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Simple Summary: Cellular immunotherapy represents a rapidly advancing field in cancer treatment,
particularly for multiple myeloma (MM). Notably, two approved chimeric antigen receptor (CAR)
T cell therapies targeting B cell maturation antigen (BCMA) have demonstrated substantial clinical
efficacy, offering renewed hope for patients with this hitherto incurable disease. However, achieving
sustained remission across a wider patient population remains challenging. This review examines the
landscape of current clinical trials in MM cellular immunotherapy, highlighting key challenges and
opportunities. It also explores recent innovations aimed at overcoming existing barriers, including
broadening the spectrum of used cell types, optimizing manufacturing processes and targeting
novel antigens. Together, these strategies could improve clinical outcomes, paving the way to push
immunotherapy to earlier lines of MM treatment.

Abstract: Multiple myeloma (MM) treatment remains challenging due to its relapsed/refractory
disease course as well as intra- and inter-patient heterogeneity. Cellular immunotherapies, especially
chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA), mark a major
breakthrough, achieving long-lasting remissions and instilling hope for a potential cure. While
ongoing clinical trials are increasingly driving approved cellular products towards earlier lines of
therapy, novel targets as well as advanced approaches employing natural killer (NK) cells or dendritic
cell (DC) vaccines are currently under investigation. Treatment resistance, driven by tumor-intrinsic
factors such as antigen escape and the intricate dynamics of the tumor microenvironment (TME),
along with emerging side effects such as movement and neurocognitive treatment-emergent adverse
events (MNTs), are the major limitations of approved cellular therapies. To improve efficacy and
overcome resistance, cutting-edge research is exploring strategies to target the microenvironment
as well as synergistic combinatorial approaches. Recent advances in CAR-T cell production involve
shortened manufacturing protocols and “off-the-shelf” CAR-T cells, aiming at decreasing socioeco-
nomic barriers and thereby increasing patient access to this potential lifesaving therapy. In this review,
we provide an extensive overview of the evolving field of cellular therapies for MM, underlining the
potential to achieve long-lasting responses.

Keywords: multiple myeloma; cell therapy; CAR-T; CAR-NK; clinical trial; BCMA; GPRC5D

1. Introduction

Multiple myeloma (MM) is a hematological malignancy characterized by the clonal
proliferation of abnormal, terminally differentiated plasma cells in the bone marrow
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(BM) [1]. Symptoms of MM are often non-specific and usually only appear with the
onset of end-organ damage such as bone destruction, anemia, increased susceptibility to
infections, kidney failure and hypercalcemia [2]. MM typically evolves from pre-malignant
conditions such as monoclonal gammopathy of undetermined significance (MGUS) and
smoldering MM (SMM) [3]. Genetic alterations drive the progression of these precursor
stages to MM [4]. This complex, multistage process obscures and prolongs the diagnostic
timeline, often with many years elapsing between the suspected initial genetic event and
the time point of diagnosis [5,6].

MM is the second most common hematological malignancy (10–15%), with its inci-
dence rising since 1990; this condition mainly affects the elderly, with a median patient age
of 65 to 70 at the time of diagnosis [7,8]. Demographic changes in society and advances in
diagnostics and treatment have resulted in increasing disease prevalence and impact [9].

Although many effective treatment methods have appeared in the past 10 years, includ-
ing monoclonal antibodies (mABs), proteasome inhibitors (PIs) and immunomodulators
(IMiDs), MM remains largely incurable. However, the therapeutic landscape has signifi-
cantly expanded with the introduction of cellular therapies [10]. The FDA approvals of
the chimeric antigen receptor T (CAR-T) cell products idecabtagene vicleucel (ide-cel) and
ciltacabtagene autoleucel (cilta-cel) have broken new ground for diverse cellular treatment
options not only targeting different MM antigens but also benefiting from other cell types,
such as natural killer (NK) cells and dendritic cells (DCs) [11–14].

2. Types of Cell-Based Therapies for MM
2.1. CAR-T Cells

CAR-T cell therapy has emerged as a promising treatment for MM due to its suc-
cess against B cell malignancies [15,16]. The innovative approach involves the genetic
modification of a patient’s own T cells to express a receptor targeting specific tumor anti-
gens, enabling effective cytolysis of tumor cells in a major histocompatibility complex
(MHC)-independent manner. The CAR construct comprises three main building blocks:
an extracellular antigen recognition domain often consisting of a single-chain fragment
variant (scFv) derived from an antibody, a transmembrane domain and an intracellular
domain [17]. The rapid development of this technology in recent years has resulted in five
generations of CAR-T cell therapy thus far, with each generation incorporating additional
modifications of the intracellular moiety in an attempt to increase the therapeutic poten-
tial and decrease adverse effects. To overcome the low expansion and short persistence
of first-generation CAR-T cells, which only contained a CD3ζ domain, a costimulatory
domain was incorporated in the second generation of CARs. This was further refined in
the third generation, which featured two costimulatory domains within a single CAR con-
struct. The fourth generation introduced constitutively or inducibly expressed chemokines,
and the fifth generation included additional intracellular domains derived from cytokine
receptors [18,19].

2.2. CAR-Natural Killer Cells

Although no FDA-approved therapy is yet available, several clinical trials are under
way to assess the efficacy of NK cell therapies for MM treatment [20]. As an integral
component of the innate immune system, NK cells have been shown to have significant
anti-myeloma activity [21]. However, challenges such as the decreased frequency and
activity of NK cells in MM patients impair their efficacy, making allogeneic NK cell therapy
an attractive approach to restore NK cell functions [22]. Additionally, the development of
CAR-NK cells combined the intrinsic tumor-killing capacity of NK cells with enhanced
antigen-specific killing ensured by the CAR [23]. Given the absence of T cell receptors
(TCRs), graft-versus-host disease (GvHD) is avoided, clearing the way for allogeneic
approaches [24]. The short lifespan of NK cells reduces the risk of toxicities; however, along
with limited homing capacity and persistence, it also poses a major challenge for clinical
translation of NK cell-based therapies [25].
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2.3. Dendritic Cell Vaccines

A groundbreaking approach in treating MM is the development of DC vaccines,
which aim to boost patients’ immune responses and could work synergistically with other
MM therapies. DCs are master antigen-presenting cells existent throughout all tissues,
capable of capturing, processing and cross-presenting antigens inducing both cellular and
humoral immune responses [12]. MM patients often exhibit a quantitative and functional
deficiency of DCs, which disrupts antigen presentation and compromises the body’s anti-
tumor response [26,27]. Therefore, DC therapies are a promising approach to restore these
functions. After DC manufacturing, cells are either loaded with idiotypic proteins or
myeloma-associated antigen mRNA or fused with whole MM cells for presentation in an
attempt to overcome DC deficiencies and immunosuppression [28–32].

3. Cellular Therapies for Treatment of MM

Currently, the approved cellular therapies for treatment of MM are limited to CAR-T
cell therapy targeting B cell maturation antigen (BCMA, TNFRSF17). However, several
ongoing trials explore new targets and innovative cellular therapies, including NK cells and
DCs. Both approved cell products and cell products under development will be discussed
in this chapter and are summarized in Table 1. The eligibility criteria for selecting the
clinical trials included a systematic search on ClinicalTrials.gov using the keywords CAR-
T, CAR-NK and DC vaccines in MM. Trials were prioritized based on published results
and/or their significant novelty in the field, as well as follow-up studies from previously
published studies.

Table 1. Overview of the current clinical trials from different cellular products for the treatment of
multiple myeloma.

Trial Name
(Number)

Cell
Product Target Phase Product

Design Targeted Population Treatment Ref.

KarMMa
(NCT03361748) T cell BCMA II Murine-

derived
RRMM ≥ 3 prior LOTs (PI, IMiD,

anti-CD38 mAb)
Single bb2121 (ide-cel)

infusion [33]

KarMMa-2
(NCT03601078) T cell BCMA II Murine-

derived

Cohort 1 (RRMM after ≥3 prior LOTs);
cohort 2 (1 prior LOT, PD < 18 mo with

(2a) or without (2b) ASCT or with
inadequate response post ASCT (2c));

cohort 3 (NDMM with suboptimal
response after ASCT)

Cohort 1: ide-cel
Cohort 2: ide-cel

Cohort 3: ide-cel +
lenalidomide
maintenance

[34,35]

KarMMa-3
(NCT03651128) T cell BCMA III Murine-

derived
RRMM after 2 to 4 prior LOTs

(including PI, IMiD, anti-CD38)

Arm A: ide-cel Arm B:
DPd or DVd or IRd or Kd

or EPd
[36]

KarMMa-4
(NCT04196491) T cell BCMA I Murine-

derived
HR (R-ISS Stage III) NDMM after

3 cycles of induction Single ide-cel infusion [37]

KarMMa-7
(NCT04855136) T cell BCMA I/II Murine-

derived

MM ≥ 3 prior LOTs (PI, IMiD,
anti-CD38 mAb) for Arm B and Arm A
Cohort 1, after 1–2 prior LOTs for Arm

A Cohort 2 (IMiD)

Arm A: ide-cel + CC-220
Arm B: ide-cel +

BMS-986405
N/A

LEGEND-2
(NCT03090659,
ChiCTRONH-

17012285)
T cell BCMA I/II Camelid-

derived RRMM ≥ 3 prior LOTs (bortezomib) Split doses of
LCAR-B38M cells [38]

CARTITUDE-1
(NCT03548207) T cell BCMA Ib/II Camelid-

derived
RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb)
Single JNJ-68284528
(cilta-cel) infusion [39]

CARTITUDE-2
(NCT04133636) T cell BCMA II Camelid-

derived

Cohort A (PD after 1–3 prior LOT),
cohort B (early relapse after front-line),

cohort C (RRMM after PI, IMiD,
anti-CD38 and anti-BCMA), cohort D
(<CR after front-line ASCT), cohort E
(high-risk NDMM with no plans for

ASCT), cohort F (standard-risk NDMM
with ≥VGPR after initial therapy)

Cohorts A, B, C, F: single
cilta-cel infusion

Cohort D: cilta-cel +
lenalidomide
maintenance

Cohort E: DVRd
induction + cilta-cel +

lenalidomide
consolidation

[40]

ClinicalTrials.gov
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Table 1. Cont.

Trial Name
(Number)

Cell
Product Target Phase Product

Design Targeted Population Treatment Ref.

CARTITUDE-4
(NCT04181827) T cell BCMA III Camelid-

derived
RRMM after 1 to 3 prior LOTs

(lenalidomide refractory)
Arm A: PVd or DPd

Arm B: cilta-cel [41]

CARTITUDE-5
(NCT04923893) T cell BCMA III Camelid-

derived NDMM, not intended to receive ASCT Arm A: 8c VRd + Rd
Arm B: 8c VRd + cilta-cel N/A

CARTITUDE-6
(NCT05257083) T cell BCMA III Camelid-

derived NDMM, transplant eligible

Arm A: 4c DVRd + ASCT
+ 2c DVRd +
lenalidomide
maintenance

Arm B: 6c DVRd +
cilta-cel + lenalidomide

maintenance

N/A

ARI0002h
(NCT04309981) T cell BCMA I/II Humanized RRMM ≥ 2 prior LOTs (IMiD, PI,

anti-CD38 mAb) Single ARI0002h dose [42]

EVOLVE
(NCT03430011) T cell BCMA I/II

Fully
human-

ized

Phase I cohort: RRMM ≥ 3 prior LOTs
(IMiD, PI, anti-CD38 mAb, ASCT)

Phase IIa cohort: RRMM with prior
BMCA-directed therapy (anti-BCMA
CAR-T cells at least 6 months prior,

BCMA-directed engager therapy,
BCMA-directed antibody–drug

conjugate therapy)

Arm A: JCARH125
(orva-cel)

Arm B: JCARH125
(orva-cel) + anakinra

[43]

LUMMICAR
(NCT03975907) T cell BCMA I/II Fully

human RRMM ≥ 3 prior LOTs (IMiD, PI, ASCT)

Phase I: single CT053
dose

escalation
Phase II: single arm

(single dose)

[44]

LUMMICAR-2
(NCT03915184) T cell BCMA Ib/2 Fully

human
RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb)

Phase Ib: single CT053
dose

escalation
Phase II: single CT053

dose

[45]

P-BCMA-
ALLO1

(NCT04960579)
T cell BCMA I/Ib Fully

human
RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb)

Part A: P-BCMA-ALLO1
dose escalation +/−

Rimiducid
Part B: single fixed

P-BCMA-ALLO1 dose
+/− Rimiducid

[46]

PHE885
(NCT04318327) T cell BCMA I Fully

human

Part A cohort: RRMM ≥ 2 prior LOTs
(IMiD, PI, anti-CD38 mAb)

Part B cohort: NDMM ≥ 4–6 c of VRd,
DVRd, DRd

Part A: PHE885 dose
escalation

Part B: PHE885 dose
evaluation

[47]

FUMANBA-1
(NCT05066646) T cell BCMA I/II Fully

human RRMM ≥ 3 prior LOTs (PI, IMiD) Single CT103A dose [48]

Anito-cel
(NCT04155749) T cell BCMA I D domain

RRMM ≥ 3 prior LOTs (IMiD, PI,
anti-CD38 mAb) or “triple-refractory”

disease
Single anito-cel dose [49]

iMMagine-1
(NCT05396885) T cell BCMA II D domain RRMM ≥ 3 prior LOTs (PI, IMiD,

anti-CD38 mAb)

Single arm:
anitocabtagene

autoleucel
N/A

NCT03602612 T cell BCMA I Fully
human

NDMM not controlled with standard
therapies

Arm A: CAR-T cell dose
escalation

Arm B: CAR-T cell
expansion phase

[50]

MCARH109
(NCT04555551) T cell GPRC5D I Fully

human
RRMM ≥ 3 prior LOTs (PI, IMiD,

anti-CD38 mAb)
Single MCARH109 dose

escalation [51]

OriCAR-017
(NCT06182696) T cell GPRC5D I/II Fully

human
RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb, ASCT)

OriCAR-017 dose
escalation followed by

dose expansion
[52]

RIGEL Study
(NCT06271252) T cell GPRC5D I/II Fully

human

Dose escalation phase I:
RRMM ≥ 3 prior LOTs

Dose expansion phase I and phase II:
RRMM (previous BCMA-directed

therapies including anti-BCMA
bispecific antibody (teclistamab),

BCMA-directed antibody conjugate
(Blenrep) and BCMA-CAR-T

(CARVYKT1TM)

Single OriCAR-017
infusion N/A
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Table 1. Cont.

Trial Name
(Number)

Cell
Product Target Phase Product

Design Targeted Population Treatment Ref.

QUINTESSENTIAL
(NCT06297226) T cell GPRC5D II Fully

human
RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb, anti-BCMA)
Single specified

BMS-986393 dose [53]

CARAMBA-1
(NCT04499339) T cell SLAMF7 I/II Humanized RRMM ≥ 2 prior LOTs (ASCT,

IMiD, PI, anti-CD38 mAb)
Single SLAMF7 CAR-T

cell dose escalation N/A

NCT03710421 T cell SLAMF7 I N/A RRMM ≥ 3 prior LOTs (IMiD, PI,
anti-CD38 mAb, ASCT)

Single SLAMF7 CAR-T
dose N/A

NCT03958656 T cell SLAMF7 I N/A RRMM ≥ 3 prior LOTs (IMiD, PI)
Arm A: SLAMF7 CAR-T

cell dose escalation
Arm B: SLAMF7 CAR-T

cell expansion phase
N/A

CC-98633
(NCT04394650) T cell BCMA I Fully

human

Arm A and Arm B Cohort A:
RRMM ≥ 3 prior LOTs
Arm B Cohort B only:

RRMM ≥ 1–3 prior LOTs

Arm A: CC-98633
(orva-cel) dose escalation

Arm B: CC-98633
expansion phase

[54]

UNIVERSAL
(NCT04093596) T cell BCMA I Fully

human
RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb)

Arm A: ALLO-715
Arm B: ALLO-715 +

nirogacestat
[55]

CaMMouflage
(NCT05722418) T cell BCMA I Humanized RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb)

Arm A: CB-011 dose
escalation

Arm B: CB-011 expansion
phase

N/A

NCT04662294 T cell CD70 I N/A
Patients with CD70-positive

malignant hematologic diseases
(AML, NHL, MM)

Single CD70 CAR-T cell
dose escalation N/A

AUTO2
(NCT03287804) T cell BCMA/

TACI I/II Murine-
derived

RRMM ≥ 3 prior LOTs (IMiD, PI,
alkylator)

Phase I: AUTO2 dose
escalation phase
Phase II: AUTO2

expansion phase selected
dose

[56]

NCT05020444 T cell BCMA/
TACI I Human-

derived

RRMM ≥ 3 prior LOTs (IMiD, PI,
CD38 mAb) or “triple refractory”

disease

Part A: TriPRIL CAR-T
cell dose escalation

Part B: TriPRIL CAR-T
cell dose expansion

N/A

LMY-920-002
(NCT05546723) T cell BAFF I Human RRMM ≥ 3 prior LOTs (IMiD, PI,

anti-CD38 mAb)
LMY-920 single dose

escalation [57]

THINK
(NCT03018405) T cell NKG2D I/II Fully

human RRMM Three cohorts: NKR2
single dose escalation [58]

NCT03778346 T cell

Integrin
β7,

BCMA,
SLAMF7,

CD38,
CD138

I N/A RRMM ≥ 2 prior LOTs
Single dose escalation of

different dual target
combinations

[59]

NCT05509530 T cell BCMA/
GPRC5D II Murine-

derived

RRMM ≥ 3 prior LOTs
(chemotherapy based on

bortezomib and/or lenalidomide)

Pre-specified single
anti-BCMA/GPRC5D

CAR-T cell dose
escalation

[60]

ChiCTR2000033567 T cell BCMA/
CD19 I/II Humanized RRMM ≥ 2 prior LOTs (IMiD, PI) Single BC19 dose

escalation [61]

NCT04662099 T cell BCMA/
SLAMF7 I Murine-

derived RRMM ≥ 2 prior LOTs (IMiD, PI)

Single
anti-BCMA/SLAMF7

CAR-T cell dose
escalation

[62]

FT576
(NCT05182073) NK cell BCMA I

Derived
from scFv

human
iPSCs

Arm A: RRMM ≥ 3 prior LOTs
(IMiD, PI, anti-CD38 mAb)

Arm B: RRMM ≥ 2 prior LOTs
(IMiD, PI)

Arm A: FT576
Arm B: FT576 +
daratumumab

[63]

NCT05008536 NK cell BCMA I
N/A
CB-

derived
RRMM ≥ 2 prior LOTs (PI, IMiD) Single anti-BCMA

CAR-NK dose escalation N/A

AsclepiusTCG02
(NCT03940833) NK cell BCMA I/II

N/A
NK-92-
derived

RRMM Single anti-BCMA
CAR-NK dose escalation N/A
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Table 1. Cont.

Trial Name
(Number)

Cell
Product Target Phase Product

Design Targeted Population Treatment Ref.

NCT02851056 DC
vaccine Survivin I N/A NDMM Single DC: AdmS doses

before and after ASCT [64]

BMT CTN 1401
(NCT02728102)

DC
vaccine - II N/A NDMM transplant eligible

Arm A: lenalidomide +
DC vaccine + GM-CSF
Arm B: lenalidomide +

GM-CSF
Arm C: lenalidomide

[65]

N/A: Not available; LOT: line of therapy; ASCT: autologous stem cell transplantation; IMiD: immunomodulatory
drugs; PI: proteasome inhibitor; NDMM: newly diagnosed multiple myeloma; DVRd: daratumumab, bortezomib,
Revlimid and dexamethasone; DVd: daratumumab, bortezomib and dexamethasone; PVd: pomalidomide,
bortezomib and dexamethasone; DPd: daratumumab, pomalidomide and dexamethasone; Kd: carfilzomib
and dexamethasone; IRd: ixazomib, Revlimid and dexamethasone; EPd: elotuzumab, pomalidomide and
dexamethasone; rimiducid: safety switch activator.

3.1. BCMA CAR-T Cells

BCMA is a type III transmembrane protein that is preferentially expressed in cells
of B lineage and is highly abundant on the surface of both malignant and non-malignant
plasma cells [66,67]. By binding to its natural ligands, B cell-activating factor (BAFF) and/or
proliferation-inducing ligand (APRIL), BCMA induces B cell proliferation and survival as
well as maturation and differentiation into plasma cells. BCMA is rarely expressed in other
tissues, making it a suitable target for MM [67]. There are currently two CAR-T cell products
approved for the treatment of MM, namely, ide-cel and cilta-cel, both targeting BCMA.

3.2. Approved BCMA-CAR-T Cell Products

Ide-cel was the first approved CAR-T cell product; it was approved by the FDA and
EMA in 2021 for the treatment of MM after three lines of therapy based on the pivotal
KarMMa trial [33]. Ide-cel is manufactured from autologous peripheral blood mononuclear
cells (PBMCs), transduced with a lentiviral vector containing the BCMA-directed CAR
composed of a murine anti-BCMA scFv fused to a CD8α-derived hinge and transmembrane
region, a 4-1BB costimulatory domain and a CD3ζ-derived signaling domain [67].

Within the phase II KarMMa trial, ide-cel was evaluated in triple-class-exposed
relapsed/refractory MM (RRMM) patients after three previous regimens. A total of
128 patients were treated with ide-cel at target doses of 150 to 450 × 106 total CAR-T
cells. Of all treated patients, 73% achieved an overall response (OR), with 33% reaching
complete response (CR)/stringent CR (sCR) and 26% achieving minimal residual disease
(MRD) negativity. The median progression-free survival (PFS) duration was 8.8 months
for all patients, 12.1 months for those with a target dose of 450 × 106 CAR+ T cells and
20.2 months for patients who reached a CR/sCR. In terms of safety, 91% developed neu-
tropenia, 84% cytokine release syndrome (CRS) (5% grade ≥ 3) and 18% immune effector
cell-associated neurotoxicity syndrome (ICANS) (3% grade ≥ 3). Thus far, real-world
data have shown comparable efficacy and safety for ide-cel in the standard-of-care set-
ting [68]. The subsequent phase III KarMMa-3 trial compared ide-cel to standard regimens
in RRMM patients after two to four lines of therapy, including immunomodulatory drugs
(IMiDs), proteasome inhibitors (PIs) and daratumumab [36]. In this trial, ide-cel signifi-
cantly extended PFS (13.3 months for ide-cel vs. 4.4 months for standard of care (SOC)) and
improved response rates (OR 71% vs. 42%, CR 39% vs. 5%) compared to standard regimens.
Surprisingly, although ide-cel was used in earlier lines in KarMMa-3, the safety profile,
ORR and PFS were similar to those found in the KarMMa study. Overall, the KarMMa-3
trial showed extremely poor outcomes for the SOC arm, highlighting the need for novel
therapies, and at the same time proved CAR-T (ide-cel) to be a potent one-shot therapy
to achieve deep and durable remissions. Based on the results of KarMMa-3, the FDA and
EMA extended the approval of ide-cel in April 2024 for treatment of triple-class-exposed
RRMM patients after two prior lines of therapy.



Cancers 2024, 16, 3867 7 of 24

Cilta-cel, on the other hand, is produced from purified T cells transduced with a
lentiviral vector of a BCMA-directed CAR consisting of two different camelid variable
heavy-chain-only domains (VHHs), fused to a CD8α-derived hinge and transmembrane
region, a 4-1BB costimulatory domain and a CD3ζ-derived signaling domain. Cilta-cel was
first approved in 2022 for the treatment of MM after three lines of therapy based on the
results of the pivotal CARTITUDE-1 trial [39,69,70].

The phase Ib/II trial CARTITUDE-1 evaluated cilta-cel in triple-class-exposed RRMM
patients after three prior lines of therapy at dose levels ranging from 0.5 to 1 × 106 CAR-T
cells/kg body weight. Cilta-cel achieved an impressive OR of 98%, with 83% achieving an
sCR and 44% achieving an MRD-negative sCR [70]. The median PFS was 34.9 months, with
an estimated overall survival (OS) at 3 years of 62.9% [39]. OR (≥95%) and MRD-negativity
(≥80%) rates were high across all subgroups: however, patients with stage III, high-risk
cytogenetics, plasmacytomas or high tumor burden (BM plasma cells ≥60%) had a shorter
duration of response (DOR) and lower PFS and OS rates [70]. The most common side effects
were neutropenia (96%) and CRS (95%; 4% grade ≥ 3). Besides ICANS (17%; 2% grade ≥ 3),
other neurotoxicities, including novel movement and neurocognitive treatment-emergent
adverse events (MNTs) (5%) of delayed onset, occurred in 12% (9% grade ≥ 3). Cilta-cel
was subsequently compared to SOC regimens in lenalidomide-refractory RRMM patients
after one to three prior lines of therapy in the phase III CARTITUDE-4 trial [41]. Within
this trial, cilta-cel significantly improved PFS (not estimable for cilta-cel vs. 12 months
for SOC) and achieved higher OR (85% vs. 67%) and CR (73% vs. 22%) rates than SOC.
Strikingly, cilta-cel showed lower rates of CRS and high-grade neurotoxicities, including
lower frequencies of MNTs, in CARTITUDE-4 than in CARTITUDE-1. The encouraging
results of CARTITUDE-4 led to extension of cilta-cel’s approval by the FDA and EMA in
April 2024 for lenalidomide-refractory RRMM patients with progressive disease after at
least one prior line of therapy, including a PI and IMiD.

Cilta-cel demonstrated promising long-term results in the first-in-human trial using
LCAR B38M (LEGEND-2 (NCT03090659, ChiCTRONH-17012285)) with a 5-year PFS of
21% [38]. However, its higher efficacy comes at the cost of more side effects, including
cytopenias and novel late-onset neurotoxicities. In fact, a meta-analysis has shown that
cilta-cel was associated with higher non-relapse mortality than ide-cel [71].

Ongoing studies are currently evaluating ide-cel and cilta-cel as first-line therapies
in patients with newly diagnosed MM (NDMM). CARTITUDE-5 (NCT04923893) is inves-
tigating cilta-cel as a frontline therapy (VRd + cilta-cel vs. VRd + Rd maintenance) in
NDMM patients for whom autologous stem cell transplantation (ASCT) is not planned as
initial treatment. The EMagine/CARTITUDE-6 trial (NCT05257083) will assess the efficacy
and safety of DVRd followed by cilta-cel versus DVRd followed by ASCT in transplant-
eligible NDMM patients. KarMMa-4, on the other hand, will study the safety of ide-cel in
patients with high-risk (R-ISS stage III) NDMM. The results of these studies are eagerly
awaited to clarify the future roles of CAR-T cell therapy and ASCT and whether frontline
immunotherapies, especially CAR-T cell therapy, can potentially cure MM.

3.3. Other BCMA-CAR-T Cell Products in Clinical Development

Compared to the murine and camelid antigen-binding domains of ide-cel and cilta-
cel, several studies are currently investigating fully human or synthetic BCMA-directed
CAR-T cells with the aim of increasing persistence by reducing immunogenicity (EVOLVE/
NCT03430011, LUMMICAR/NCT03975907, FUMANBA-1/NCT05066646, iMMagine-1/
NCT05396885 and NCT03602612). Zevorcabtagene autoleucel (zevor-cel, CT053) and
equecabtagene autoleucel (eque-cel, CT103), which both incorporate a fully human BCMA-
CAR, showed promising efficacy in the LUMMICAR and FUMANBA trial, with >95% OR;
CR rates > 70% (MRD-negativity rates 72–95%) [45,48,72] and mPFS of 25 and 23 months,
respectively [44,73]. High-grade CRS occurred in 6.9% within the LUMMICAR study
(zevor-cel) and in 1% in the FUMANBA study (eque-cel). In contrast, no high-grade ICANS
was observed in either trial. Strikingly, in the initial phase I trial eque-cel (CT103A) had
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a median CAR-T cell persistence of 419 days [73]. Furthermore, recent data presented at
EHA 2024 on the phase I FUMANBA-2 trial investigating eque-cel in high-risk patients
with NDMM not eligible for ASCT showed encouraging results with 100% OR, a 94%
CR rate, a 100% MRD-negativity rate with 71% achieving sustained MRD negativity for
over 12 months and a 12-month PFS rate of 84% [74]. Eque-cel and zevor-cel have been
approved in China for the treatment of RRMM after 1–2 prior lines in patients who are
refractory to lenalidomide and RRMM after 3 prior lines of therapy, including a PI and
IMiD, respectively.

Compared to eque-cel and zevor-cel, anitocabtagene autoleucel (anito-cel, CART-
ddBCMA) leverages a completely synthetic d-domain-based antigen-binding domain,
which was specifically engineered to reduce immunogenicity and improve CAR cell surface
stability [49]. In a phase I trial in heavily pretreated triple-refractory RRMM patients (68%
penta-refractory), anito-cel proved to be safe and efficacious (100% OR, 76% CR rates, 56%
24-month PFS rate) [75].

3.4. GPRC5D CAR-T Cells

G-protein coupled receptor family C group 5 member D (GPRC5D) is an orphan
G-protein coupled receptor that has emerged as a promising target for MM treatment [76].
In contrast to BCMA, GPRC5D is expressed more exclusively on plasma cells than other
immune cell subsets, with limited expression in skin and keratinized tissue. GPRC5D
CAR-T cell therapy has shown activity both in preclinical [77] and clinical settings, with
several ongoing clinical trials.

MCARH109, a GPRC5D-directed CAR-T cell product with a fully human antigen-
binding domain, a 4-1BB costimulatory domain and a CD3ζ signaling domain, has been
tested in a phase I study in 17 patients with triple-class-exposed RRMM after 3 prior lines
of therapy (NCT04555551) [51]. The study enrolled not only many patients with high-risk
cytogenetics (76%) but also patients who had undergone prior BCMA-directed therapy
(59%), including prior BCMA-directed CAR-T cell therapy (47%). Dose-limiting toxicities
(DLT) occurred at a dose of 450 × 106 CAR-T cells, with one patient developing grade
4 CRS and ICANS and two patients developing grade 3 cerebellar disorders. Infections
were noted in 18% of patients (12% grade 3). On-target off-tumor toxicities associated
with GPRC5D expression in keratinized tissues such as nail changes (65%), rashes (18%)
or dysgeusia (12%) were observed, mainly of grade 1. At the maximum tolerated dose
of 150 × 106 CAR-T cells, an OR rate of 58% and a CR rate of 25% (50% MRD-negativity
rate) was observed. Of note, across all dose levels, OR and CR rates did not differ between
patients with and without previous BCMA-directed therapies.

OriCAR-017 utilizes nanobody-based tandem CAR-T cells that target two different
epitopes of GPRC5D [78]. The phase I trial (POLARIS), which tested OriCAR-017 in RRMM
patients with proven GPRC5D expression and at least three prior regimens (50% with
prior BCMA therapy), showed a safe toxicity profile (no DLT or serious adverse events, no
high-grade CRS and no ICANS) and encouraging OR rates of 100%, with 80% CR rates and
a median PFS of 11.4 months [52]. OriCAR-017 is currently being further investigated in
two phase I/II trials (NCT06182696 and NCT06271252).

BMS-986393 (CC-95266) has been investigated in a phase I trial of 70 RRMM patients
with at least three prior regimens (36% with prior BCMA therapy) [53]. CRS occurred in
84% (4% grade ≥ 3), with one case of grade 5 CRS. Hemophagocytic lymphohistiocytosis
occurred in three patients (all grade 3), ICANS in 11% (3% grade ≥ 3) and neurotoxicities
other than ICANS in 4%. These included events termed cerebellar toxicity, paresthesia,
gait disturbance and nystagmus. Any-grade infections were noted in 43% of patients (16%
grade ≥ 3). On-target off-tumor toxicities related to skin (24%), nails (16%) and dysgeusia
(3%) were mild (all grade 1–2). The OR rate was 86% and the CR rate 38% in all patients,
and patients refractory to prior BCMA-directed therapies had 85% OR and 46% CR rates.
Based on these results, a phase II trial (QUINTESSENTIAL, NCT06297226) is now further
evaluating BMS-986393 in RRMM patients.
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In summary, the abovementioned trials showed a relatively safe toxicity profile with
similar but fewer treatment-related adverse events linked to on-target off-tumor toxicities
such as skin reactions and dysgeusia compared to GPRC5D-directed bispecific antibod-
ies [66,76]. However, the observed cerebellar disorders with GPRC5D-directed CAR-T cells
need further investigation, since they have not yet been reported with GPRC5D bispecific
antibodies. Of note, the incidence of infections appears lower than with BCMA-directed
therapies, possibly due to lower GPRC5D expression on immune cells, particularly normal
plasma cells and B cells. Given their promising efficacy, especially in patients who had
previously been treated with BCMA-targeting therapies, GPRC5D-directed CAR-T cells are
emerging as an important addition to the therapeutic spectrum of RRMM. Nevertheless,
it should be taken into consideration that GPRC5D has been proposed to exhibit reduced
genomic stability and could be more easily lost than BCMA [79]. This highlights the urge
for continuing research focusing on addressing the challenges posed by genomic alterations
in MM.

3.5. SLAMF7/CS1 CAR-T Cells

Signaling lymphocyte activation molecule Family 7 (SLAMF7, CS1, CD319) is a surface
antigen that is highly expressed on malignant plasma cells in both NDMM and RRMM
patients. Furthermore, recent data suggest that genomic alterations of the BCMA antigen
coincide with copy number gains in alternative antigens, including SLAMF7 [79]. Besides
its expression on immune cell subsets such as NK, T and B cells, where it mediates activating
or inhibitory functions, SLAMF7 is not known to be present in any other normal human
tissues, making it a suitable target for CAR-T therapy in MM [80]. CARAMBA-01 was a
first-in-human clinical trial studying the safety and feasibility of SLAMF7-directed CAR-
T cells manufactured in a virus-free manner by Sleeping Beauty gene transfer in MM
patients [81]. Other products using a lentiviral or gamma-retroviral vector to transduce a
SLAMF7-directed CAR are in ongoing clinical research (NCT03710421).

3.6. CAR-NK Cells

The number of clinical trials investigating CAR-NK cells is exponentially grow-
ing. CAR-NK cells can be engineered from different sources including cord blood (CB),
peripheral blood (PB), NK cell lines (e.g., NK-92) and induced pluripotent stem cells
(iPSCs) [82,83].

An off-the-shelf iPSC-derived BCMA-targeting CAR-NK cell product (FT576) is being
evaluated in a phase I clinical trial alone or in combination with daratumumab in patients
with RRMM (NCT05182073). The cell product harbors a high-affinity, non-cleavable CD16
Fc receptor (hnCD16), a recombinant fusion of IL-15 and IL-15 receptor alpha to allow
autonomous persistence (IL-15RF) and a CD38 knockout to avoid fratricide [84]. Of the
nine treated patients, three showed disease regression and two had a confirmed ORR.
Furthermore, a patient with five prior lines of therapy achieved a very good partial response
(VGPR). Overall, the therapy was safe and well tolerated, without CRS, neurotoxicity
or GvHD, emerging as one of the promising novel therapies to eradicate MM [63,85].
Other ongoing clinical trials are studying CB-derived (NCT05008536) and NK-92-derived
(NCT03940833) BCMA CAR-NKs.

3.7. Dendritic Cell Vaccines

DC vaccines have proven to be a feasible approach, as shown by the FDA-approval
of sipuleucel-T for prostate cancer [86]. On this regard, different efforts are being made to
boost the immune response in MM.

Survivin is a protein inhibitor of apoptosis overexpressed in almost all cancers while
being undetectable in most normal adult tissues. In MM, its expression is related to poor
prognosis, disease progression and drug resistance [12,87]. The presence of survivin-specific
CD8+ and CD4+ cells in MM supports its immunogenicity and the potential of survivin as
a valid target [88,89]. A survivin protein-pulsed DC vaccine administration before and after
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ASCT was studied in a phase I clinical trial (NCT02851056) involving 13 NDMM patients
who did not achieve CR with induction therapy. The results showed that it was safe and
immunogenic, with 85% of the patients showing a response, suggesting that this strategy
could help improve patient outcomes [64].

In a phase II randomized clinical trial (NCT02728102), MM cells derived from patients
were fused with autologous monocyte-derived DCs. The DC product was administered
in combination with GM-CSF and lenalidomide compared to lenalidomide and GM-CSF
or lenalidomide alone following ASCT. The first results showed that the combination of
the DC/MM fusion vaccine and lenalidomide maintenance did not result in a significant
increase in CR or VGPR rates after 1 year. However, patients who received the MM/DC
fusion therapy demonstrated a significant expansion of tumor-reactive lymphocytes in
both PB and BM [65].

4. Overcoming Challenges of CAR-T Cell Therapy in Multiple Myeloma

Although cellular therapies have shown promising results in MM therapy, several chal-
lenges must be addressed to further improve patient outcomes. These limitations include
manufacturing and patient access, associated toxicities, tumor immune resistance sup-
ported by an immunosuppressive tumor microenvironment (TME) and T cell dysfunction
(Figure 1).

4.1. CAR-T Cell Production

CAR-T cell production involves a complex, multistep process that must be conducted
under stringent Good Manufacturing Practices (GMP). The primary goal is to achieve
high CAR-T cell numbers while ensuring their ability to proliferate and persist within the
patient [90,91]. A major challenge is the long manufacturing process, as the time between
apheresis and infusion (vein-to-vein time) can be four to five weeks [41,92]. This not only
carries the risk of the patients’ condition worsening but also drives up costs and limits its
accessibility. Moreover, manufacturing capacities are constrained by the limited availability
of production facilities equipped with the necessary infrastructure, apheresis slots and
highly trained personnel [93]. Ultimately, long and complex manufacturing processes are a
major contributing factor to the socioeconomic concerns arising with this therapy [94].

Several clinical trials are currently exploring novel manufacturing processes to increase
patient access and improve cell product phenotype. In a phase I trial (NCT04394650), fully
human BCMA-directed CAR-T are produced using the NEX-TTM platform. Due to reduced
ex vivo expansion, this method shortens manufacturing to five to six days and yields a
cell product with an increased memory phenotype and enhanced cytokine secretion. The
interim results after a median follow-up of 4.9 months showed VGPR and CR rates of
60% and 30% [54]. In another phase I trial, BCMA-targeting CAR-T cells were produced
in less than two days using the T-ChargeTM platform. Here, CAR-T expansion occurred
completely in vivo within the patient. The most common side effects were CRS in 96%
(11% grade 3 CRS) and ICANS in 22% of the patients. DLT, mainly neutropenias and
elevated lipase levels, were observed in 13% of the patients. Out of 43 patients treated, 98%
achieved an OR [47,95]. In a phase I clinical trial for BCMA/CD19 dual-targeting, FasT
CAR-T cells are under investigation for the treatment of RRMM. The cells are produced
with a shortened concurrent activation–transduction step of 22 to 36 h followed by in vivo
expansion. The initial results prove the safety (7% grade 3 CRS, no ICANS) and efficacy
(93.1% OR) of this cell product [96].

Another strategy to overcome the challenges of high production costs, diminished
T-cell quality in heavily pre-treated patients and socioeconomic barriers is the development
of “off-the-shelf” CAR-T. cells In the phase I trial UNIVERSAL (NCT04093596), allogenic
BCMA targeting CAR-T cells were generated using a lentiviral vector. To prevent GvHD
and increase persistence, knockout of TCR alpha constant (TRAC) and CD52 was per-
formed using the transcription activator-like effector nuclease (TALEN). Of 43 patients,
55.8% achieved a response (34.9% VGPR), and of the 17 patients who received the highest
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dosage, 25% were in CR/sCR. Only one DLT was observed, and 88% of the patients reported
at least one adverse effect (AE), with neutropenia being the most common (69.8%) [55]. An-
other allogeneic anti-BCMA CAR-T cell product utilizing next-generation CRISPR-Cas12a
technology to knock out TRAC and B2M is being investigated in the CAMMOUFLAGE
trial (NCT05722418). The CAR cassette is site-specifically integrated into the TRAC locus.
Additionally, a B2M-HLA-E fusion transgene is knocked in into the B2M locus to protect the
cells from NK cell-mediated toxicity and thereby improve the persistence of the cells [97].
Although promising, extensive genomic modifications carry the risk of unintended ge-
nomic alterations, which could potentially lead to malignant transformation of the cell
product. Allogeneic CAR-T cell studies using CRISPR-Cas9 and TALEN showed genomic
rearrangements in around 5–10% of the cells [98–100]. Compared to that, novel strategies
such as prime- and base-editing show improved safety profiles by employing a nickase
instead of a nuclease and thereby only inducing a single-strand break in the DNA [101].
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Currently, all commercially available CAR-T cell products rely on viral gene transfer
methods. However, viral vectors are costly and have limited production capacity. A promis-
ing alternative, currently being investigated in clinical trials, is non-viral gene transfer
using transposon-based systems, such as the Sleeping Beauty (SB) system [81]. SB gene
transfer not only offers a favorable safety profile but is also cost-effective, with the potential
for scalable production, which could significantly improve patient access. Another strategy
to enhance accessibility is being explored in the ARI0002h trial (NCT04309981) [42]. This
academic point-of-care anti-BCMA CAR-T cell trial raises the question of whether academia
can serve as a cost-efficient, on-site producer of CAR-T cells. It also prompts discussions
about the future dynamics between academic institutions and the biopharmaceutical in-
dustry in CAR T cell manufacturing.

4.2. Immunosuppressive Tumor Microenvironment

One of the main hurdles is the complex TME, which not only restricts cellular in-
filtration but also hinders anti-tumor immune responses [102]. The TME consists of a
heterogeneous population that not only provides strong immunosuppressive signals but
also secretes high cytokine levels, contributing to CAR-T cell-associated toxicities. The
complex cellular milieu includes several key players: endothelial cells, myeloid-derived
suppressor cells (MDSCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs)
and cancer-associated fibroblasts (CAFs), among others [102]. Increasing evidence under-
scores the role of the immunosuppressive TME in promoting CAR-T cell exhaustion and
dysfunction, thereby significantly impairing clinical outcomes [103,104].

To counteract the immunosuppressive effects of the TME, novel approaches and tar-
gets are being developed to modulate the TME and thereby boost the efficacy of cellular
therapies. One promising approach focuses on targeting CAFs, which support the immuno-
suppressive nature of the BM niche. CAFs recruit different innate and adaptive immune
cells, such as Tregs and MDSCs, and are also assumed to remodel the extracellular matrix
and upregulate the secretion of immunosuppressive cytokines [105–107]. Sakemura and
colleagues made a breakthrough in elucidating the interplay between CAFs and anti-BCMA
CAR-T. CAFs were shown to exert an inhibitory effect on CAR-T cell therapy via the se-
cretion of inhibitory cytokines and chemokines. To overcome CAF-mediated resistance, a
dual-targeting approach was developed: CAR-T cells recognizing both malignant cells via
BCMA and CAFs via FAP and SLAMF7 showed enhanced anti-tumor function compared
to conventional anti-BCMA CAR-T cells [106].

Tregs and their downstream effects present another promising target to enhance
cellular therapies. These cells exert their immunosuppressive effects through several
mechanisms. They secrete anti-inflammatory cytokines such as IL10 and TGFß, induce
granzyme-dependent cytolysis and cause metabolic dysfunction by depriving effector cells
of IL2 via their high affinity receptor CD25. Additionally, Tregs are capable of modulating
DC maturation and function [108]. The monoclonal antibody ipilimumab, which targets the
inhibitory receptor CTLA-4 on T cells, has been shown to achieve both Treg depletion and
mitigation of effector cell exhaustion. Another approach includes the neutralization of the
secreted anti-inflammatory cytokine TGFß to diminish immunosuppressive effects [109].
Furthermore, the employment of CAR-T cells targeting the transmembrane activator and
calcium modulating ligand (CAML) interactor (TACI) offer a dual benefit since TACI is
not only a myeloma target but is also expressed by Tregs [110]. However, targeting Tregs
comes with the risk of autoimmunity if performed systemically, emphasizing the need for
tumor-site-specific targeting.

In the ongoing effort to enhance the efficacy of cellular therapies via TME modulation,
the development of new small molecule inhibitors is another promising approach. One
such example is ORIC-533, a selective inhibitor of the ectoenzyme CD73, which is involved
in the generation of the immunosuppressive adenosine from adenosine monophosphate
(AMP) [111]. Expanding the range of treatment options opens new possibilities for combi-
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natorial approaches, possibly enhancing the efficacy and specificity of cellular therapies
and improving clinical outcomes.

4.3. Tumor Heterogeneity

Despite the high response rates of anti-BCMA and anti-GPRC5D CAR-T cell therapies,
a significant number of patients relapse. One of the main reasons is antigen escape driven
by immunoselection of BCMA- or GPRC5D-negative or mutant clones, which can arise
from biallelic deletions at the corresponding gene loci [79,112]. To address the challenge of
antigen escape, there is an urgent need to identify new antigens that can be targeted either
sequentially or simultaneously. Below, several promising antigens will be discussed.

CD70 is a member of the tumor necrosis factor (TNF) family with limited expres-
sion on activated normal immune cells. It is expressed in both solid and hematologic
malignancies [113,114] and upregulated in high-risk MM subtypes [115]. A full-length
CD27 extracellular domain (ECD)-based CAR against CD70 did not show any signs of
fratricide and exhibited robust efficacy with minimal toxicity in vitro against MM, making
CD70 a promising candidate target for next-line treatment [115]. A phase I clinical trial
is currently ongoing for patients with malignant hematologic diseases, including RRMM
(NCT04662294).

The NK group 2D (NKG2D) receptor is an activating receptor that recognizes eight
ligands that are upregulated in both solid and hematological disorders, including MM,
while generally being absent from healthy tissues. This makes anti-NKG2D CAR-T cells
a potential cancer therapy [58,116]. Barber and colleagues demonstrated the efficacy
of anti-NKG2D CAR-T cells against MM with protective immunity against tumor re-
challenge [117]. The THINK trial (NCT03018405) evaluated anti-NKG2D CAR-T (CYAD-01)
for myeloid malignancies without preconditioning or bridging therapy, aiming to reduce
stress-induced NKG2D ligand expression on healthy cells. The study showed good tolera-
bility but low activity due to challenges such as fratricide and poor cell persistence [58,116].
To this end, an improved version (CYAD-02) is under clinical investigation for AML and
myelodysplastic syndromes (MDS) (NCT04167696) [118]. Additionally, the DEPLETHINK
study (NCT03466320) explored a preconditioning regimen to improve CYAD-01 persistence
in a similar patient population [119].

Cell adhesion molecules (CAMs) mediate the interaction between MM cells and the
BM, thereby promoting the proliferation, survival and extramedullary spread of malignant
plasma cells. Moreover, this interaction also contributes to MM drug resistance [120].
CAR-T cells targeting CAMs have shown promising results in preclinical settings [121–123].
In this regard, a phase I trial (NCT03778346) based on a fourth generation CAR-T cells
targeting BCMA, SLAMF7, the CAMs integrin ß7, CD38 and the selectin CD138 within
10 different dual targeting combinations was investigated, showing encouraging results
in terms of safety and efficacy when targeting BCMA. However, data on the targeting of
CAMs have not been published to date [59].

Another strategy to prevent antigen escape and thus improve CAR-T cell efficacy
in MM is dual targeting. One of the approaches is the generation of tandem CARs, in
which two binding domains are incorporated into a single CAR construct within the
same cell [124]. On this regard, Sun and colleagues, developed a tandem CAR targeting
BCMA and CD24. The latter was shown to be expressed by myeloma cells at relapse
after BCMA CAR-T cells treatment. This bispecific CAR showed significantly greater
tumor control in vivo, targeting not only bulk MM cells but also residual resistant MM
cells. Furthermore, it modulated macrophage-related immune surveillance, inducing a
macrophage polarization to the tumor-suppressive M1 phenotype [125].

Several other tandem CARs are currently under development for the treatment of
RRMM. Clinical trials are exploring the co-targeting of BCMA and GPRC5D (NCT05509530),
CD19 (ChiCTR2000033567) or SLAMF7 (NCT04662099) and have thus far presented promis-
ing feasibility and safety profiles [60–62].
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Another approach consists of ligand-based CARs, which are able to bind to multiple
receptors on the target cells. One example is based on the BAFF survival factor that
binds to the BAFF receptor, TACI and BCMA. The low probability of malignant B cells to
downregulate all BAFF receptors make BAFF-targeting CAR-T cells a promising alternative
to prevent antigen escape [57,126]. In fact, a non-viral TcBuster BAFF ligand-based CAR-T
cell product showed efficacy in vitro and in vivo against several B cell malignancies and
is currently under clinical investigation for the treatment of RRMM (NCT05546723) [57].
Moreover, AUTO2 is a clinical trial targeting BCMA and TACI based on a truncated version
of their natural ligand APRIL. In a phase I study, patients showed poor response due
to suboptimal CAR design [56,110]. Thus, a trimeric form of APRIL (TriPRIL), which
better mimics its natural conformation, is currently in the process of clinical development
(NCT03287804) [110].

Additionally, other approaches include co-infusion or sequential infusion of two
CAR-T cell pools targeting different antigens and co-expression of two CARs with distinct
specificities within the same cell, either through separate vectors or through bicistronic
constructs [124].

4.4. T Cell Dysfunction

One major reason for the failure of CAR-T cell therapy is T cell dysfunction due to
exhaustion, differentiation and reduced persistence [127]. Exhaustion and differentiation
are closely intertwined and are characterized by transcriptomic, metabolic and epigenetic
alterations in T cells, leading to impaired effector function and reduced proliferation
potential [128]. CAR-T cell exhaustion is caused by ligand-dependent and -independent
chronic signaling, metabolic competition with tumor cells and inhibitory signals from the
TME [129,130].

One strategy to reduce T cell exhaustion due to chronic signaling consists of modifi-
cations in the CAR design to fine-tune its signaling. A reduction in CAR affinity through
mutations in the scFv, has been shown to enhance CAR safety profile, increase proliferation
and reduce exhaustion. However, this also increases the risk of relapse by outgrowth of
antigen-low tumor cells [129,130]. Alternatively, the choice of the costimulatory molecules
influences the phenotype of the cells. It has been shown that CAR-T cells using 4-1BB as
costimulatory signal exhibit slower anti-tumor effects compared to CD28, nevertheless
they display increased persistence [131]. CD3ζ is the most commonly used signaling motif.
However, CARs containing CD3δ, CD3ε or CD3γ have shown enhancement of effector
function in vivo and protection against stimulation induced T cell dysfunction [132]. Alter-
natively, chronic antigen signaling can also be reduced by a reduction of the tumor burden
using bridging therapies [133].

In the TME, CAR-T cells compete with other cells for nutrients. In particular, glucose
is important for the effector function and proliferation of CAR-T cells. A way to meet the
metabolic needs of CAR-T cells is an artificial overexpression of the glucose transporter
GLUT1 in these cells. This leads to an enhanced glucose uptake resulting in increased effec-
tor function, enhanced persistence and decreased exhaustion [134]. Another challenge for
CAR-T in the TME is the expression of inhibitory molecules on tumor cells such as PD-L1
and CTLA4 [135]. The combination of CAR-T cells and immune checkpoint inhibitors such
as pembrolizumab is a strategy to overcome this limitation [136]. Alternatively, the knock-
out of checkpoint molecules in the CAR-T cells using gene editing tools is investigated [137].
However, these approaches have, thus far, mainly been applied for solid tumors.

To reduce differentiation and enrich for a memory phenotype in the final CAR-T
cell product different cytokines and supplements during the manufacturing have been
investigated. IL-2 is an important cytokine for T cell proliferation and differentiation and is
commonly used for the in vitro expansion of CAR-T cells [90,138]. However, IL-2 induces a
more differentiated phenotype [139]. In contrast to IL2, the addition of IL-15, IL-7 and/or
IL-21 during the manufacturing induces a stem cell memory phenotype and increases the
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metabolic fitness [140–142]. Furthermore, addition of inosine during the manufacturing
can induce stemness and enhance effector function [143].

4.5. Toxicities

Despite the major clinical success of CAR-T cell therapy in MM, multiple side effects
and toxicities have been reported, including CRS and neurotoxicity/ICANS as well as
immune cell-associated hematotoxicity (ICAHT) and infectious complications [144].

CRS is a commonly observed inflammatory syndrome in CAR-T cell therapy char-
acterized by increased chemokine and cytokine levels, and it has been reported for all
six approved CAR-T cell products [33,69,145]. Activated CAR-T cells produce cytokines
and trigger other immune cells. Macrophages have been identified as the main drivers
behind CRS, secreting the key cytokines IL-6 and IL-1β [145]. CRS can lead to potential life-
threatening complications such as multi-organ failure, pulmonary edema and respiratory
failure [146]. Several risk factors for CRS have been identified, including high CAR-T cell
doses, CD28 as a costimulatory domain, high tumor burden and a low CD4/CD8 ratio in
the infusion product [146]. Treatment strategies for CRS vary by severity and typically in-
clude IL-6 receptor antagonists such as tocilizumab, glucocorticoids and vasopressors [147].
Further treatment options involve IL-1 receptor blockade with anakinra [148]. Alterna-
tively, the tyrosine kinase inhibitor dasatinib has also been reported to be effective for the
treatment of CRS by inducing a transient rest state in CAR-T cells [149].

Neurotoxicity is thought to occur due to disruption of the blood–brain barrier by
endothelium-activating cytokines and microglia activation; however, the exact underlying
mechanism is yet to be elucidated [146,150,151]. ICANS is the most common type of
neurotoxicity and involve the central nervous system in a nonfocal manner. The clinical
manifestation of ICANS is very diverse and includes tremors, aphasia, confusion, impaired
attention and cerebral edema. Treatment of ICANS depends on the severity and includes
dexamethasone, corticosteroids and methylprednisolone. Alternative strategies involve
IL-1 receptor blockade, IL-6 inhibitors, dasatinib and intrathecal chemotherapy [146,149].

In the CARTITUDE-1 trial with cilta-cel MNTs have been reported for the first time.
MNTs are very rare, potentially fatal side effects that occur with a median onset time
of 27 days after CAR-T infusion. MNTs have a wide variety of symptoms, including
movement disorders such as tremors or parkinsonism, cognitive impairments such as
amnesia and bradyphrenia and personality changes such as reduced facial expression [152].
A proposed mechanism of MNTs involves on-target-off-tumor targeting of BCMA in
the basal ganglia, supported by reports of CAR-T crossing the blood–brain barrier and
infiltrating this region [153]. Additional risk factors comprise high tumor burden at baseline,
high CAR-T cell peak expansion and previous ICANS or CRS grade ≥ 2 [152]. MNT
cases in the CARTITUDE studies have dropped from 5% in CARTITUDE-1 to 0.6% in
CARTITUDE-4 despite a larger patient cohort. This might be due to the treatment in
earlier lines as well as improved management strategies that have been implemented,
including enhanced bridging therapy to reduce baseline tumor burden [41,152]. MNTs
have mainly been reported after cilta-cel treatment; however, to date, two cases after ide-cel
treatment have also been described [154,155]. Management strategies for MNTs include,
besides early supportive measures, the use of steroids for any-grade ICANS, especially in
patients with high tumor burden, and tocilizumab for any-grade ICANS with concurrent
CRS [156]. Additionally, conventional chemotherapy such as cyclophosphamide and
intrathecal chemotherapy is used in case of excessive CAR-T cell expansion [152]. Further
investigations are needed not only to unravel the underlying pathomechanisms of these
side effects but also to refine treatment algorithms.

5. Conclusions

The approval of the BCMA-targeting CAR-T cell products ide-cel and cilta-cel broke
new ground for cellular therapies. Ongoing trials demonstrate promising efficacy and
safety profiles, paving the way to move CAR-T cells into earlier lines of therapy and increase
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patient access. Current research focuses on overcoming the inherent challenges of cellular
therapies, including effector cell dysfunction, tumor heterogeneity, immunosuppression
and toxicities. Additionally, major efforts are under way to expand the spectrum of the
cell types used, benefiting also from NK cells and DCs. While CAR-T cell therapy shows
promise for achieving long-lasting remission, CAR-NK cells offer the potential of enhanced
safety profiles by minimizing the risk of GvHD. This opens the door for allogeneic ap-
proaches, increasing patient accessibility. Furthermore, DC vaccines are being developed to
enhance MM therapy by effectively sensitizing T cells to target antigens and boosting the
patient’s immune response. Recent advancements and developments hold the promise of
reaching the so far unreached: the curability of MM.
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