
Citation: Shahadat, N.; Lama, R.;

Nguyen, A. Lung and Colon Cancer

Detection Using a Deep AI Model.

Cancers 2024, 16, 3879. https://

doi.org/10.3390/cancers16223879

Academic Editor: Hiroyuki Yoshida

Received: 11 September 2024

Revised: 31 October 2024

Accepted: 10 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Lung and Colon Cancer Detection Using a Deep AI Model †

Nazmul Shahadat * , Ritika Lama ‡ and Anna Nguyen ‡

Department of Computer and Data Sciences, Truman State University, Kirksville, MO 63501, USA;
ritikatheeng2002@gmail.com (R.L.); nguyenthucanh.35@gmail.com (A.N.)
* Correspondence: nazmul.ruet@gmail.com
† This paper is an extended version of our paper published in Shahadat, N. Lung and Colon Cancer

Histopathological Image Classification Using 1D Convolutional Channel-based Attention Networks. In
Proceedings of the International FLAIRS Conference Proceedings, Sandestin Beach, FL, USA, 19–21 May 2024.

‡ These authors contributed equally to this work.

Simple Summary: Lung and colon cancer are among the leading causes of cancer-related deaths
globally, emphasizing the critical need for early and precise detection to improve treatment and
patient outcomes. This research introduces a novel deep learning model for efficient lung and colon
cancer detection, aiming to address the limitations of existing computationally intensive models.
This study proposes a lightweight, parameter-efficient model suitable for mobile devices, utilizing
a 1D convolutional neural network enhanced with Squeeze-and-Excitation layers. By achieving
100% accuracy on a large dataset of histopathological images, this research provides a significant
advancement in cancer detection technology. The findings hold the potential to revolutionize medical
diagnostics by enabling faster, more accessible, and reliable cancer screening, potentially leading to
earlier interventions and improved survival rates.

Abstract: Lung and colon cancers are among the leading causes of cancer-related mortality world-
wide. Early and accurate detection of these cancers is crucial for effective treatment and improved
patient outcomes. False or incorrect detection is harmful. Accurately detecting cancer in a patient’s
tissue is crucial to their effective treatment. While analyzing tissue samples is complicated and
time-consuming, deep learning techniques have made it possible to complete this process more
efficiently and accurately. As a result, researchers can study more patients in a shorter amount of
time and at a lower cost. Much research has been conducted to investigate deep learning models that
require great computational ability and resources. However, none of these have had a 100% accurate
detection rate for these life-threatening malignancies. Misclassified or falsely detecting cancer can
have very harmful consequences. This research proposes a new lightweight, parameter-efficient,
and mobile-embedded deep learning model based on a 1D convolutional neural network with
squeeze-and-excitation layers for efficient lung and colon cancer detection. This proposed model di-
agnoses and classifies lung squamous cell carcinomas and adenocarcinoma of the lung and colon from
digital pathology images. Extensive experiment demonstrates that our proposed model achieves 100%
accuracy for detecting lung, colon, and lung and colon cancers from the histopathological (LC25000)
lung and colon datasets, which is considered the best accuracy for around 0.35 million trainable
parameters and around 6.4 million flops. Compared with the existing results, our proposed
architecture shows state-of-the-art performance in lung, colon, and lung and colon cancer detection.

Keywords: 1D CNN; squeeze-and-excitation networks; RCN; lightweight model; lung and colon
cancer detection; lung cancer detection; colon cancer detection; cancer detection; histopathological
images; image classification; deep learning

1. Introduction

Cancer is a disease in which cells grow uncontrollably and spread throughout the
body [1]. Trillions of cells are living in a healthy body. Normal cells unceasingly reproduce
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only if needed and instructed by other cells, ensuring fixed sizes of each tissue. On the
other hand, cancer cells, with their ability to migrate and invade nearby tissues, increase
the masses of tissue [2]. These cells can develop tumors that can be malignant or benign.
Cancerous tumors, which are also known as malignant tumors, invade neighboring tissues
and travel throughout the body to generate new tumors (a process known as metastasis).
Many malignancies produce solid tumors, while blood cancers, such as leukemia, do not.
Benign tumors do not spread to or infect surrounding tissues. They barely reproduce after
removal, although malignant tumors do. However, benign tumors can grow quite large.
Some, like benign brain tumors, can cause severe symptoms or even death [3].

According to the World Health Organization (WHO), there were estimated to be
about 20 million new cancer diagnoses and 9.7 million fatalities in 2022 [4]. After a cancer
diagnosis, an estimated 53.5 million people are expected to survive for five years. About
one in every five individuals will experience cancer in their lifetime, and the disease is fatal
for one in every nine men and one in every twelve women. According to an estimation from
the IARC’s Global Cancer Observatory, the three most common cancer types worldwide in
2022 were lung, breast, and colorectal cancers. The data covered 185 nations and 36 different
types of cancer, and showed that ten specific cancers account for around two-thirds of all
new cases and fatalities worldwide. Lung cancer led the list, accounting for 2.5 million
new cases, or 12.4% of all new cancer cases. Breast cancer was second with 2.3 million
cases (11.6%), followed by colorectal cancer with 1.9 million (9.6%). Other primary cancers
were prostate cancer (1.5 million cases) and stomach cancer (970,000 instances). In terms of
mortality, lung cancer was the leading cause, accounting for 1.8 million fatalities (18.7% of
total cancer deaths), followed by colorectal cancer, liver cancer, breast cancer, and stomach
cancer. The high incidence of lung cancer, particularly in Asia, is associated with continued
tobacco use. There are significant disparities in cancer incidence and death between sexes.
Breast cancer was the most often diagnosed cancer and the leading cause of cancer mortality
in women, whereas lung cancer held both distinctions in males. Prostate and colorectal
cancers are the most common diagnoses in men after lung cancer, and liver and colorectal
cancers are the second and third leading causes of death, respectively. In women, lung
and colorectal cancers are the second and third most common causes of new cases and
fatalities, respectively. In 2024, it is expected that there will be 2,001,140 new cancer cases
in the United States, with 611,720 deaths from the disease. For men, prostate, lung, and
colorectal cancers are predicted to account for 48% of all cancer cases. Similarly, breast,
lung, and colorectal cancers are expected to account for 51% of all diagnoses in women,
indicating their widespread influence on the population [3].

Cancer cells differ significantly from normal cells. They can develop without external
growth signals, whereas normal cells require such signals to divide. They also disregard
signals that generally stop cell division, trigger apoptosis, or programmed cell death.
Furthermore, cancer cells invade neighboring tissues and can spread to other areas of the
body, but normal cells stick to their specific territory and rarely move. They can stimulate
the growth of blood vessels, leading to tumors and providing a continuous supply of
nutrients and oxygen while assisting in waste removal. These cells can also evade the
immune system, which typically destroys aberrant cells, and influence immunological
responses to promote their survival and growth. Furthermore, cancer cells often have
significant chromosomal changes, including duplication and deletion, and may have
double the number of chromosomes as normal cells. They also absorb and utilize nutrients
differently, enabling faster growth and multiplication compared to other cells [3].

Carcinomas, the most prevalent type of cancer, are caused by epithelial cells that
cover both the internal and external surfaces of the body. Under a microscope, these cells
generally appear to be column-shaped. Various carcinomas are called after the kind of
epithelial cell involved. Adenocarcinoma develops from epithelial cells that produce fluids
or mucus and is common in breast, colon, and prostate cancers. Basal cell carcinoma begins
in the basal layer of the epidermis, the skin’s outermost layer. Meanwhile, squamous cell
carcinoma develops from squamous cells, which are flat and scale-like and found just
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beneath the skin’s surface and lining various organs such as the stomach, intestines, lungs,
bladder, and kidneys. This form is also known as epidermoid carcinoma. Adenocarcinoma,
squamous cell carcinoma, and large cell carcinoma are identified as non-small cell lung
cancer (NSCLC) due to their similarities in treatment and prognoses. They accounted for
85% of lung cancer types. On the other hand, small cell lung cancer (SLCL) accounted
for up to 15%. SCLC grows and spreads much faster than NSCLC, and when patients are
diagnosed, the cancer will have already spread beyond the lungs [5].

Colorectal cancer occurs when cells in the colon or rectum grow out of control, which is
also known as “colon cancer”. Abnormal growths, known as polyps, can arise in the colon
or rectum. Over time, certain polyps may develop into cancer. Cancer cells spread from the
innermost layer of the colon and rectum’s wall to the outer layers. Even though colorectal
cancer can be completely treated if detected early, it can still spread to other organs, especially
the lungs, which is known as lung metastasis. The American College of Surgeons found that
of 50% colon cancer patients, in 18% of them cancer had spread to the lungs. That is, a patient
with colon cancer might have a high chance of having lung cancer synchronously [6].

Symptoms can manifest in the very early stages of cancer. However, they are often
not significantly noticeable as these symptoms are commonly mistaken for a common
cold or flu, displaying signs such as loss of appetite and coughing. This underscores the
importance of regular screening tests to detect and remove abnormalities such as polyps
before they develop into cancer. Imaging tests or histopathology images, such as X-rays,
ultrasound, MRI, and CT scans, create detailed internal body images. These tests serve
multiple purposes: identifying potential cancer locations, measuring cancer spread, assessing
ongoing treatment effectiveness, and monitoring for cancer reappearance post-treatment.
A computed tomography (CT or CAT) scan, which uses X-rays to produce accurate cross-
sectional pictures, is particularly useful in diagnosing whether colon cancer has spread to
lymph nodes or essential organs such as the liver, lungs, or others. In the past, doctors had
to go through a lengthy and laborious procedure to review histological pictures and identify
cancer cases; however, with the continuous development of technology, this process may
now be completed much faster with the vital assistance of artificial intelligence (AI) [7].

AI has shown exceptional abilities in medical diagnosis, analyzing various tests such
as CT scans, MRI scans, X-rays, blood tests, and biopsies using AI techniques. How-
ever, this paper also analyzes test images using our proposed architecture. The diagnos-
tic process involves collecting samples and integrating and interpreting information to
provide a diagnosis, which forms the basis for implementing the appropriate treatment
plan. Given that people are prone to errors, it is not surprising that overdiagnosis is
more common among patients, leading to unnecessary treatment and impacting health
and the economy [8]. AI can significantly aid the healthcare system in timely and ac-
curately identifying and diagnosing diseases. A branch of AI, machine learning (ML),
focuses on using data as input resources [9] and performs tasks without explicit pro-
gramming. Healthcare experts implement the most recent machine learning in triage to
highlight abnormal cells and prioritize life-threatening patients [10]. Applying specified
mathematical functions produces a result (classification or regression) often impossible
for people to achieve [8]. The evolution of deep learning (DL) algorithms has enabled
machines to evaluate complicated, high-dimensional data, such as images, multidimen-
sional anatomy scans, and videos. DL, a subset of machine learning (ML), is a collection
of algorithms meant to replicate the structure and function of the human brain.
This improves their capacity to comprehend and learn from massive quantities of data [11].
DL algorithms can identify patterns and abnormalities that may not be visible to the human
eye. In recent decades, DL has optimized using artificial neural networks (ANNs), support
vector machines (SVMs), etc., to improve its pattern identification abilities.This paper intro-
duces a novel mobile-embedded deep learning architecture with a 1D convolutional neural
network (CNN) and squeeze-and-excitation layers to detect lung and colon cancer from the
histopathological images dataset (LC25000). Our proposed model achieved state-of-the-art
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accuracy in detecting cancerous cells and promises to bring this advancement to global
healthcare for better medical diagnostics.

The rest of the paper is organized in the following order: Section 2 provides an insight
into previous works that contribute to our achievement in this paper. Section 3 briefly
overviews the techniques to construct our proposed model. Section 4 elaborates our CNN
model architecture. Section 5 details the methods used to evaluate the results. Section 6
outlines the dataset and methodologies and reports the potential outcome of our research.
Finally, Section 7 discusses the work that has been undertaken in this article as well as
promising future work.

2. Related Work
2.1. Colon Cancer

Sena et al. [12] took a ’direct’ method, labeling raw photos rather than segmenting
them in 2019. A total accuracy of 95% was reached, with most mislabeling related to a
nearby category. Tests on an external dataset with a different resolution produced more
than 80% accuracies. This study proved that a properly trained neural network may
give fast, accurate, and reproducible labeling for colon cancer images, thereby improving
the quality and timeliness of medical diagnostics. In 2019, Yoon et al. developed some
improved systems based on the Visual Geometry Group (VGG), which won the classifi-
cation task in the 2014 ImageNet Large Scale Visual Recognition Competition (ILSVRC),
and performed two tests [13]. Firstly, they found the optimal modified VGG configura-
tion for their incomplete dataset, yielding 82.50%, 87.50%, 87.50%, 91.40%, and 94.30%
accuracies. And the second experiment used the best adjusted VGG configuration to
assess the performance of the CNN model. Their proposed modified VGG-E configu-
ration demonstrated the highest performance in terms of accuracy, loss, sensitivity, and
specificity, achieving 93.48% accuracy, a loss of 0.4385, 95.10% sensitivity, and 92.76%
specificity across the entire dataset. In a study in 2019, Kather et al. looked into whether
deep convolutional neural networks (CNNs) might derive prognosticators directly from
these widely available photos [14]. They manually identified single-tissue regions in 86 CRC
tissue slides from 25 CRC patients, giving over 100, 000 HE image patches, and utilized
these to train a CNN using transfer learning, achieving an accuracy of more than 94%.

Wei et al. proposed a paper in 2020 where the prognostic analysis used histopatho-
logic slides gathered from the Dartmouth-Hitchcock Medical Center in Lebanon, New
Hampshire [15]. This dataset consisted of 326 slides for training, 157 for internal evalu-
ation, and 25 for validation. The deep neural network had a mean accuracy of 93.5%
(95% CI, 89.6–97.4%) in the internal evaluation of 157 slides compared to local patholo-
gists’ accuracy of 91.4% (95% CI, 87.0–95.8%). For the external data collection, 238 slides
for 179 different patients were received from 24 institutions in 13 states. The deep neu-
ral network attained an accuracy of 87.0% (95% CI, 82.7–91.3%), comparable to the ac-
curacy of local pathologists of 86.6% (95% CI, 82.3–90.9%) on the external dataset. In
2020, Iizuka et al. trained convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) on biopsy histopathology whole-slide images (WSIs) from the stomach
and colon [16]. The models were taught to categorize WSI as adenocarcinoma, adenoma,
or non-neoplastic. They examined their models on three separate test sets, reaching AUCs
of 0.96 and 0.99 for colonic cancer and adenoma, respectively. The results show that their
models are generalizable and have considerable potential for use in a practical histopathologi-
cal diagnostic workflow system. In the same year, Xu et al. introduced a deep learning-based
technique for colorectal cancer identification and segmentation using digitized H&E-stained
histology slides [17]. This study showed that the neural network approach achieved a me-
dian accuracy of 99.9% for normal slides and 94.8% for cancer slides when compared to
pathologist-based diagnosis using H&E-stained slides digitized from clinical samples.

In 2021, Hamida et al. published research where they proposed two DL models
using CNN-based histopathological image classification to diagnose colon cancer [18].
They achieved impressive patch-level classification results, with ResNet reaching a 96.98%
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accuracy rate. Their ResNet model was evaluated on CRC − 5000, nct − crc − he − 100k,
and merged datasets and showed effectiveness with accuracy rates of 96.77%, 99.76%, and
99.98%, respectively. They evaluated these datasets with SegNet and achieved accuracy
rates of 98.66%, 99.12%, and 78.39%, respectively. Researchers, including Babu and Tina,
worked on automatically extracting high-level characteristics from colon biopsy images for
automated patient diagnosis and prognosis using transfer learning architectures for colon
cancer detection this year [19]. This study utilized a pre-trained CNN to extract visual
features, which were then used to train a Bayesian optimal support vector machine classifier.
Furthermore, this optimal network for colon cancer detection was examined using pre-
trained neural networks, such as Inception-V3, VGG-16, and Alexnet. Additionally, four
datasets were tested to assess the proposed framework: two were from Indian hospitals
and were categorized as different magnifications (4×, 10×, 20×, and 40×), while the other
two were public datasets of colon images. Based on public datasets analysis using the
above-mentioned models, the Inception-V3 network achieved an accuracy range of 96.5% to
99% and outperformed the other tested frameworks. Tasnim et al. used CNN with pooling
layers and MobileNetV2 models for colon cell image categorization [20]. The models were
trained and tested at different epochs to determine the learning rate. The max pooling
and average pooling layers were found to be 95.48% and 97.49% accurate, respectively.
MobileNetV2 surpassed the other two models, with the highest accuracy of 99.67% and a
data loss rate of 1.24.

Sakr et al. proposed a lightweight deep learning method in 2022, utilizing CNNs
to efficiently detect colon cancer histopathological images and normalizing input before
training [21]. The system achieved an accuracy of 99.50%, which was considered remarkable
after comparative analysis with existing methods, highlighting its potential for improving
colon cancer detection. Hasan et al. also used CNNs to analyze digital images of colon
tissue to accurately classify adenocarcinomas in 2022 [22]. Automated AI diagnosis could
accelerate assessments and reduce associated costs, leveraging modern DL and digital
image processing techniques. The results showed accuracy rates of up to 99.80%, indicating
that implementation of this approach could lead to automated systems for detecting various
forms of colon cancer. This year, Talukder et al. introduced a hybrid ensemble feature
extraction model aimed to efficiently detect colon cancer using machine learning and deep
learning techniques [23]. Integrating deep feature extraction and ensemble learning with
high-performance filtering for cancer image datasets, the computer-based model achieved
impressive accuracy rates of 100% for colon cancer detection on the histopathological
LC25000 dataset.

A study carried out by Bostanci’s research team in 2023 analyzed RNA-seq data from
the extracellular vesicles of healthy individuals and colon cancer patients to develop pre-
dictive models for cancer presence and stage classification [24]. The study achieved high
accuracy rates by utilizing both canonical machine learning and deep learning classifiers,
including KNN, LMT, RT, RC, RF, 1-D CNN, LSTM, and BiLSTM. Canonical ML algorithms
reached up to 97.33% accuracy for cancer prediction and 97.33% for cancer stage classifi-
cation, while DL models achieved 97.67% and 98% accuracies, respectively. The results
indicate that both ML and DL models can effectively predict and classify colon cancer
stages, varying their performance depending on the number of features.

2.2. Lung Cancer

In 2019, Zhang et al. introduced a three-dimensional CNN that detects and classifies
lung nodules as malignant or benign based on histological and laboratory results [25]. The
well-trained model has a sensitivity of 84.4% (95% CI, 80.5–88.3%) and specificity of 83.0%
(95% CI, 79.5–86.5%). Smaller nodules (<10 mm) have high sensitivity and specificity com-
pared to bigger nodules (10–30 mm). Manual assessments from various doctor grades were
compared to three-dimensional CNN results to validate the model. The results suggest that
the CNN model outperformed the manual assessment. Pham et al. created a revolutionary
two-step deep learning system to address the problem of false-positive prediction while
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retaining accurate cancer diagnosis [26]. Three hundred and forty-nine whole-slide lung
cancer lymph node pictures were gathered, including 233 slides for training, 10 for valida-
tion, and 106 for testing. The first step was using a deep learning algorithm to exclude often
misclassified noncancerous areas (lymphoid follicles). The second phase involved devel-
oping a deep-learning classifier to detect cancer cells. These two-step strategies decreased
errors by 36.4% on average and up to 89% on slides containing reactive lymphoid follicles.
Furthermore, 100% sensitivity was achieved in macro-metastases, micro-metastases, and
isolated tumor cells.

Gertych et al. developed a pipeline that used a CNN and soft-voting as the decision
function to identify solid, micro-papillary, acinar, and cribriform growth patterns, as well as
non-tumor areas [27]. Slides from the main LAC were received from the Cedars-Sinai Medi-
cal Center (CSMC), the Military Institute of Medicine in Warsaw, and the TCGA portal. Sev-
eral CNN models trained with 19, 924 image tiles taken from 78 slides (MIMW and CSMC)
were tested on 128 test slides from the three locations based on the F1-score and pathologist-
manual tumor annotations. The best CNN produced F1-scores of 0.91 (solid), 0.76 (mi-
cropapillary), 0.74 (acinar), 0.6 (cribriform), and 0.96 (non-tumor), respectively. The overall
accuracy in recognizing the five tissue classifications was 89.24 percent. Slide-based accu-
racy in the CSMC set (88.5%) was considerably higher (p < 2.3 ×10−4) than in the MIMW
(84.2%) and TCGA (84%), indicating superior slide quality. Hatuwal and Thapa proposed
a CNN to categorize an image as benign, adenocarcinoma, or squamous cell carcinoma
in 2020 [28]. The model achieved 96.11% and 97.20% accuracies during training and valida-
tion, respectively. The model’s performance was evaluated using precision, F1-score, recall,
and a confusion matrix.

Saif et al. sought to use and modify the current pre-trained CNN-based model to
detect lung and colon cancer using histopathology pictures and improve augmentation
strategies [29]. Eight distinct pre-trained CNN models were trained on the LC25000 dataset:
VGG16, NASNetMobile, InceptionV3, InceptionResNetV2, ResNet50, Xception, MobileNet,
and DenseNet169. The model’s performance was evaluated using precision, recall, F1-
score, and accuracy. GradCAM and SmoothGrad were used to represent the pre-trained
CNN models’ attention images that identify malignant and benign images. After training
and testing on 1500 photos, the suggested model achieved an overall accuracy of 98.53%,
whereas the VGG16 model achieved 96.67%. The proposed model had a sensitivity of 97.4%
for adenocarcinoma, 99.6% for benign, and 98.6% for squamous cells. Abbas et al. used sev-
eral off-the-shelf pre-trained (on ImageNet dataset) CNNs to classify the histopathological
slides into three classes: lung benign tissue, squamous cell carcinoma, and adenocarci-
noma [30]. The F1-scores of AlexNet, VGG-19, ResNet-18, ResNet-34, ResNet-50, and
ResNet-101 on the test dataset showed results of 0.973, 0.997, 0.986, 0.992, 0.999, and 0.999,
respectively. Srinidhi et al. created the first deep learning-based classifier to classify lung
adenocarcinoma, lung squamous cell carcinoma, small cell lung carcinoma, pulmonary tu-
berculosis, organizing pneumonia, and normal lung in 2021 [31]. The EfficientNet-B5 model
outperformed ResNet-50 and was chosen as the classifier’s backbone. Four medical centers
tested 1067 slides with a classifier showing consistently high AUCs of 0.970, 0.918, 0.963,
and 0.978. The intraclass correlation coefficients were greater than 0.873. In the same year,
Han et al. used 50 top-ranked feature subset selection techniques for categorization [32].
The LDA (AUROC: 0.863; accuracy: 0.794) and SVM (AUROC: 0.863; accuracy: 0.792)
classifiers, along with the l2,1NR feature selection approach, performed optimally. Our
investigation found that the random forest (RF) classifier (AUROC: 0.824; accuracy: 0.775)
and the l2,1NR feature selection approach (AUROC: 0.815; accuracy: 0.764) performed well
on average. Furthermore, the VGG16 DL algorithm (AUROC: 0.903; accuracy: 0.841) beat
all other machine learning methods when combined with radiomics.

In a work in 2021, P Marentakis et al. wanted to look at the potential of NSCLC his-
tological classification into AC and SCC using various feature extraction and classification
approaches on pre-treatment CT scans [33]. The picture dataset used (102 patients) was
obtained from the publicly available cancer imaging archive collection (TCIA). They looked
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at four different technique families: (a) radiomics with two classifiers (kNN and SVM),
(b) four cutting-edge CNNs with transfer learning and fine tuning (Alexnet, ResNet101, In-
ceptionv3, and InceptionResnetv2), (c) a CNN combined with a long short-term memory
(LSTM) network to fuse information about the spatial coherency of tumor CT slices, and
(d) combinatorial models (LSTM + CNN + radiomics). Additionally, two qualified radiolo-
gists independently assessed the CT pictures. Our findings indicated that Inception was the
best CNN (accuracy = 0.67, auc = 0.74). LSTM + Inception outperformed all other algorithms
(accuracy = 0.74, auc = 0.78). Additionally, LSTM + Inception beat experts by 7–25% (p < 0.05).

Abdul Rahaman Wahab Sait developed a deep-learning model for lung cancer detec-
tion using PET/CT images comprising 31,562 annotated images in 2022 [34]. He addressed
challenges like computational complexity by employing techniques such as preprocessing,
augmentation, and model optimization. CNN-based DenseNet-121 and MobileNetV3 mod-
els were constructed to extract features and identify the types of lung cancer. His model
achieved a high accuracy of 97.5% and a Cohen’s Kappa value of 95.8 with fewer parame-
ters and can potentially aid in early-stage lung cancer detection. In 2022, Shandilya and
Nayak formulated a computer-aided diagnostic (CAD) approach for classifying histopatho-
logical images of lung tissues [35]. Utilizing a publicly available dataset of 15, 000 samples
of histopathological photographs, they extracted image features and assessed seven pre-
trained convolutional neural network models, including MobileNEt, VGG-19, ResNet-101,
DenseNet-121, DenseNet-169, InceptionV3, Inception ResNet-V2, and MobileNetV2 for
histopathological images classification of 15,000 samples. Among them, ResNet-101 at-
tained the highest accuracy of 98.67%. In the same year, Ameer et al. developed a deep
learning model for automated lung cancer cell detection in histopathological tissue im-
ages [36]. They used several models encompassing InceptionV3, Random Forest, and
CNNs. These models were trained meticulously to extract important features from the
images, thereby improving the efficiency and accuracy of lung cancer cell detection. The
proposed model achieved remarkable accuracy of 97.09%, precision of 96.89%, recall of
97.31%, F1-score of 97.09%, and specificity measures of 96.88%.

In 2023, Priyadarsini et al. proposed a framework designed to detect and categorize
lung cancer using deep learning models trained on X-ray and CT scan images [37]. Three
deep learning models—sequential, functional, and transfer models—were implemented
and trained on open-source datasets to improve patient treatment. Emphasizing deep
learning methods, particularly CNNs, they extracted specific features from image datasets.
The functional model stood out with 99.9% accuracy and 99.89% specificity for lung cancer
detection while requiring fewer parameters and computational resources than existing
models. Siddiqui et al. introduced a pioneering method for lung CT image classification,
focusing on enhancing efficiency and accuracy in 2023 [38]. The method employed an
enhanced Gabor filter for preprocessing, reducing parameters using the Gauss–Kuzmin
distribution to maintain detail while minimizing computational load. Feature selection
was conducted via an enhanced deep belief network (E-DBN) with two cascaded restricted
Boltzmann machines (RBMs), followed by evaluation with five classifiers, leading to the
selection of a support vector machine (SVM) for optimal performance. The experimental
results demonstrated superior accuracy and sensitivity compared to existing methods, with
the proposed approach achieving an F1-score of 99.37% and accuracy of 99.424%. These
findings suggest promising advancements in lung cancer diagnosis through advanced
image processing techniques. Wahid et al. proposed a CAD in 2023 utilizing CNNs to
detect lung cancer within the LC25000 dataset, encompassing 25,000 histopathological color
image samples [39]. Four CNN models, including ShuffleNet-V2, GoogLeNet, ResNet-18,
and a customized CNN model, were used. Among them, ShuffleNet-V2 achieved the
highest accuracy of 99.87% and exhibited the shortest training time of 1202.3 s.

2.3. Lung and Colon Cancer

A study by Masud et al. sought to offer a computer-aided diagnosis system for di-
agnosing squamous cell carcinomas, lung adenocarcinomas, and colon adenocarcinomas
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using convolutional neural networks and digital pathology pictures in 2020 [40]. A shallow
neural network design was employed to identify the histological slides as squamous cell
carcinomas, adenocarcinomas, or benign lung. A similar methodology was used to classify
adenocarcinomas and benign colon tumors. The diagnosis accuracy for the lung and colon
was around 97% and 96%, respectively. Garg et al. also published a work in 2020 that sought
to use and modify the current pre-trained CNN-based model to detect lung and colon cancer
using histopathology pictures and improved augmentation strategies [41]. This article trained
eight distinct pre-trained CNN models on the LC25000 dataset: VGG16, NASNetMobile,
InceptionV3, InceptionResNetV2, ResNet50, Xception, MobileNet, and DenseNet169. The
model’s performance was evaluated using precision, recall, F1-score, accuracy, and AUROC
scores. The results show that all eight models achieved significant outcomes, ranging from
96% to 100% accuracy. GradCAM and SmoothGrad were then utilized to represent the
attention images of pre-trained CNN models that identify malignant and benign images.

Ali et al. presented a novel multi-input dual-stream capsule network in 2021 that used
the powerful feature learning capabilities of conventional and separable convolutional
layers to classify histopathological images of lung and colon cancer into five categories
(three malignant and two benign) [42]. They preprocessed the dataset using a novel
color balancing technique that attempts to adjust three color channels before gamma
correction and sharpening the most noticeable features. The suggested model was given
two inputs simultaneously (one with original photos and the other with preprocessed
images), allowing it to learn features more effectively. The provided findings reveal that
the model had an overall accuracy of 99.58% and an F1-score of 99.04%.

In research published in 2021, Mehedi et al. described a unique DL-based supervised
learning approach that uses pathological image analysis to identify five distinct tissue
types (two noncancerous, three cancerous) present in lung and colon tumors [40]. The
LC25000 dataset was utilized for both training and validation techniques. Two different
kinds of domain transformations were used to obtain four sets of features. The resulting
features were concatenated to create a combined collection of features with both kinds of
information. The results confirm that the model is accurate and reliable (96.38% F1-score)
for identifying lung and colon cancer, with a peak classification accuracy of 96.33%.

In 2022, Hage et al. developed CADs using artificial intelligence to accurately classify
different types of colon and lung tissues based on histopathological images [43]. The
researchers utilized machine learning models, including XGBoost, SVM, RF, LDA, MLP,
and LightGBM, to classify histopathological images that they obtained from the LC25000
dataset. The results showed that the models achieved satisfactory accuracy and precision in
identifying lung and colon cancer subtypes, among which the XGBoost model performed
the best, with an accuracy of 99% and an F1-score of 98.8%. Talukder et al. developed a
hybrid ensemble model for the efficient detection of lung and colon cancer, which combined
deep feature extraction and ensemble learning techniques to analyze histopathological
image datasets using a set of metrics (LC25000) [23]. The model was evaluated using
high-performance filtering and achieved high accuracy rates for detecting lung and colon
cancer of 99.30%. Mehmood et al. also developed a highly accurate and computationally
efficient model for the rapid and precise diagnosis of lung and colon cancer in 2022 [44].
They utilized a dataset consisting of 25, 000 images divided into five classes. To train the
model, they modified four layers of the pre-trained neural network, AlexNet, and achieved
an overall accuracy of 89%. They further enhanced the image quality through contrast
enhancement techniques, resulting in an improved accuracy of 98.4%.

In 2023, Singh et al. presented an ensemble classifier that combined random forest,
support vector machine (SVM), and logistic regression [45]. The deep features from lung
and colon cancer images, obtained from the LC25000 dataset, were extracted using VGG16
and binary pattern methods. These methods yielded the initial relevant features for the
ensemble classifier. The proposed methodology achieved an average accuracy of 99%,
precision of 99%, and recall of 98.8%. Bhattacharya et al. proposed a framework that
combined deep learning and meta-heuristic approaches for the accurate prediction of
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lung and colon cancer from histopathological images in which they trained deep learn-
ing models, ResNet-18 and EfficientNet-b4-wide, on the LC25000 dataset and extracted
deep features [46]. They developed the AdBet-WOA hybrid meta-heuristic optimization
algorithm to remove redundancy in the feature vector. They used the SVM classifier to
distinguish lung and colon cancer, achieving an impressive accuracy of 99.96%. Al-Jabbar
et al. developed three strategies, each with two systems, to analyze the dataset in 2023 [47].
The GoogLeNet and VGG-19 models were used to enhance the images and increase the
contrast of affected areas, followed by dimensionality reduction using the PCA method
to retain essential features. They used ANN with fusion features of CNN models and
handcrafted models and reached a high sensitivity of 99.85%, precision of 100%, accuracy
of 99.64%, specificity of 100%, and AUC value of 99.86%, indicating the effectiveness of the
proposed approach for the early diagnosis of lung and colon cancer.

3. Background Work
3.1. Residual 1D Convolution Networks

Residual 1D convolution networks (RCNs), as shown in Figure 1a, are a technique
introduced by Shahadat and Maida where 2D convolution operation is replaced by 1D
CNN layers with residual connections [48]. Residual bottleneck blocks in this particular
network type focus on learning residual functions rather than full transformations, as
shown in Figure 1b. They operate over one-dimensional data, such as a time-series signal,
where the convolutional filter moves along the time axis. Its architecture comprises an
input layer for 1D sequential data, convolutional layers with activation functions, residual
connections for skip connections, a pooling layer for downsampling the sequence, and fully
connected layers for final classification. The 1D CNN layer processes 1D input at a time
(X ∈ H or X ∈ W) whereas the 2D CNN layer takes (X ∈ H × W). This way, the input
cost becomes 2H instead of H2, and the operation is explained by the equation given as,

CO(i,n)
= ∑

a∈Nk(i)
Wa,nXi+a−1,n (1)

where the neighborhood of pixel i with a spatial extent of k is Nk ∈ Rk×din , and the trainable
weight W ∈ Rk×dout×din is the shared weight to compute the output for all pixel positions i.
Additionally, the n-th channel of the trainable weight W is applied to the n-th channel of
the input X in order to generate the n-th channel of the output feature map CO, where the
computational cost is calculated as,

Cost1D = h · dout · k (2)

The total cost is multiplied by 2 for the two 1D CNN layers. This type of network is used
to mitigate the vanishing gradient problem, making it easier to train deep networks and
helping in learning identity mappings.

3.2. Squeeze-And-Excitation Networks

The squeeze-and-excitation network (SENet) is designed to improve CNNs by captur-
ing channel interdependencies with minimal computational overhead [49]. SENet, depicted
in Figure 1c, introduces parameters to each channel within a convolutional block, enabling
the network to adaptively adjust the weighting of each feature map. The network gives
equal weight to each channel when generating the output feature maps. It consists of two
main operations named as “squeeze” and “excitation”. During the squeeze operation, the
spatial dimensions of the input feature maps are reduced while retaining the channel-wise
information. This process involves generating a channel descriptor and usually includes
global pooling operations. On the other hand, the excitation operation utilizes the channel
descriptor to calculate channel-wise scaling factors that determine how much emphasis
should be placed on each channel.
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(a) RCN block. (b) Residual bottleneck block. (c) SqueezeNet block.
Figure 1. Illustration of block diagrams found in (a) Residual network [50], (b) Residual 1D convolu-
tional network [48], and (c) SqueezeNet [49].

The factors are computed using a small neural network, such as ReLU or sigmoid. It
can be constructed for any transformation as,

Ftr : X → U, X ∈ RH′×W ′×C′
, U ∈ RH×W×C (3)

where Ftr is a convolutional operator. If we suppose that V = [v1, v2, . . . , vC] is a set of
learned filter channels, then we can write the outputs of Ftr as U = [u1, u2, . . . , uC], where

uc = vc ∗ X =
C′

∑
s=1

vs
c ∗ xs. (4)

In the equation above, ∗ represents convolution. vs
c is a 2D spatial kernel. It acts as a single

channel of vc, which operates on the corresponding channel of X. The output is the result of
a summation across all channels, encompassing channel dependencies within vc. However,
these dependencies are intertwined with the spatial correlation captured by the filters. The
expanded diagram of SENet is shown in Figure 2.

Figure 2. SqueezeNet block [49].

3.3. SqueezeNext Architecture

The SqueezeNext architecture is a compact network designed to be trained with few
model parameters from the beginning, rather than relying on compression methods to
reduce the parameter count. One of the methods used by the SqueezeNext architecture to
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implement this efficiently is utilizing low-rank filters. Assuming that the input to the i-th
layer of the network with K × K convolution filters is X ∈ RH×W×din , the output activation
of Y ∈ RH×W×dout is produced. This layer transformation consumes K2 · din · dout cost and
the filters consist of dout tensors of size K × K × din. The goal is to reduce the parameters,
W, using a low-rank basis, W̃, in post-training compression. However, upon examining the
trained network weights, it becomes evident that they usually do not exhibit a low-rank
structure. Therefore, many networks necessitate some form of retraining. Instead of doing
that, redesigning the network using the low-rank decomposition from the outset encourages
the network to learn a low-rank structure from the beginning. This is the strategy adopted
by the SqueezeNext architecture. Firstly, the K-convolutions are decomposed into two
separable convolutions of size 1 × K and K × 1, which reduces the number of parameters
from K2 to 2K and also increases the network’s depth. Both of these convolutions have
a ReLU activation and a batch normalization layer [51]. The block diagram is depicted
in Figure 3a. This SqueezeNext block is stacked together to construct the SqueezeNext
network architecture; a 23-layer network architecture is depicted in Figure 4.

(a) SqueezeNext block. (b) RCN block with SE layer.
Figure 3. Illustration of block diagrams found in (a) SqueezeNext [51], and (b) SEC [52].

Figure 4. SqueezeNext network architecture (23 layers) [51].
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3.4. Residual 1D Block with SE Layer

Introduced by Shahadat, “Squeeze-and-Excitation-based 1D Convolutional Networks”
(SECs) represent a parameter-efficient, mobile-embedded deep learning architecture. The
SEC architecture, shown in Figure 3b, replaces the 1D CNN layer with a squeeze-and-
excitation (SE) block to enhance cost efficiency and reduce computational complexity [52].
As the SEC replaces an RCN layer in RCNs, the cost reduction is directly analyzed between
these two layers.

The cost comparison between the computational costs of the residual 1D CNN and
the SE block is expressed as:

CostR =
Cost1D CNN

CostSE-layer
=

h · din · k
din · dout

=
h · k
dout

(5)

which equals h·k
dout

, where CostR is the ratio comparing the computational costs between the
original residual 1D convolutional layer and the SE block. Also, k is the kernel, din, and
dout denote the number of input and output channels.

3.5. Reduced CNN Layer Network

A reduced CNN layer network functions similarly to traditional CNNs, achieving
comparable performance while minimizing computational cost and model size [53].
The bottleneck, SENets, and channel squeezing are network architectures that utilize
reduced CNN layers. The fundamental architecture of ResNet includes the basic residual
block, which consists of two 3 × 3 convolutional layers and a residual connection. A
bottleneck residual block also incorporates a 1 × 1 convolution, depicted in Figure 1b.
The computational cost of the basic block is twice the cost of the spatial CNN layer, which
is 2 · h2 · din · dout · k2. Another essential component of the ResNet architecture is the
bottleneck layer, which includes two pointwise convolution layers: a first, known as the
ConvDown layer, and a final, known as the ConvUp layer. The first layer reduces din,
passed through the spatial convolution layer, whereas the final layer is responsible for
increasing dout of the spatial CNN layer. In the reduced CNN block, this ConvUp layer in
SEC [52] is replaced by the channel concatenation layer shown in Figure 5a.

(a) Reduced CNN layers block. (b) Proposed block.
Figure 5. Illustration of block diagrams found in (a) Reduced CNN layers Network [48,53,54], (b) our
proposed network architectures.
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4. Proposed Architecture

The proposed parameter-efficient architecture is a novel, lightweight, mobile-
embedded network designed for the accurate detection of lung and colon cancer
subtypes using histopathological images. The primary objective of this architecture is
to reduce computational costs while maintaining high accuracy, making it suitable for
deployment on mobile devices. We utilize a combination of residual 1D convolutional
neural networks (Conv1D) [48] and squeeze-and-excitation (SE) [49] blocks as their
fundamental building blocks and construct our proposed block architecture, depicted
in Figure 5b. Unlike traditional 2D CNNs, which are computationally expensive, the
proposed architecture employs 1D CNNs along the width axis, called residual 1D CNN
(RCN) [48]. SE blocks are integrated into the architecture to implement a channel-wise
attention mechanism. This mechanism allows the network to selectively emphasize
important channels and suppress less relevant ones, improving feature representation
and overall efficiency.

Regarding computing, our suggested architecture is more economical than the lightweight
SqueezeNext block [51]. We only used one instead of two pointwise CNN layers in the
SqueezeNext block. Savings of at least h × w × din × dout costs are beneficial. We use the
RCN and SE layers to replace the two separable CNN layers (3 × 1 and 1 × 3). These
changes’ cost comparisons are described as follows:

CostR =
Cost o f 3 × 1 CNN

Cost o f RCN
+

Cost o f 1 × 3 CNN
Cost o f SE − Block

=
h · w · din · dout · k

w · dout · k
+

h · w · din · dout · k
din · dout

= h · din + h · w · k
(6)

where the number of input channels, height, width, and output height are represented by
the variables din, h, w, and dout, the kernel size is k. Equation (6) shows that our proposed
block is h · din + h · w · k times more cost-effective than the separable CNN layers in the
SqueezeNext block.

Our modifications are not limited to these. To decrease the complexity of the network,
we also replace the ConvUp layer (the 1 × 1 CNN layer is used to increase the number of
output channels) using channel concatenation. The absence of the channel-based weight
layer from our channel concatenation results in decreased performance attributed to the
pointwise CNN layer. We employ the SE layer, which helps to improve performance by
utilizing a channel-wise attention method, to get around this restriction. In addition, this
SE layer is less expensive than the 1 × 1 CNN layer, which is described as,

CostR =
Cost o f 1 × 1 CNN
Cost o f SE − Block

=
h · w · din · dout

din · dout
= h · w (7)

The above equation describes the computational cost reductions by our proposed block
compared to the SqueezeNext block with a factor of CostR = h · w · din · dout + h · din + h ·
w · k + h · w. So, our proposed architecture is more parameter-efficient and cost-effective
than the well-known compact SqueezeNext block.

We utilize precisely two SE layers to boost performance. The SE layers take output
feature maps from the RCN layer as input and produce better output feature maps using
channel-wise feature recalibration. These channel-wise feature recalibrations improve the
model’s performance, reduce overfitting, and focus on important channels. We stack this
proposed block in the SqueezeNext network architecture to construct the proposed network.

5. Performance Evaluation

Evaluating performance is crucial for assessing how accurately a model predicts
outcomes. It confirms that the model fits the training data well and is also effective for
new and unseen data. Common evaluation metrics include accuracy, precision, recall
(sensitivity), and the F1-score.
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5.1. Accuracy

Accuracy is a crucial performance evaluation metric used in machine learning and
statistics for classifying problems. It measures the correctness of the trained parameters
or cases and assesses the proportion of correct observations among the total observations.
The accuracy is calculated as,

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

where TP is true positives, which is the number of correctly predicted positive instances
by the model. For example, if a person has the disease, the test is positive; TN stands for
true negatives, which represents the number of negative instances correctly predicted by
the model. This means that if the person does not have the disease, the test results are
negative; FP stands for false positives, which is the number of negative instances incorrectly
predicted as positive by the given model. This means that the test can show a positive result
even if the person is not diseased. Lastly, FN stands for false negatives, representing the
number of positive instances that the model incorrectly predicts as negative. This means
that even if a person is diseased, the test results are negative. When the numbers of TP and
TN are high compared to the total predictions, the accuracy is high. On the other hand, if
the numbers of TP and TN are low compared to the total predictions, the accuracy is low.
The total prediction is the sum of all the predictions: TP + TN + FP + FN. Therefore, we can
conclude that higher accuracy is needed to enhance the overall reliability of the model’s
predictions. By improving accuracy, we can decrease the occurrences of FP and FN, leading
to more reliable and effective decision-making.

5.2. Precision

Another way to measure the performance of machine learning models is using the
precision, which is calculated as the ratio of true positives to the sum of true positives and
false positives. The equation to calculate the precision is defined as,

Precision =
TP

TP + FP
(9)

In the equation, a high precision value indicates that when the model predicts a
positive outcome, it is usually correct. This suggests that the model has a low number of
false positives, making its positive predictions reliable. Conversely, a low precision value
indicates that the positive predictions made by the model are incorrect. Therefore, we can
conclude that low precision can have a negative impact.

5.3. Recall

Recall, also known as sensitivity, is another important metric used to assess the
performance of machine learning models. It quantifies the model’s capability to accurately
predict all the positive instances in a dataset. It is calculated as the ratio of true positives to
the sum of true positives and false negatives. The formula to calculate recall is as follows,

Recall =
TP

TP + FN
(10)

Based on the above equation, we understand that a high recall signifies that the model
predicts most actual positives, while a low recall score indicates a high number of false
negatives, leading to the model failing to predict actual positives. A low recall score could
result in significant issues, particularly when conducting disease screenings, and can lead
to severe repercussions.
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5.4. F1-Score

In the statistical analysis of binary classification, the F1-score is used to measure predictive
performance. It is calculated as the ratio of two times precision and recall (both determined
using the previously mentioned equations) to the sum of precision and recall. The F1-score
can also be defined as the harmonic mean of precision and recall. Its values range from 0 to 1,
where 0 indicates the lowest performance and 1 indicates the highest performance.

F1 − Score =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(11)

Based on the equation above, a high F1-score indicates that the model identifies a
greater proportion of positive instances while minimizing false positives. Conversely, a
low F1-score suggests that the model struggles to accurately predict positive instances.

6. Experimental Results
6.1. Dataset Description

This research uses the lung and colon cancer histopathological images LC25000
dataset [55]. This dataset comprises two main categories of cancer cells: colon adenocarci-
noma and benign colon tissue, and lung adenocarcinoma, lung squamous cell carcinoma,
and benign lung tissue. The sample images of these lung and colon cancer categories are
depicted in Figure 6.

(a) Lung adenocarcinoma. (b) Lung benign tissue. (c) Lung squamous cell carcinoma

(d) Colon adenocarcinoma. (e) Colon benign tissue

Figure 6. Randomly selected lung and colon cancer histopathological images from the LC25000
dataset [55].

They contain 25,000 color cancer cell images from five classes of lung and colon
cancer’s benign and malignant tissue images. Initially, 1250 photos were taken from can-
cer tissues on pathology glass slides at the James A. Haley Veterans’ Hospital in Tampa,
Florida, with 250 images for each category [40]. The original LC25000 dataset includes
750 lung tissue samples, comprising 250 adenocarcinoma, 250 squamous cell carcinomas,
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and 250 benign tissue samples. The dataset includes 500 colon tissue samples, with 250 ade-
nocarcinoma and 250 benign tissue samples. These photos were then augmented with
techniques like rotation and flipping, resulting in a collection of 5000 images per class and
totaling 25000 images for lung and colon cancers.

The photos were originally 1024 × 768 pixels but were cropped to 768 × 768 pixels
before augmentation to retain a uniform square shape. All photos are HIPAA-compliant,
vetted, and freely available to AI researchers, making them an invaluable resource for
creating more effective diagnostic tools. In our experimental analysis, we resized all the
images to 256 × 256 pixels and randomly cropped them to 224 × 224 pixels. After resizing,
we normalized the images using their mean and standard deviation. Moreover, we split
the main dataset (LC25000) into two parts: 80% for training and 20% for testing samples.
The image distribution of the lung and colon dataset is explained in Table 1.

Table 1. Distributions of lung and colon cancer LC25000 histopathological images dataset.

Data Samples
Lung Dataset Colon Dataset

Total
Adenocarcinoma Cell Carcinomas Benign Adenocarcinoma Benign

Training Data Samples 4000 4000 4000 4000 4000 20,000
Testing Data Samples 1000 1000 1000 1000 1000 5000

6.2. Methodology

Similar hyperparameters were used to the original SqueezeNet architectures [51]. We
then examined 23-layer architectures with the block multipliers “[6, 6, 8, 1]”. Likewise, we
constructed 44-layer architectures with the block multipliers “[12, 12, 16, 2]”. All the proposed
architectures were trained using various batch sizes, including 8, 16, 32, 64, and 128.

The LC25000 dataset contains 25,000 images resized and cropped to 224 × 224 pix-
els. Mean/std normalization was applied to preprocess our image data. All models
were trained using the stochastic gradient descent (SGD) optimizer. We applied warmed-
up linear learning for the first ten epochs, followed by cosine learning scheduling from
epochs 11 to 120.

6.3. Results Analysis

This section evaluates the outcomes of using our proposed model. It is important
to note that the accuracy does not significantly improve or decline as the batch sizes
increase. Additionally, our model showed excellent performance for a smaller number of
epochs. Furthermore, our model showed exceptional accuracy in colon cancer detection
and achieved nearly perfect results in all tests. It takes fewer epochs to show state-of-the-art
performance than the lung cancer detection using our model. The different batch sizes
effectively train our models, demonstrating that our model can process varying amounts of
input data without sacrificing effectiveness. Finally, Tables 2 and 3 present an overview of
our results, indicating that our model achieved the best performance for all datasets with a
fixed batch size of 64.

6.4. Results Comparisons

Tables 4–7 compare our proposed method and several previous well-known studies
and relevant network architectures. Table 4 compares several models and demonstrates
the direct effectiveness of our modified architecture. It is crucial to note that these studies
are based on using different datasets and imaging with different numbers of epochs, and
batch sizes, which makes direct comparison a bit more difficult. However, our proposed
method achieves perfect scores in all evaluation metrics, i.e., 100% accuracy rate, precision,
sensitivity, and F1-score, showcasing its versatility in detecting lung and colon cancer. This
comparison also offers a contextual understanding of our proposed model in relation to
other methodologies.
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Table 2. The performance on the LC25000 dataset to detect lung and colon cancer using our pro-
posed networks.

Dataset Epochs Parameters Batch Size Testing Accuracy

Colon Cancer 30 0.35M

8 100
16 100
32 100
64 100

128 100

Lung Cancer 40 0.35M

8 99.17
16 100
32 100
64 100

128 100

Lung and Colon Cancer 50 0.36M

8 99.6
16 99.94
32 99.98
64 100

128 99.98

Table 3. The overall performance on the LC25000 dataset using our proposed networks.

Dataset Epochs Parameters Batch Size Accuracy Precision Recall F1-Score

Colon Cancer 30 0.35M 64 100% 100% 100% 100%
Lung Cancer 40 0.35M 64 100% 100% 100% 100%

Lung and Colon Cancer 50 0.36M 64 100% 100% 100% 100%

Table 4. The performance on the LC25000 dataset to detect lung and colon cancer using some relevant
networks and our proposed network [56].

Dataset Model Epochs Parameters Testing Accuracy

Colon
Cancer

RCN

30

0.365M 99.69
SEC 0.36M 99.77

Reduced CNN 0.35M 99.91
Our proposed model 0.35M 100

Lung
Cancer

RCN

40

0.365M 99.65
SEC 0.36M 99.69

Reduced CNN 0.35M 99.87
Our proposed model 0.35M 100

Lung and
Colon
Cancer

RCN

50

0.365M 99.68
SEC 0.36M 99.79

Reduced CNN 0.35M 99.89
Our proposed model 0.35M 100

Table 5. Comparison of our proposed method results with other methods on the colon cancer detec-
tion dataset. “HI” and “CRAG” stand for histopathological images and colorectal adenocarcinoma
gland, respectively.

Reference, Year Models Imaging Dataset Accuracy

[57], 2014 Neural Network HI Colonic Images 91.11
[58], 2014 CBIC Biopsy Images 174 Biopsy Images 98.85
[59], 2014 DNN HI 132 HI 96.30
[60], 2014 ANN HI 21+28 HCC 90.2
[61], 2015 MLP, SMO, BLR HT Open Access 83.33
[62], 2015 SIFT, EFDs Colon biopsy Open Access 92.62
[63], 2015 CCD Biopsy Images Open Access 95.40
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Table 5. Cont.

Reference, Year Models Imaging Dataset Accuracy

[64], 2015 Graph-SSL algorithm HT PPIs 80.7
[64], 2015 ANN, BNs, DTs HT PPIs 91.7
[65], 2016 DCNN HI Hematoxylin, HI 88, 100 (F1-score)
[66], 2016 CNNs CT scans 56 patients Sensitivity: 85
[67], 2016 Neural Network CLE images Endomicroscopies Sensitivity: 85
[68], 2017 CNN, RF, kNN CT scan Open 87
[69], 2017 CNN autoencoders HT ETIS-LaribPolypDB 96.7
[70], 2017 CNNs MRI-DWI advanced rectal cancer 0.658, 0.99 (AUC)
[71], 2017 CNNs BiopsyImages Open Access 99.17
[72], 2018 RCCNet HI CRCHistoPhenotypes 80.61
[73], 2018 CNNs HI CRC samples 96
[74], 2018 Segnet HI Warwick-QU (A & B) 88.2 (A), 86.4 (B)
[75], 2018 SampEnMF HI Public Colorectal MRI AUC: 0.983
[76], 2019 Random Forest HI Chang Gung,Taiwan 84, 0.82 (AUC)
[77], 2019 CNN HI NHI, Taiwan Sensitivity: 0.837
[78], 2019 CNNs Colonoscopy Danish NSP 96.4, 97.1 (Sensitivity)
[14], 2019 CNN Tissue slides 25 CRC patients 95
[71], 2017 CNNs Biopsy Images Open Access 99.17
[79], 2020 CNN CT scans 10000-HI 99.6
[79], 2020 MFF-CNN CT scans NORM and TUM 96, 0.95 (F1-score)
[80], 2020 CNN CT scans CRAG 93.91
[81], 2020 CNN CT scans 322 Images 94.8
[18], 2021 CNN + PCA CT scans LC25000 99.8
[18], 2021 ResNet, Inception Slide Images AiCOLO 96.98
[20], 2021 MobileNetV2 Colon cells - 99.67
[82], 2021 IR-v2 Type 5 WSI Chang Gung, Taiwan F1-score, AUC: 0.99
[83], 2021 ResNet-18, VGG-19 Colonoscopy - 98.3
[84], 2022 CNN CT scans Stoean and Kather 97.20
[21], 2022 CNN CT scans LC25000 99.50
[85], 2022 Deep Learning (DL) CT scans WSI Sensitivity: 97.4
[86], 2022 ResNet CT scans TCIA 98.82, 98.28 (Sensitivity)
[87], 2022 CNN CT scans LC25000 100
[88], 2023 RNN, GoogLeNet HI Public Dataset 94.1, 97.5 (Sensitivity)
[89], 2023 ResNet Colonoscopy Public 99.8
[90], 2023 DL+AdaDelta Tissue Public Dataset 0.96
[91], 2023 ResNet50+Squeezenet HI Veterans’ Hospital 99.12, 99.34 (Sensitivity)

Our, 2024 Our method CT scans LC25000 Accuracy:100

Table 6. Comparison of our proposed result with other methods on the lung cancer detection
dataset. “CAD”, “ML”, “GO”, and “LR” stand for clustering KNN-classifier, machine learning,
genetic optimization, and logistic regression, respectively.

Reference, Year Models Imaging Dataset Accuracy

[92], 2013 SVM CT scan SUMS Accuracy: 98.1
[93], 2014 SVM CT scan LIDC Accuracy: 95.12
[94], 2014 CAD CT scans Radiological Data Average: 98.9
[95], 2015 SVM CT scan Patients Accuracy: 94.67%
[96], 2015 CAD CT scan LIDC 75.01, 83.35 (Sensitivity)
[97], 2015 Ensemble+ML CT scan LIDC 86.54
[98], 2015 CNNs Chest X-rays 433 image dataset AUC: 0.87–0.94
[99], 2016 DBN CT scan LIDC (174412 samples) 0.8119

[100], 2016 CADs and CNNs CT scans LIDC Sensitivity: 78.9
[101], 2016 SVM+GO CT scan Medical imaging Accuracy: 89.5
[102], 2016 Convolutional NN CT scan LIDC-IDRI 75.0
[103], 2016 Convolutional NN CT scan LIDC Accuracy: 82.5
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Table 6. Cont.

Reference, Year Models Imaging Dataset Accuracy

[104], 2017 ConvNet, SVM CT scan Danish DLCST trial Accuracy: 72.9
[105], 2017 CNN, DNN, SAE CT scans LIDC-IDRI 84.15, 83.96 (Sensitivity)
[106], 2017 3D-CNNs CT scan Kaggle Data Accuracy: 86.6
[107], 2017 CNN, DMN, SDAE CT scan LIDC AUC: 0.899 ± 0.018
[108], 2017 Entropy Degradation CT scan NCI Accuracy: 77.8
[109], 2018 VGG-network CT scan LIDC-IDRI Accuracy: 95.60
[110], 2018 DenseNet-121 Chest X-rays LIDC-IDRI 74.43, 74.68 (Sensitivity)
[111], 2018 Inception V3 CT scan Genome Atlas AUC: 0.733–0.856
[112], 2018 Otsu+ConvNet CT scan LIDC-IDRI 84.13, 91.69 (Sensitivity)
[113], 2019 Profuse clustering CT scan CIA Accuracy: 98.42
[114], 2019 3D R-CNN Chest X-rays LIDC-IDRI Sensitivity:94
[25], 2019 3D CNN CT scan Open-source image Sensitivity: 84.4

[115], 2019 ODNN, LDA CT scan LIDC 94.56, 96.2 (Sensitivity)
[116], 2019 ANN CT scan Survey lung cancer Accuracy: 96.67
[28], 2020 CNN CT scans LC25000 Accuracy: 97.20

[117], 2020 AlexNet, VGG19 LCDT images I-ELCAP 96.25, 97.5 (Sensitivity)
[118], 2020 3D CNN CT scans LUNA16 Accuracy: 80
[119], 2020 AlexNet, VGG-16 CT scans Open Dataset Accuracy: 99.52
[18], 2021 Transfer learning CT scans LIDC Accuracy: 99.12

[120], 2021 LCP-CNN CT scans US NLST Sensitivity: 99
[121], 2021 AlexNet, GoogLeNet CT scans LIDC-IDRI Precision: 100
[122], 2021 CNN CT scans Massachusetts Hospital AUC: 0.71 (p = 0.018)
[123], 2021 Deep CNN, ReLU Chest X-rays Kaggle Accuracy: 89.77
[35], 2022 MobileNetV2 CT scans Public Accuracy: 98.67

[124], 2022 SVM CT scans LIDC-IDRI Accuracy: 94
[125], 2022 CNN-5CL Chest X-rays LIDC/IDRI 93.73, 98.88 (Sensitivity)
[126], 2023 2D-CNN CT scans LUNA16 Accuracy: 95
[37], 2023 LCP-CNN Chest X-ray Open 99.9, 99.89 (Specificity)
[45], 2023 LR+VGG16 CT scans LC25000 99, 99 (Precision)
[46], 2023 EfficientNet-b4 CT scans LC25000 Accuracy: 99.96
[47], 2023 GoogLeNet, VGG19 CT scans LC25000 99.64, 99.85 (Sensitivity)

Our, 2024 Our method CT scans LC25000 Accuracy:100

Table 7. Comparison of our proposed result with other methods on lung and colon cancer detection
dataset. Here, “IQ-OTHNCCD” is a lung cancer dataset.

Reference/Year Models Imaging Dataset Results

[127], 2020 CNN CT scans LC25000 Accuracy: 97.00
[41], 2020 InceptionV3, MobileNet CT scans LC25000 Accuracy: 99.91

[128], 2021 DHS-CapsNet CT scans LC25000 Accuracy: 99.23
[40], 2021 CNN, 2D Fourier CT scans LC25000 Accuracy: 96.33
[42], 2021 Capsule Network CT scans LC25000 Accuracy: 99.58

[129], 2021 DarkNet-19 CT scans LC25000 Accuracy: 99.69
[44], 2022 AlexNet CT scans LC25000 Accuracy: 98.4

[130], 2022 DenseNet121, Random Forest CT scans LC25000
Accuracy: 98.6
F1-score: 0.985

[23], 2022 A Hybrid Ensemble Model CT scans LC25000 Accuracy: 99.3

[131], 2022
PCA + CNN + SVM,

FHWT + CNN + SVM CT scans LC25000
Accuracy: 99.5
Accuracy: 99.6

[43], 2022 XGBoost CT scans LC25000
Accuracy: 99
F1-score: 98.8

[43], 2022 MobileNetV2, InceptionV2 CT scans LC25000 Accuracy: 99.95
[39], 2023 Capsule Network CT scans LC25000 Accuracy: 99.32

[132], 2023 CNN CT scans LC25000 Accuracy: 99.76
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Table 7. Cont.

Reference/Year Models Imaging Dataset Results

[133], 2023 CNN CT scans LC25000 Accuracy: 98.96

[47], 2023 ANN CT scans LC25000
Sensitivity: 99.85

Precision: 100
Accuracy: 99.64

[45], 2023 Logistic Regression Model CT scans LC25000

Accuracy: 99.00
Precision: 99.00

Recall: 98.80
F1-score: 98.80

[134], 2024 SqueezeNet CT scans LC25000 Accuracy: 99.58

[135], 2024

EfficientNetB6
VGG19

InceptionResNetV2
DenseNet201
MobileNetV2

CT scans LC25000

Accuracy: 93.12
Accuracy: 98.00
Accuracy: 97.92
Accuracy: 99.12
Accuracy: 99.32

[136], 2024 LightGBM CT scans LC25000 Accuracy: 100

Our, 2024 Our method CT scans LC25000 Accuracy:100

6.4.1. Lung Cancer

Here, we discuss the comparison of lung cancer detection between various published
works and our proposed approach. Our mobile-supported and parameter-efficient method,
a 1D convolutional neural network with an SE layer, outperforms all of the other methods
as seen in Table 6. Our method utilized CT scan imaging of the publicly available LC25000
dataset and achieved perfect metrics, i.e., accuracy rate, precision, recall, and an F1-score
of 100%. Remarkably, despite using a different dataset from LIDC-IDRI and a different
network known as AlexNet and GoogLeNet, the method proposed by Vinod Kumar and
Brijesh Bakariya [121] also achieved the same precision score as ours using computer-based
models. Nonetheless, our achievements in terms of accuracy exceed all of the previous
work, as detailed in Table 6.

6.4.2. Colon Cancer

This section portrays the comparative efficacy of various methodologies in detecting
colon cancer, as enumerated in Table 5. Utilizing CT scan imaging from the LC25000 dataset,
our 1D convolutional network with SE layers achieves a 100% accuracy rate, precision,
recall, and F1-score in the detection of colon cancer. Our proposed method surpasses
nearly all studies referenced in Table 5, demonstrating the model’s capability to identify
all instances of colon cancer presence or absence across both trained and new datasets.
Additionally, our model maintains consistent performance across 30 epochs and 64 batch
sizes, with 0.35 million parameters. It is worth noting that other computer-based models,
such as the CNN model described by Dabass et al. (2022) [87], also achieved 100% accuracy
scores using a computer-based deep learning model.

6.4.3. Lung and Colon Cancer

We compared lung and colon cancer detection among various published methods as
presented in Table 7. The proposed method, 1D CNN with squeeze-and-excitation (SE)
layers, used CT scans imaging from the publicly available LC25000 dataset as the input.
The 1D CNN with SE layers is trained on this data. The model identifies features related
to the presence of lung and colon cancer. Our proposed method achieved a remarkable
100% accuracy rate, precision, recall, and F1-score in lung and colon cancer detection. This
high accuracy indicates that the proposed model consistently correctly identifies all the
instances of colon and lung cancer present or absent in the dataset. It consistently performs
well over 50 epochs with a batch size of 64, using 0.36 million parameters. In machine
learning, “epochs” refers to the number of times the entire dataset is passed through the
model during training. On the other hand, “batch size” refers to the number of samples
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processed before the model’s internal parameters are updated. This means the model can
be trained on various datasets, not just a specific set. Additionally, it outperforms almost
all the other methods mentioned in Table 7. Additionally, the LightGBM computer-based
model [136] proposed by Indu Chhillar and Ajmer Singh in 2024 also achieved the same
accuracy as our model using CT scan imaging from the LC25000 dataset [136].

6.5. Final Remarks

Our model outperformed existing models significantly, which emphasizes the effi-
ciency of our approach. Surprisingly, our model accomplished 100% accuracy in detecting
colon cancer across all batch sizes. It also achieved 100% accuracy in detecting lung cancer.
It achieved perfect scores in detecting lung and colon cancer types with a batch size of
64, while maintaining consistently high results in other areas. While existing models have
attained comparable performance, none have consistently reached the best accuracy across
three cancer types as our model has. Despite implementing the same SqueezeNet network
as the studies by Mohamed et al. (2023) [91] and Suominen et al. (2024) [134], our models
achieved higher accuracy rates. Moreover, this suggests that combining SE layers and 1D
convolutional networks can effectively enhance feature extraction capabilities and achieve
state-of-the-art performance in medical image analysis where timely and accurate results
are crucial. Our model achieved 100% accuracy for lung cancer, colon cancer, and both lung
and colon cancers. We analyzed the overfitting of our model by examining the training
and validation loss, as shown in Figure 7a–c. This analysis was performed for each epoch
across all categories of lung and colon cancer. Our findings indicate that the model does
not overfit on the datasets for lung cancer, colon cancer, and the combined lung and colon
cancer images.

To create a successful machine learning (ML) model, focusing on the network’s ability
to generalize and its reliability is essential. A large and diverse dataset is needed for
effective training, so we used data augmentation to artificially expand the dataset by
making small changes to the original data. This expansion allowed our model to recognize
and generalize from a wider range of patterns and abnormal details in histopathological
images. It significantly contributed to the model’s performance across different batches
and resulted in the highest accuracy. Additionally, it helped us overcome overfitting (as
shown in Figure 7a–c), which is crucial for learning detailed features of cancerous diseases
without being misled by identical patterns.

(a) Loss curve for colon cancer detection.

Figure 7. Cont.
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(b) Loss curve for lung cancer detection.

(c) Loss curve for lung and colon cancer detection.

Figure 7. Training vs. validation loss diagrams to analyze overfitting in our proposed model across
different numbers of epochs.

7. Conclusions and Future Work

According to the World Health Organization (WHO), lung and colon cancer were the
leading causes of death in 2020 [137]. Early diagnosis is crucial to overcome this issue. A
study, proposed by a CNN network, constructed with 1D convolutional networks and SE
layers to detect lung and colon cancer features from the large LC25000 dataset. Historically,
diagnosis was a complex and lengthy process. The aim was to propose an approach that is
not only efficient but also computationally economical by minimizing parameters; in this
case, only 0.35M parameters were used. Overall, we achieved a 100% accuracy, precision,
recall, and F1-score across various batch sizes and epochs, indicating significant progress
and the reliability of our model.

However, the limitation of this work is that the model has only been applied to the
classification of lung and colon cancers, even though it shows potential for detecting them.
Further analysis of the results indicates that there is still room for improvement in detecting
other types of cancer in order to achieve optimal performance. Our comparisons show that
our method outperforms almost all previous studies. Implementing this mobile-supported
identification method in healthcare will assist pathologists in diagnosing lung and colon
cancer more easily and reliably. In the future, we plan to apply our diagnostic method on
other medical disease detection datasets to expand the scope of our study and improve
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the accuracy rate. This will enable us to extend our contributions to the detection of other
types of cancer.
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