which regulates toxin gene production. These
strains have potent anticancer action via activation of the inflammasome (IPAF, NLRP3),
which causes the release of different proinflammatory cytokines. It also reduced tumor
development and metastasis in the HCT116 xenograft model. This therapy also activated
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M1-like macrophage polarization, resulting in the release of tumor-suppressive cytokines
and nitric oxide [87]. These modified bacteria can reduce toxicity while increasing therapeu-
tic efficiency by inducing anticancer immune responses and activating proinflammatory
cytokines.

B. Brucella

Brucella is a gram negative facultative intracellular bacterium [116] that uses effector
proteins [117] o targets host signaling systems [118] to remodel host intracellular membrane
trafficking systems [119] to establish an intracellular niche [120]. A live attenuated strain of
Brucella melitensis [121], engineered with a deletion of the vjbR gene, plays a crucial role in
regulating T cell function. This bacterium polarizes macrophages, leading to the release of
proinflammatory cytokines such as IL-6, IL-1β, and TNF-α, which in turn activate CD8+ T
cells [106], thereby enhancing the body’s ability to mount an effective antitumor response.
This mutation not only reduces the virulence of the bacterium but also enhances its utility
in cancer immunotherapy by selectively targeting tumor cells while minimizing damage to
normal tissues [93]. In other work, the engineered variants of Brucella were shown to be
useful for addressing autoimmune disease [106].

C. E. coli

In recent studies, programmed E. coli Pir1+ was used to secrete a CD47-neutralizing
nanobody (nb) using a synchronized lysis circuit (SLC), which initiates cell lysis based
on the abundance of bacteria in the tumor. In mice, localized administration of CD47nb
increased the activation of tumor-infiltrating T cells while dramatically inhibiting tumor
development [122] In the follow-up study, E. coli Nissle 1917 was engineered with SLC in
a subsequent effort to generate nanobodies targeting PD-L1 and CTLA-4. In syngeneic
animal models of the tumor microenvironment, PD-L1nb and CTLA-4nb released in situ
enhanced T cell activation, increasing systemic memory T cell populations while delivering
regression within established tumors. Most importantly, superior combination efficacy was
observed using bacterial strains producing PD-L1nb, CTLA-4nb, and GM-CSF compared
to its individual or combined immune checkpoint nanobody-producing strain [112]. These
findings emphasize the promise of using modified bacteria for targeted immunotherapy, as
well as the need to combine various immune-modulating drugs to obtain greater anticancer
effects and better therapeutic outcomes.

D. Lactobacillus

Recent developments in cancer immunotherapy have examined the ability of geneti-
cally engineered bacteria to convey tumor-associated antigens (TAAs) and trigger strong
adaptive immune responses. This method uses bacteria’s capacity to present TAAs, re-
sulting in targeted immune activation against cancer cells. A recent phase I/IIa clinical
study evaluated an oral vaccination derived from Lactobacillus casei GLBL101c, which was
modified to express the tumor-associated antigen HPV16 E7. This vaccination effectively
reduced cervical intraepithelial neoplasia cancers in 70% of patients, lowering the severity
from CIN3 to CIN1-2. The primed T cells that recognized the E7 antigen effectively targeted
the cervical tumor and elicited a Th1 response [123].

E. Bifidobacterium

The hypoxic tumor microenvironment is a key obstacle to successful cancer therapy,
but new research has investigated the ability of engineered bacterial strains to target and
control this milieu [6]. In one such study, a recombinant strain, Bifidobacterium longum
C-CPE-PE23, was created to increase apoptosis and decrease tumor development, notably
in triple-negative breast cancer (TNBC). This strain was designed to produce a recombinant
toxin, including the CL-4-binding domain of C-CPE linked to PE23, a bacterial toxin with
strong cytotoxicity against cancer cells. In vivo, experiments revealed that B. longum C-
CPE-PE23 dramatically reduced tumor growth and increased apoptosis in a TNBC mouse
model [110]. Another promising strategy in oral vaccination involves modifying B. longum
to express the Wilms’ tumor 1 (WT1) protein. This vaccination inhibited WT1-expressing
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tumor development in mice by enhancing the cytotoxic activity of WT1 epitope-specific
cytotoxic T cells. In a follow-up investigation, the recombinant bacterium displays WT1
protein. B. longum 420 expresses tumor cells demonstrating antitumor effect via mic spleno-
cyte isolation and cytokine production. B. longum 420 significantly boosted CD4+ and
CD8+ T cell infiltration into tumors, elevated systemic WT1-specific cytokine production,
and improved the cytotoxic activity of WT1-epitope-specific cytotoxic T lymphocytes [124].
These advances highlight the intriguing significance of genetically modified bacteria in can-
cer immunotherapy by demonstrating their ability to efficiently display tumor-associated
antigens and stimulate specific immune responses.

F. Clostridium

Recent advances in bacterial-based cancer therapeutics focus on customizing Clostrid-
ium species to exploit hypoxic microenvironments within tumors. Engineered strains of
Clostridium, such as C. novyi-NT and C. butyricum, are designed to thrive in low-oxygen
areas of tumors [26,111]. These bacteria produce toxins that rupture tumor cell membranes
and disrupt intracellular pathways [125]. Additionally, these engineered strains can recruit
neutrophils, which produce TNF-related apoptosis-inducing Ligand (TRAIL), attracting
CD8+ T lymphocytes, granulocytes, and macrophages [108,126].

G. Listeria

Listeria monocytogenes has been the focus of recent studies, primarily targeting myeloid-
derived suppressor cells (MDSCs) in the tumor microenvironment. When MDSCs take up Lis-
teria, they can translocate to cancer cells through a cell-to-cell transport mechanism [107,108].
This method reduces tumors by directly killing invasive cancer cells and stimulating cy-
totoxic T cells specific to Listeria antigens [102]. Additionally, Listeria infection can induce
certain MDSCs to adopt an immune-stimulatory phenotype, releasing interleukin-12 (IL-
12), which enhances T cell and natural killer (NK) cell responses [107]. The bacteria also act
directly on cancer cells by increasing intracellular calcium levels by activating NADP(+)
oxidase and inducing ROS generation [102]. These findings demonstrate the potential of
bacterial infections to overcome immune suppression, improve cancer treatment outcomes,
and promote both direct cancer cell death and enhanced immune responses.

5. Immunomodulation of the TME

Immunomodulation of the TME leverages the body’s immune cells, including
macrophages, dendritic cells, and T cells, to enhance antitumor responses. By using
innovative strategies such as targeted delivery systems and bacterial components, re-
searchers aim to recruit and activate these immune cells within the TME. This approach
involves shifting immune cell phenotypes to create a more hostile tumor environment.
TAMs can be targeted in various ways using bacteria and their contents to repolarize
them to an antitumor state [127]. Similarly, tumor-associated neutrophils (TANs) have
distinct transcriptomic profiles and phenotypes from naive neutrophils [128]. Hence, de-
veloping treatment methodologies that target this may prove pivotal. While establishing
T cell immunity is critical in modulating the TME, it happens only with the assistance of
antigen-presenting cells such as dendritic cells. Several research findings have reported
that bacteria-based delivery systems lead to DC maturation [129]. The goal is to suppress
tumor growth and improve the effectiveness of cancer therapies, offering new hope in the
fight against cancer.

This section delves into how engineered bacteria and their components modulate the
TME by specifically affecting these immune cells—macrophages, neutrophils, dendritic
cells, and T cells. By leveraging the unique properties of engineered bacteria, it is possible
to reprogram the TME from a tumor-supportive state to one that actively combats cancer,
offering promising avenues for innovative cancer therapies.
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5.1. Immunomodulation of the TME by Macrophages

Macrophages exhibit remarkable plasticity in their functions as they can change their
phenotypes based on environmental cues. The M1 phenotype is activated in response to a
pathogen, releasing cytokines to recruit other immune cells. Meanwhile, the M2 phenotype
is generally anti-inflammatory as it is involved in tissue repair and immune regulation [130].
Innovative strategies to modulate the TME through targeted delivery systems are currently
in development, enhancing the recruitment and activation of immune cells to suppress
tumor growth effectively.

Innovative strategies involving targeted delivery systems are being developed to
capitalize on the plasticity of macrophages in TME. Several studies have utilized bacteria
or bacterial components as carriers for drug delivery into the TME. Qing et al. used E. coli
OMVs combined with CaP nanoparticles to neutralize the acidic TME and promote M1
macrophage infiltration. This led to the production of cytokines such as IL-12, IL-6, TNF-α,
and IFN-γ and the recruitment of CD3 and CD8 T cells, reducing the presence of Tregs [131].
Lim et al. co-administered oxaliplatin (OXA) with E. coli (DH5-alpha) to target tumors.
Upon E. coli colonization in the TME, the delivery of OXA repolarized macrophages to
the M1 phenotype and recruited APCs, leading to cytotoxic T cell recruitment and tumor
suppression [132].

Another promising strategy targets the CD47 receptor on tumor cells. CD47 is a five-
transmembrane receptor that is ubiquitously found in healthy cells. Its primary function
is interacting with the SIRPα receptor on macrophages and dendritic cells to maintain
self-tolerance. Many tumor cells upregulate CD47 expression to escape the immune system.
Researchers investigated strategies to disarm the CD47 shield that tumors use to evade
immune attacks by macrophages. Feng et al. designed antibody-coated nanoparticles
(OMV-CD47nb) to target CD47 on cancer cells and TLRs on macrophages. This “dual
adaptor” system triggered a switch towards tumor-killing M1 macrophages and recruited
antigen-presenting cells, priming T cell immunity [133]. In another approach, Chowdhury
et al. engineered bacteria (eSLC-CD47nb) to deliver a CD47-blocking nanobody directly into
tumors. This localized therapy induced a broader antitumor response beyond the treated
area (abscopal effect). It increased M1-like macrophages within tumors, enhanced antigen
presentation, and stimulated the proliferation and activation of cytotoxic T cells [122].

TLRs are critical in recognizing pathogen and damage-associated molecular patterns
(PAMPs and DAMPs) and activating innate immune responses. In one such study, re-
searchers engineered Salmonella to target TLRs in the TME. FlaB protein activated TLR4,
recruiting macrophages and reprogramming them from M2 to M1 via TLR5. This M1
switch boosted ROS, NO, and cytokine production, killing cancer cells. This bacteria-
based approach offers a potential cancer therapy by manipulating macrophages within the
TME [122].

5.2. Immunomodulation of the TME by Neutrophils

Neutrophils act as first responders in the innate immune system and initiate inflamma-
tory responses to any pathogens through phagocytosis, degranulation, and the formation of
neutrophil extracellular traps (NETs). The presence of tumor-associated neutrophils (TANs)
in the tumor microenvironment has often garnered attention as their phenotype exhibits
both antitumor and pro-tumor activities, similar to macrophages. In a study focused on
the role of neutrophils at the crossroads of inflammation and cancer, nanopathogenoids
(NPNs) loaded with cis-platin were coated with OMVs derived from E. coli. These NPNs
mimicked pathogen-associated molecular patterns (PAMPs) and were phagocytosed by
neutrophils, directing them to the tumor sites. The formation of neutrophil extracellular
traps (NETs) released the NPNs into the TME, delivering the therapeutic payloads and
contributing to tumor eradication [134]. Yam et al. used bacterial loads of S. aureus and
BCG to induce inflammation in the TME that caused a change in neutrophil function to a
cytotoxic one [135].
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CRM197, a non-toxic Diphtheria toxin (DT) derivative, shares its immunological
traits and binds to HB-EGF, a receptor often upregulated in cancer, potentially enhancing
therapeutic efficacy. In the context of CRM197 administration, there is a notable surge in
neutrophil activity, likely contributing to its observed antitumor effects. This involved
neutrophil recruitment to tumor sites, inducing cytotoxicity on cancer cells, or altering
the tumor microenvironment [136]. Furthermore, releasing neutrophil-derived molecules,
such as cytokines and reactive oxygen species, may enhance the immune response against
cancer cells.

C. novyi-NT spores preferentially activate in oxygen-depleted tumor regions, induce
tumor cell breakdown, and prompt immune reactions. Neutrophils, pivotal in the early
inflammatory cascade, release ROS and proteases, facilitating tumor destruction as their
activation initiates broader immune responses, shaping treatment outcomes [126]. The
interplay between bacteriolysis, angiogenesis, and immune activation dictates efficacy, with
neutrophil involvement critical in determining tumor eradication or persistence.

In the ongoing search for safer treatments for bladder cancer, a recent study reveals
the potential of benign Clostridium CBM588. Significant inhibition of bladder cancer growth
akin to BCG’s efficacy but devoid of its adverse effects was noted with CBM588. The activa-
tion of TRAIL release from neutrophils (PMNs) by both CBM588 and BCG is noteworthy,
indicating their vital role in antitumor immunity. Enhancing therapeutic outcomes could be
achieved by combining CBM588 with TRAIL-sensitizing agents such as sulforaphane [108].

5.3. Immunomodulation of the TME by Dendritic Cells (DCs)

Dendritic cells (DCs) play a crucial role in activating the immune response to pro-
tect the body from harmful microorganisms and cancer. DCs are central to the efficacy
of bacteria-based cancer immunotherapies, leveraging their unique role as professional
antigen-presenting cells. Upon exposure to bacterial components such as lipopolysaccha-
rides (LPS) and CpG motifs, DCs undergo maturation and upregulate surface molecules
necessary for T cell activation, including MHC classes I and II, CD80, and CD86 [137]. These
mature DCs present tumor antigens derived from bacterial treatments to naive T cells, thus
initiating a robust adaptive immune response [138]. Additionally, DCs release proinflam-
matory cytokines such as IL-12, critical for polarizing T cells toward a Th1 response and
promoting cytotoxic T-lymphocyte (CTL) activity, enhancing antitumor immunity [139,140].
These mechanisms collectively position DCs as pivotal orchestrators of immune responses
in bacteria-based cancer therapies, driving innate and adaptive immunity to target and
eliminate tumor cells.

By establishing close contact with tumor cells, dendritic cells not only activate the
immune response but also serve as crucial antigen-presenting cells (APCs), bridging the
innate and adaptive immune systems and playing a pivotal role in generating T cell memory
to prevent future invasions by pathogens.

Lin et al. employed an attenuated Salmonella strain (VNP20009) induced with L-
Arabinose to secrete GM-CSF and IL-7, stimulating DC maturation and T cell proliferation.
This combination, when used with anti-PD1 antibodies, resulted in effective tumor eradica-
tion [141]. Another study utilized Streptococcus mutans as a carrier to deliver tetrahedral
framework nucleic acids (tFNAs) attached to 5-fluorouracil (5-FU) and aptamer AS1411.
The bacteria infiltrated the hypoxic regions of the TME and aggregated in tumor-specific
biofilms, ensuring targeted drug delivery and recruitment of T cells and DCs [81]. Ulti-
mately, several active mechanisms in the TME disrupt DC functions, leading to inadequate
T cell activation and potentially inducing T cell tolerance to TAAs. The promising results of
bacterial therapies in modulating immune responses underscore the need to evaluate their
clinical safety and efficacy.
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5.4. Immunomodulation of TME by T Cells

Cancer cells function through intrinsic and extrinsic mechanisms; their bidirectionally
allows them to evade immune system regulation and antitumor immune responses. T cells
are major specialized cells of the immune system that play a central role as mediators of
cellular immune responses. The basic classification and primary functions of different T
cell types are presented in Table 1 [142].

Table 1. Classification of T cells.

Cytotoxic T cells (CD8+ lymphocytes) Detect peptides presented by MHC class I
molecules and destroy infected cells.

Helper T cells (CD4+ lymphocytes)
Detect peptides presented by MHC class II

molecules; activate other cells of the immune
system through the secretion of cytokines.

Regulatory T cells
Suppress immunity at the end of the immune

reaction and maintain tolerance to
autoantigens.

Memory T cells
Generated after the activation of T

lymphocytes and will respond to new
exposures to the same microorganism.

In the early stages of cancer, malignant cells fail to elicit a sufficient immune response,
leading to improper activation of the innate immune system, which results in a weakened
adaptive immune response. The TME T cells can attack the tumor, while others support
its growth and development. CD8+ lymphocytes activate CD4+ Th1 cells, which release
IFN-y and IL-2. Meanwhile, TH17 cells produce IL-17A, IL-17F, IL-21, and IL-22, which
both promote tumor growth [143,144]. T cell responses to some tumors can be inhibited by
the intervention of two molecules: cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)
and programmed cell death protein 1 (PD-1) [145].

Alternatively, some tumors express Fas ligand (FasL), which binds to the Fas receptor
on the leukocytes attacking the tumor, producing its apoptotic death [146]. Finally, tumor
and TME cell products have the capacity to suppress antitumor immune responses. An
example is TGF-β, a cytokine that can inhibit the proliferation and effector functions of
lymphocytes and macrophages. It promotes the conversion of CD4+ T lymphocytes into
regulatory T cells, which have an immunosuppressive effect [147].

As discussed, bacteria therapy can induce the production of cytokines in tumor cells
that can attract and improve the antitumor activity of various lymphocytes. Salmonella
Typhimurium has been used in immunotherapies in murine trials, with significant tumor
reduction, resulting from the local expression of bacteria or the expression of immune
system-stimulating molecules on tumor cells IL-18, CCL21, LIGHT, or the Fas ligand [148].
Salmonella flagellin has also been implicated in the reductions of CD4 + CD25+ T cells
through TLR5 in the tumor microenvironment [149] and the induction of PD-L1 expression
in dendritic cells and CD4+ cells [150,151].

Similarly, Garbatri et al. engineered E. coli Nissle 1917 (EcN), a bacteria modified to
express PD-L1 and CTLA-4 antagonists by transforming it with high-copy plasmid-carrying
sequences for PD-L1 and CTLA-4 nanobodies. SLC was used to release the antagonists
to maximize therapeutic efficacy. In multiple mouse models, intra-tumoral injections of
the engineered EcN led to either partial or complete tumor regression. Immunopheno-
typing revealed an increase in intra-tumoral activated CD8+ T cells and conventional
CD4+ T cells, along with a decrease in Tregs, indicating a shift from an immunosuppres-
sive to a responsive tumor microenvironment and triggering a robust adaptive immune
response [112].
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6. Clinical Evidence for the Safety and Efficacy of Bacterial Therapy for Cancer

The clinical exploration of engineered bacterial agents in cancer therapy presents a
nuanced understanding of both promises and limitations. Clinical trials are a testament
to improving patient care by rigorously testing new interventions, albeit in a controlled
setting. Phase I trials primarily focus on safety, involving a small number of participants to
determine the maximum tolerated dose and initial safety profile of a new treatment. Phase
II trials expand on safety assessments with larger patient populations and begin to evaluate
preliminary efficacy measures, typically lasting longer than Phase I studies.

Safety was demonstrated at certain doses in a previously mentioned phase I study that
administered attenuated Salmonella Typhimurium (VNP20009) intravenously to patients
with metastatic melanoma. However, its efficacy in tumor colonization and antitumor ac-
tivity remained limited. Only three out of twenty-five patients showed tumor colonization,
receiving doses of at least 3 × 108 cfu/m2. This limited colonization could be attributed
to the rapid clearance of VNP20009 from the bloodstream, suggesting that while bacterial
safety can be maintained, its persistence and interaction with the tumor microenvironment
need further enhancement [7]. Additionally, similar observations (poor colonization and
lack of an antitumor response) were reported when a live strain was used [152]. Since this
was a phase I study, the aim was to look at the safety of the treatment modality, observe
any adverse events, and determine the MTD.

Similarly, VXM01, an orally applied attenuated Salmonella Typhi strain, has been
evaluated in a phase I trial for its anti-angiogenic effect via VEGFR2 targeting rather than
a direct antitumor response. Notably, patients who exhibited reduced or stable tumor
perfusion had elevated levels of VEGFR2-specific T effector cells. This suggests that
continuous boosting might be required to maintain high levels of these T cells, especially in
patients with advanced-stage cancers. Further trials with larger sample sizes and patient
stratification based on tumor burden could improve our understanding of its efficacy [153].

Another promising bacterial candidate was explored in a phase I study targeting
invasive cervical carcinoma using Listeria monocytogenes (Lm), which secretes HPV-16 E7
antigen. This live-attenuated strain increased the median survival rate by 347 days, a signif-
icant improvement compared to the historical median survival of 6–7 months. One patient
showed an E7-specific T cell response, highlighting the potential of this approach to induce
an immune response against HPV-associated cancers. However, larger cohorts and rigorous
controls are essential to validate these findings, particularly to assess immunogenicity and
clinical efficacy [154].

In a phase II trial of another attenuated Listeria monocytogenes strain, Axalimogene
filolisbac (ADXS11-001) was tested in patients with metastatic cervical cancer. Despite two
treatment arms (monotherapy and combination with cisplatin), the overall survival benefit
was similar between the two, with no added advantage from the combination therapy. The
study authors noted that including a cisplatin-only arm would have offered better insight
into the adverse events and interactions between therapies, underscoring the importance
of thoughtful trial design in multi-modal treatment studies [155].

A phase II study in metastatic pancreatic cancer evaluated the combination of cy-
clophosphamide, GVAX pancreas vaccine, and CRS-207 (Listeria monocytogenes expressing
mesothelin). The addition of nivolumab (an anti-PD-1 immunotherapy drug) significantly
improved overall survival, with a 56% improvement in the nivolumab-treated arm com-
pared to Cy/GVAX alone. This finding emphasizes the potential for synergy between
bacterial vaccines and immune checkpoint inhibitors in enhancing antitumor responses,
particularly in hard-to-treat cancers like pancreatic cancer [156].

The clinical application of engineered bacterial agents in cancer therapy demonstrates
both promise and limitations. Phase I and phase II trials highlight the safety and tolerabil-
ity of these agents, though their efficacy in tumor colonization and antitumor responses
remains inconsistent. While attenuated bacterial strains, such as Salmonella Typhimurium,
VXM01, and Listeria monocytogenes, have shown the ability to elicit immune responses
and, in some cases, modest survival benefits, challenges persist in optimizing bacterial



Cancers 2024, 16, 3810 17 of 24

persistence, tumor targeting, and enhancing immune responses. The integration of bac-
terial agents with existing immunotherapies, such as checkpoint inhibitors, has shown
potential in improving outcomes, as seen in trials involving pancreatic and cervical cancers.
However, further research is necessary to address key limitations, including refining trial
designs, expanding patient cohorts, and improving bacterial interactions with the tumor
microenvironment to fully harness their therapeutic potential.

7. Conclusions

Engineered bacteria hold immense promise as a novel approach to cancer therapy,
offering a unique advantage in targeting the TME and enhancing immune responses. Unlike
conventional treatments, which often lead to relapse [157], and systemic toxicity, bacterial-
based therapies can precisely modulate immune responses and address the challenges
posed by hypoxic tumor regions. Studies such as the use of Clostridium novyi-NT combined
with radiation therapies demonstrate the potential of bacterial therapeutics to significantly
improve treatment outcomes, including achieving complete remission in preclinical models.
These bacteria enhance the efficacy of treatments by exploiting the unique conditions within
tumors, such as hypoxia, which standard therapies often fail to address.

Furthermore, advancements in genetic engineering, particularly with CRISPR-Cas9,
have allowed for the development of highly specialized bacterial strains capable of targeting
specific cancer cells and modifying the TME. This enables better immune cell recruitment
and function, thereby supporting tumor destruction. The integration of bacterial compo-
nents with immune checkpoint inhibitors also presents a promising avenue for enhancing
the immune system’s ability to fight cancer, further underscoring the potential for bacterial
therapies to complement existing treatments.

Despite this progress, there remain challenges that must be resolved before these
therapies can be widely adopted in clinical practice. Ensuring the long-term safety of
engineered bacteria, minimizing off-target effects, and optimizing delivery methods are
crucial areas that require further investigation. Moreover, the need for rigorous preclinical
and clinical testing cannot be overstated, as it is essential to establish both the efficacy and
safety of these innovative therapies.

In conclusion, engineered bacterial therapeutics represent a transformative frontier in
cancer treatment, with the potential to overcome the limitations of conventional therapies.
Ongoing research, coupled with advancements in bacterial engineering and combination
strategies, will be critical in realizing their full potential. With continued innovation,
bacterial-based therapies could significantly improve patient outcomes and offer new hope
in the fight against cancer.
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Abbreviations

TME tumor microenvironment
NGS Next Gen Sequencing
MDSCs myeloid-derived suppressor cells
Tregs regulatory T cells
TAMs tumor-associated macrophages
Arg-1 arginase 1
Nos2 oxide synthase 2
PMN-MDSCs polymorphonuclear MDSCs
M-MDSCs monocytic MDSCs
CRC colorectal carcinoma
ECM extracellular matrix
CAFs cancer-associated fibroblasts
TGF-β transforming growth factor-beta
VEGF vascular endothelial growth factor
CTLs cytotoxic T lymphocytes
PD-1 programmed death-1
NK cells natural killer cells
TILs tumor-infiltrating lymphocytes
DCs dendritic cells
MHC-II major histocompatibility complex class II
HIFs hypoxia-inducible factors
LPS lipopolysaccharide
MAMP microbial-associated molecular pattern
TLRs Toll-like receptors
IFN-γ interferon-γ
SLC synchronized lysis circuit
Nb nanobody
TAAs tumor-associated antigens
TNBC triple-negative breast cancer
WT1 Wilms’ tumor 1
TRAIL TNF-related apoptosis-inducing Ligand
TANs tumor-associated neutrophils
OXA oxaliplatin
NETs neutrophil extracellular traps
NPNs nanopathogenoids
DT Diphtheria toxin
PMNs neutrophils
FLT3L FMS-like tyrosine kinase 3 ligand
HMGB1 high mobility group protein B1
APCs antigen-presenting cells
tFNAs tetrahedral framework nucleic acids
5-FU 5-fluorouracil
CTLA-4 T lymphocyte-associated antigen-4
PD-1 programmed cell death protein 1
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