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Simple Summary: Although conventional frozen section biopsy is a valuable tool, it can be time-
consuming, expensive, and its interpretation largely depends on the expertise of the pathologist.
This review discusses a new technology called stimulated Raman histology (SRH), which creates
detailed images of tissue rapidly and without the need for specialized dyes. SRH offers high preci-
sion and clarity, making it particularly useful in surgical settings. When paired with artificial intel-
ligence, this method can improve accuracy and reduce the workload for pathologists. Through this
narrative review, we aim to demonstrate how SRH has transformed rapid tissue analysis, poten-
tially leading to improved clinical decisions and outcomes for patients.

Abstract: Frozen section biopsy, introduced in the early 1900s, still remains the gold standard meth-
odology for rapid histologic evaluations. Although a valuable tool, it is labor-, time-, and cost-inten-
sive. Other challenges include visual and diagnostic variability, which may complicate interpreta-
tion and potentially compromise the quality of clinical decisions. Raman spectroscopy, with its high
specificity and non-invasive nature, can be an effective tool for dependable and quick histopathol-
ogy. The most promising modality in this context is stimulated Raman histology (SRH), a label-free,
non-linear optical process which generates conventional H&E-like images in short time frames. SRH
overcomes limitations of conventional Raman scattering by leveraging the qualities of stimulated
Raman scattering (SRS), wherein the energy gets transferred from a high-power pump beam to a
probe beam, resulting in high-energy, high-intensity scattering. SRH’s high resolution and non-re-
quirement of preprocessing steps make it particularly suitable when it comes to intrasurgical his-
tology. Combining SRH with artificial intelligence (AI) can lead to greater precision and less reliance
on manual interpretation, potentially easing the burden of the overburdened global histopathology
workforce. We review the recent applications and advances in SRH and how it is tapping into Al to
evolve as a revolutionary tool for rapid histologic analysis.

Keywords: stimulated Raman histology; Al-assisted pathology; label-free histology; intraoperative
histology; surgical margins; cancer diagnosis
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1. Introduction

Histopathology, a diagnostic methodology that evolved into a medical discipline by
early 1900s [1,2] is still used worldwide as the gold standard methodology for diagnosis,
drawing critical insights into the nature and extent of various diseases [3]. In a general
sense, the methodology can be explained as the study of changes within tissue that are
associated with a disorder or disease. The procedure usually follows a series of critically
and precisely drafted steps, of which the major ones are fixation, sectioning, staining and
microscopic examination [4,5]. Histopathology offers several advantages, such as being
economic, delivering overview about disease pathogenesis, and facilitating early disease
detection. Despite these advantages, the modality is hindered by certain limitations, such
as diagnostic variability due to manual assessments, its laborious nature, excessive time
consumption, a global shortfall of expert pathologists, and limitations in terms of spatial
resolution, information about underlying molecular mechanisms, and scarce quantifiabil-
ity of features [6—8]. With the exponential rise in the incidence of life-threatening diseases
such as cancer globally [9], existing methodologies often fall short of contemporary de-
mands. This creates an urgent need for a methodology that is reliable, fast and capable of
self-analysis. Such advancements could accelerate diagnoses, ultimately aiding millions
worldwide by facilitating early and precise disease detection. Vibrational spectroscopy is
an extremely promising alternative in this regard.

Vibrational spectroscopy: The principles of quantum mechanics perceive atoms and
molecules to be possessing characteristic inherent energy that is constantly manifested as
tiny intrinsic vibrations, the frequency of which is decided by the specific type and local
niche around the chemical bonds involved. These molecular vibrations are highly specific
to the characteristics of the molecules, the analysis of which can yield highly specific mo-
lecular information about the sample, which forms the foundational concept behind all
vibrational spectroscopic modalities. Typically, a vibrational spectroscopic modality like
Raman spectroscopy or infrared spectroscopy measures specific molecular vibrations in
the form of a characteristic spectrum [10]. Such a resultant spectrum from a tissue, when
recorded and analyzed properly, can yield valuable information about a disease state.
While infrared spectroscopy (IR) can provide valuable information about molecular struc-
ture and composition, its utility in biological tissue analysis is limited due to many factors,
the preliminary one being intense bands corresponding to water, that obscure disease-
related biomolecular signatures. Additional challenges include its limitations in effec-
tively representing highly complex systems such as biological tissues and its dependence
on extensive sample preparation, suboptimal molecular specificity, and spatial resolution
[11-15]. Consequently, Raman spectroscopy is often the preferred choice due to its greater
practicality and diagnostic potential.

Raman spectroscopy, and later microscopy, has evolved through various develop-
mental stages since its inception in 1928 by Sir C.V. Raman and K.S Krishnan [16]. It has
now long been established as a dependable analytic methodology in mainstream research.
The modality is also laden with some limitations, such as its weak signal intensity and
inability to characterize large areas in viable time limits, preventing its efficient translation
into clinical applications [17-19]. On the other hand, it offers specific advantages, such as
label-free analysis, being unaffected in the presence of water, minimal sample preparation
requirements, high spectral resolution, and its capability to record complex analytes. [20-
22]. Raman spectroscopy can be broadly classified into linear (spontaneous) [23,24] and
non-linear Raman spectroscopy [25,26], with unique principles and applications. While
spontaneous Raman scattering is largely about inelastic scattering of photons, non-linear
Raman scattering occurs when multiple photons interact with a sample, at times also pro-
ducing other non-linear effects, such as second-harmonic generation (SHG) [27,28] or
third-harmonic generation (THG) [29,30], which often can be recorded and combined to
attain enhanced molecular and morphologic information about the analyte [31,32]. In-
deed, spontaneous Raman spectroscopy has been utilized extensively for biomedical ap-
plications, from label-free imaging of single cells and tissues [33-36] to disease diagnosis
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and prognosis [37-40]; however, it is slow and suffers from low sensitivity. On the other
hand, non-linear Raman scattering delivers the advantages of enhanced signal intensity,
minimal photo damage to the tissue analyte, high sensitivity to specific molecular vibra-
tions, swift analysis, sub-micron spatial resolutions, and deep tissue analysis [41-43].
These features deem it an extremely efficient diagnostic modality. Two prominent ver-
sions of non-linear Raman scattering are coherent anti-Stokes Raman scattering (CARS)
and SRS. SRS output spectra are more quantifiable as they have a non-resonant back-
ground and are simpler to interpret, possessing a higher sensitivity to trace molecules.
They are therefore generally preferred over CARS as a diagnostic modality [44].

To trace the development of the SRS, the advent of the laser in 1960 catapulted ad-
vancements in non-linear optics, leading to discoveries such as second and third harmonic
generation and SRS. In 1962, researchers identified SRS when a ruby laser with a nitro-
benzene Kerr shutter produced unexpected emission lines corresponding to Raman-active
vibrations. This discovery, along with subsequent theoretical frameworks, led to the clar-
ification that the SRS phenomenon can shift the interacting laser frequencies through Ra-
man transitions. Unlike fluorescence, SRS does not involve energy storage in excited elec-
tronic states. Inspired by the similarity to stimulated emission in laser cavities, this phe-
nomenon was termed ‘stimulated Raman scattering’.

In SRS, the excitation laser beam at frequency wp generates frequency-reduced radi-
ation, known as Stokes radiation ws, through spontaneous Raman scattering. Some of the
Stokes radiation beam re-enters the medium while traveling through the cavity, thus stim-
ulating the creation of more Stokes photons and finally producing a coherent beam at the
frequency ws. When both these beams coincide at the specimen, at a resultant frequency
equal to the difference between their frequencies, and this matches the molecular vibra-
tional frequency, Raman scattering materialises through stimulated excitation. As a result,
the Stokes intensity increases by an amount matching the loss from the fundamental laser
beam. Usually, the SRL signal is transformed to pixel intensity via electronics and soft-
ware, and the sample is spatially scanned with spatiotemporally overlapping beams to
image a sample surface [45-47].

SRS progressed further through developments in the field of laser sources and light-
sensing technologies. The advent of femtosecond and later picosecond laser pulses, led to
first time-resolved studies on molecular vibration. Researchers recognized that the Raman
free induction decay observed in the time domain was directly linked to the Raman line
width in the spectral domain, and selective excitation of inhomogeneously broadened
bands offered new insights into the mechanisms contributing to line width. In the early
2000s, a new development in SRS led to the use of femtosecond SRS and picosecond lasers
as a contrast mechanism in microscopy. In 2008, researchers successfully applied SRS mi-
croscopy to bio-image using a pair of picosecond lasers combined with Stokes pulses, un-
veiling the scope of rapid, high-resolution, label-free, microscopic imaging of unprocessed
tissue specimens [45]. Leveraging further technological advancements in the sector, such
as fiber-laser technology, the first commercial clinical SRH device, the NIO Laser imaging
system, was introduced by Invenio imaging (Invenio Imaging, Inc., Santa Clara, CA, USA),
hereafter referred to as ‘NIO system’ in this article. Another notable technology advance-
ment in the device is the incorporation of improved noise cancellation electronics, such as
balanced detection-based noise cancellation, which addressed the high noise level usually
associated with the fiber-laser technology [48].

Lee et al. have elaborately discussed the advances in the application of SRS in histo-
pathology in the context of intraoperative settings, analysing new updates in instrumen-
tation and computer-aided diagnosis [49]. Their work further extends into utilizing other
non-linear modalities that can be exploited to attain additional diagnostic contrast, lead-
ing to enhanced histopathology. Li et al. reviewed SRS microscopic techniques and appli-
cations in biosciences [50]. Their work in general reviewed applications of SRS microscopy
in cell metabolism, neuroscience, tumor diagnosis, drug tracking, etc., combined with var-
ious bio-orthogonal Raman tags. Despite the current body of literature, there is especially
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little reference available on the latest trends in Al-led developments in the field of SRS
imaging and on how their combination jointly contributes to superior performance in at-
taining histopathology results that cater to the requirements of the contemporary global
health sector. Therefore, this review covers significant advancements in artificial intelli-
gence (Al)-assisted stimulated Raman histology (SRH) over the past five years, specifically
focusing on diagnostic purposes.

2. SRH as a Diagnostic Imaging Modality

SRS histology is a rapid, non-destructive, label-free molecular imaging modality that
delivers sub-micron-level spatially resolved histologic images. The image contrast corre-
sponds to the molecular vibrational properties of chemical bonds and the concentration
of macromolecules (lipids, proteins, and nucleic acids) of the tissue/cell sample [51-53].
Unlike spontaneous Raman spectroscopy, SRS is a non-linear optical process, where two
spatiotemporally overlapped pulsed lasers synchronously illuminate the sample to coher-
ently excite the selected molecular vibration. The pump beam serves as one laser and the
other is a stokes beam, with the frequency difference between the two carefully set to
match the vibrational frequency of the chemical bond of interest. The Stokes Raman tran-
sitions of the analyte impart a net attenuation of the pump line and a net gain in the stokes
line, which can be explained by coupled wave equations where the beams are coupled
parametrically by the polarization response of the analyte [54-57]. By attaining a quantum
stimulation of photons transferred via the Stokes beam, in addition to the weak basal scat-
tering imparted from the other laser beam, the overall scattering gets enhanced drastically.
In the context of SRS microscopy, the spatiotemporally overlapped lasers are confined to
a tight focus point, generating an enhancement of up to 108 times and thus yielding re-
markably high sensitivity at ultra-high speed [58].

The potential of SRS for molecular imaging, beyond spectroscopy, was first demon-
strated in 2007 on polystyrene beads. This was aided by an instrumentation panel com-
prising a femtosecond amplifier laser source and photodiode array [59]. Yet, clinical trans-
lation remained a challenge due to the technological requirements being highly demand-
ing and the lack of optics/hardware options that were available at that point in time. For
example, the basis of SRS microscopic methodology consisted of the two laser pulsed
trains that needed to temporally overlap by less than the pulse duration (<100 fs) and
within a spatial range smaller than the focal spot size (<100 nm). It demanded advanced
solid-state lasers equipped with continuous water cooling, all of which posed stiff chal-
lenges in its clinical translation. In 2008, Freudiger et al. [45] developed a microscopic sys-
tem for SRS-based three-dimensional multiphoton vibrational imaging, which reported
higher sensitivity achieved by means of high-frequency (megahertz) phase-sensitive de-
tection. The study showcased a range of biomedical applications, like discerning distribu-
tions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin
tissues based on intrinsic lipid contrast, and monitoring drug delivery across the epider-
mis. Saar et al. enabled in vivo SRS imaging by using a microscopy arrangement that
markedly enhanced the collection of backscattered signals and increased imaging speed
by three orders of magnitude, achieving video-rate capabilities [60]. This work was a
breakthrough that allowed the potential of SRS-mediated quick label-free in vivo imaging
to be established. Furthermore, Ozeki et al. demonstrated that tissues can be imaged using
SRS at the rate of 30 frames/second with frame-by-frame wavelength tunability [61]. The
biggest relevance of the work is the multicolor profiling of different constituents, whereby
spectral images were analyzed using independent component analysis, which could de-
tect even minute variations in spectral features and impart colors based on them. Ji et al.
showcased that SRS could reveal human brain tumor infiltration in unprocessed surgical
specimens from 22 neurosurgical patients, attaining near-perfect agreement with H&E
light microscopy (k = 0.86) [62]. To facilitate the use of SRS data in brain tumor surgeries
without requiring expert interpretation, the team developed a classifier that attained
97.5% sensitivity and 98.5% specificity in detecting tumor infiltration. Lu et al. also
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demonstrated the capabilities of SRS using a microscopic system to deliver pathology-like
information based on molecular contrasts and high-level sensitivity [63].

It was in 2017 that Orringer et al. established the utility of SRS microscopy for in-
traoperative histology by capitalising on the recent developments in fiber laser technol-
ogy, marking the beginning of a new era for Raman spectroscopy in clinical aspects that
eventually led to the development of the first clinical SRS microscope [48]. Basically, the
NIO imaging system processes freshly excised surgical tissues through three steps: (a)
image acquisition (approximately 2 min) (b) image processing (approximately 10 s) and
(c) image diagnosis (approximately 20 s). The system generates H&E-like SRH images by
mapping the major Raman shifts (corresponding to CH2 and CHs) from each specimen
within 2.5 min for a sample area of 1 mm?. The NIO system can function as an effective,
streamlined substitute to conventional histologic methods that can save transferring spec-
imens out of the operating theatre to the pathologic facility for processes like sectioning,
mounting, staining and pathologic evaluation. The methodology can also help preserve
key tissue architectural features for analysis, which may otherwise get lost during the pre-
processing steps of conventional frozen sections. The imaging process of the methodology
is followed by heatmapping in a manner to match with the H&E images. The feature that
SRH imaging is actually a high spatial resolution profile of molecules of interest (molecu-
lar fingerprinting) is an advantage when assessing complex structures such as biological
tissues with high dependability.

Speaking of limitations, as in any other optical modality, tissue penetration depth is
a concern in SRH too, restricting its applications on thicker tissues. This may necessitate
careful and precise management of tissue surfaces to be profiled. Furthermore, the high-
intensity laser lights used in the methodology can lead to phototoxic effects, affecting the
Raman signal output over time owing to photobleaching, as well as some extent of alter-
ation in analyte physiology, like that of cells, which should also be addressed during the
analysis. Additionally, for better practicality, the imaging is mainly based on the contrast
between Raman peaks corresponding to lipids and proteins. In rare cases, this can lead to
suboptimal profiling of the analyte surface, especially in the context of broader organ ap-
plications. This issue is being addressed by engaging the Al methodology that considers
even the minutest differences in peaks, such as intensity, spatial patterns, and peak ratio
analysis. However, beyond all these limitations, it offers strong advantages that render it
an effective solution for an automated, standardized method for intraoperative histo-
pathology.

As illustrated in Figure 1, the SRH process begins by obtaining the tissue specimen
during surgery and placing it on slides for imaging. Two spatiotemporally synchronized
laser beams—the Stokes line and pump line lasers—illuminate the sample. These lasers
are tuned to specific frequencies corresponding to molecular vibrations of interest, typi-
cally focusing on lipid and protein Raman peaks. The pump laser excites the sample’s
molecules to a higher energy state, while the Stokes laser induces specific molecular vi-
brations. The energy disparity between the pump and Stokes photons enhances specific
Raman peaks.

The scattered photons are collected, mapped, and processed to create molecular im-
ages of the tissue slices. Al algorithms further analyze this image, with outputs heat-
mapped to aid pathologists and healthcare workers in interpretation and identification.
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Figure 1. Overview of SRH workflow. (a) The tumor specimen obtained intra operatively is loaded
onto slides and SRH imaging is performed. Stokes and pump lasers illuminate the sample and (b)
induced molecular vibrations within the sample. The laser excitation causes energy transitions as
shown in (c). The molecular perturbations produce coherent Raman scattered photons that will be
collected and pseudo-colored to generate stimulated Raman histology images, as shown in (d). In
(e), the resultant images are processed using advanced Al modalities to identify regions of different
pathologic features which are heat mapped, as in (f), for easy processing by pathologists.

2.1. Bone

During sinonasal and skull surgeries, intraoperatively assessing the histology with
accuracy and speed is extremely important, which often turns up as a challenge to existing
histologic methods. Histology of skull base tumors is complicated by their multiple histo-
logic subtypes and higher rates of positive margins when compared with other anatomical
sites [64,65]. Shin et al. used a fast simultaneous two-channel STS imaging technique in
combination with a new pseudo-H&E recoloring methodology [66]. Their modularized
assessment style extends beyond accuracy in diagnosing cancer by analyzing the degree
of agreement between neuropathologists’ confidence in SRH images, H&E-stained frozen
and formalin-fixed, paraffin-embedded (FFPE) tissue sections. The results reveal that SRH
is effective for establishing a diagnosis using fresh tissue in most cases, with 87% accuracy
relative to H&E-stained FFPE sections. However, the authors opined that low stromal li-
pid concentration always poses stiff challenges for pseudo-coloring, as the process is heav-
ily dependent on lipid/protein contrast, and is therefore not equally efficient for all types
of tumors. In another reported work, Jiang et al. utilized SRH to image skull base tumors
in patients using an NIO System [67]. They used a CNN architecture implementing three
representation learning strategies; cross-entropy, self-supervised contrastive learning and
supervised contrastive learning. The cross-entropy strategy yielded an overall diagnostic
accuracy of 91.5%, while self-supervised contrastive learning and supervised contrastive
learning achieved 83.9% and 96.6%, respectively. Additionally, the trained model success-
fully delineated tumor-normal margins, and identified and detected regions of micro-
scopic tumor infiltration in meningioma SRH images. Recently, Fitzgerald et al. evaluated
the usability of SRH in combination with color-matching algorithms in order to generate
images resembling those FFPE sections [68]. The study also used NIO system for SRH
imaging. The work reported a significantly faster median analysis time of 4.3 min (com-
pared to 44 min in the frozen section), as well as sensitivity, specificity, precision, and
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overall accuracy of 93.3%, 94.1%, 93.8%, and 93.3%, respectively. A concordance of (Co-
hen’s kappa (i) = 0.89) was seen between the SRH and frozen sections. The authors re-
ported that, while they could effectively detect loss of polarity, high nuclear/cytoplasmic
ratio and nuclear pleomorphism, differentiating mitotic figures from apoptotic cells was
still challenging.

Musculoskeletal disorders stand as the primary cause of disability on a global scale,
and low back pain is the primary factor responsible for disability in over 160 countries
[69]. One of the most prominent reasons for lower back pain is lumbar disc herniation,
which is a displacement of disc material beyond the space between intervertebral discs,
with a high incidence rate of 5 to 20 cases per 1000 adults annually [70]. Percutaneous
endoscopic lumbar discectomy (PELD) is an effectual treatment for lumbar disc herni-
ation, and the process mandates swift histological identification of dissected tissue to steer
the process. During PELD, fibrotic adhesion is observed between the nerve root and sur-
rounding structures, which needs to be clearly demarcated. Zou et al. demonstrated the
applicability of SRH to profiling lipid and protein distributions in combination with SHG
and TPEF, which were utilized to image elastin and collagen fibers, using a home-built
microscope system [71]. During PELD procedure, fibrotic adhesion between the dura
(nerve root) and the surrounding peridural soft tissue structures, such as intervertebral
disc (IVD) and ligamentum flavum (LF), can be observed and it is necessary to distinguish
between them. Therefore, they measured SRS images at the CHz (2845 cm™) and CHs (2930
cm™) channels of the nerve root to understand the distributions of lipids and proteins. The
nerve roots showcased SRS spectral characteristics more like those of lipids, whereas IVD
and LF shared similar SRS profiles to proteins. The study also showed significant differ-
ences in the non-linear optical characteristics between the dura and surrounding soft tis-
sues, demonstrating the potential for intraoperative differentiation of diverse types of
peridural soft tissues to enhance surgical outcomes of PELD.

In a different work involving spinal cord injuries, Wu et al. performed in vivo spinal
cord imaging without introducing immunological artifacts in mouse models, to gain cru-
cial understanding of its pathology and treatment options [72]. The study created a less
invasive intervertebral access point by preserving the ligamentum flavum to safeguard
the spinal cord underneath, thereby lowering the likelihood of triggering microglia. The
study presented an optical clearing technique, enabling repeated imaging at subcellular
resolution using two-photon fluorescence and SRS, all while avoiding any inflammation
induction. The study employed a self-developed multimodal NLO microscope system
combining SRS, TPEF and SHG modalities to visualize iodixanol, cells and collagens sim-
ultaneously. Hyperspectral SRS sweeping mode was employed to obtain SRS spectra of
solutions and tissues in fingerprint and C-H regions. The study thus crafted a less invasive
intervertebral access point for spinal cord imaging in mice and successfully attained long-
term, high-resolution imaging without inducing any inflammation.

2.2. Breast

Breast cancer is the most commonly diagnosed cancer among adults and in 95% of
countries, breast cancer is the first or second leading cause of female deaths [73]. It is a
well-established fact that microcalcifications are an incredibly valid indicator of neoplastic
processes in breast cancers. Carbonate content is yet another indicator that correlates with
local pathology. Despite the diagnostic and prognostic potential, the morphologic and
chemical features of calcifications are poorly understood.

Shin et al. visualized breast calcification chemical compositions at high spatial reso-
lution by utilizing spatially resolved qualitative and quantitative information [74]. The
study employed SRS microscopy to examine a range of breast alterations, encompassing
benign to neoplastic processes, including atypical ductal hyperplasia, ductal carcinoma in
situ and invasive ductal carcinoma. The methodology involved ratiometric analysis used
to quantify hydroxyapatite, a main diagnostic feature of cancer. A customized two-color
microscopy setup consisting of SRS and SHG was used for the analysis. Results reiterated
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the already established fact that the average carbonate content tends to decrease with in-
creasing malignancy potential. The work revealed that the microenvironment surround-
ing neoplastic processes significantly impacts the local carbonate content distribution.
Specifically, the carbonate content reduced near the edges of calcifications closest to neo-
plastic cells indicating an acidified microenvironment as malignant cells proliferate. Ad-
ditionally, the spatial heterogeneity of carbonate content could potentially be a diagnostic
indicator of malignancy. Using SRH, the work reported sensitivity and specificity of 85%
and 88%, respectively, when the level of carbonate content level was employed as the sole
discriminator. To improve the accuracy in cases of diagnosing fibro-adenoma from inva-
sive ductal carcinoma, SHG was used as the second modality, yielding a significant im-
provement; it was able to separate the cases with a higher sensitivity and specificity of
94% and 85%, respectively.

Bouzy et al. combined Raman and optical photothermal infrared for the first time (O-
PTIR)—a modality that can simultaneously record IR and Raman spectra from a single
point—to study microcalcifications by analyzing molecular composition at identical loca-
tions with high spatial resolution [75]. They employed a mIRage IR microscope (Photo-
thermal Spectroscopy Corp, Santa Barbara) and also utilized other multiphoton imaging
techniques to validate the existence of carbonate ions within the microcalcifications. The
multiphoton setup, including the SRS and SHG methodology, was facilitated using an
experimental setup customized onto a confocal inverted microscope. The tissue unveils
the diversity within the breast microcalcifications (BMCs) using the O-PTIR system, with
the limitations being low field of vision and high acquisition times. The SRS and SHG
techniques were further employed for probing the collagen content of the calcifications.
Overall, this multimodal approach constructed SRS images to precisely mimic H&E sec-
tions. The work established a means to analyze microcalcifications by iteratively refining
the area of interest.

Ni et al. developed a two-color SRH, a modality that generated a high-content SRH
(HC-SRH) system that delivers both morphological and chemical data for diagnosing
breast cancer [76]. The methodology could successfully profile unsaturated lipids, extra-
cellular matrix, cellular protein, saturated lipids and water in the breast tissue, which
could in turn map the duct, fat cell, stroma, vessel and necrosis. In contrast to the well-
developed two-color SRH, HC-SRH delivers extra chemical information aiding cancer di-
agnosis. The notable advantages are that selective spectral sampling enhances HC-SRH
speed by one order of magnitude, while also delivering outstanding contrast for diverse
breast tissue components. To analyze the clinical applicability of the methodology, a fiber-
optical parametric oscillator (FOPO)-based HC-SRH system was developed instead of a
solid-state system. Leveraging the rapid, widely tuning capability of the FOPO, the spec-
tral coverage of the HC-SRH was extended to the fingerprint window, delivering extra
contrast for nucleic acid, solid-state fat and amino acids in breast tissue. The resulting two-
colored images provided a deeper understanding of the subtle chemical changes associ-
ated with cancer progression.

2.3. Live Cell Imaging

Live cell imaging is a very valuable tool in the context of biological and biomedical
applications including disease diagnosis. It helps cell biologists to learn valuable clues
about the structure and functions of the cells and tissues, which in turn largely helps the
diagnosis. Various advancements in technology are tremendously helping the live cell im-
aging process. However, the methodology is still challenging when it comes to maintain-
ing the cells in a healthy state under the optical devices for extended periods of time. SRH
is a methodology that is capable of imaging cells with high spatio-temporal resolution
over extended periods of time, without causing any damage to the cells.

To tap into this potential of SRH, Yuan et al. designed and fabricated a flexible cham-
ber for time-lapse live-cell imaging where the detection of SRS signal is performed via an
upright microscope frame [77]. The developed enclosure and chamber can be
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incorporated into a conventional SRS imaging system. The enclosure is designed to con-
tain and maintain the SRS microscope and the whole imaging environment at 37 °C. Re-
sults show that the temperature within the flexible chamber reached the anticipated tem-
perature within 1.5 h, and it remained stable for at least 24 h, indicating high suitability
for cell-based studies. The authors report that temperature instability induced focal drifts
and subtle vibrations during the recording process that should be addressed for a better
SRS recording.

In yet another reported work, Liu et al. analyzed the effects at the biological and mo-
lecular levels, leading to the anti-survival effects on mantle cell lymphoma (MCL), as a
comparison between first- and second-generation BTK inhibitors (BTKi) [78]. The biolog-
ical impact of BTKi on MCL cell chemotaxis and lipid droplet accumulation was examined
in three different MCL cell lines using transwell and SRS imaging analysis, respectively.
SRS imaging was performed using a femtosecond SRS microscope with the laser fre-
quency tuned to a C-H stretching vibration band at 2845 cm™, without any cell damage.
Quantitative examination of lipogenesis at single-cell level via SRS imaging unveiled that
BTKi treatment notably decreased lipid droplets accumulations in MCL. The overall ef-
fects of BTK inhibitors can be summarized as inducing apoptosis while suppressing chem-
otaxis and lipid accumulation.

The peritoneum is a serous membrane that lines the abdominal cavity, and its lavage
cytology is the established methodology used to intraoperatively diagnose peritoneal me-
tastasis (PM), a prevalent type of distant metastasis. Xun Chen et al. addressed the issue
of low sensitivity (<60%) in peritoneal lavage cytology using a customized three-color SRS
microscope [79]. This study identified twelve morphological single-cell features and a
compositional difference between PM cells and non-PM cells, which includes lipid protein
ratio, cellular area, etc. The work further crafted a phenotyping algorithm for single cells
to further transform the identified raw features into feature matrix. In comparison with
histopathology (gold standard), the SRH methodology attained a sensitivity and specific-
ity of 81.5% and 84.9%, respectively, with an AUC of 0.85. The whole procedure was per-
formed within a span of 20 min for each patient.

In the case of prostate cancers, focal therapy (FT) is an approach where clinically sig-
nificant prostate cancer is removed and nearby normal areas are preserved, thereby min-
imizing treatment-related toxicity. This procedure mandates the need for quick sampling
by core needle biopsy based rapid histology to precisely demarcate the cancer-affected
area where SRH is considered a strong alternative methodology. Ao et al. applied SRH
and CNN in this context [80]. An external test dataset validated the CNN’s performance
with an accuracy of 84.4%. This work further calculated Gleason scores from 21 cases of
core needle biopsies; the deep learning SRS system showed an accuracy of 71% compared
to gradings from three pathologists, establishing the promise of deep learning-assisted
SRS platforms in assessing the grade of prostate cancer tumors. This work went ahead to
employ a diagnostic CNN trained on images from 61 patients that classified Gleason pat-
terns of prostate cancer, reporting an accuracy of 85.7%. This methodology suggests pro-
vision for rapid histopathology and automated Gleason scoring without complex pro-
cessing.

Zhang et al. proposed an automatic cell-counting model for SRS images. Cell count-
ing of actual human brain tumor specimens was conducted [81]. The research established
the capability of the methodology to decrease whole-brain imaging time from 70 min to
just 8 min. The major challenges to high-speed imaging are the imaging rate of multi-color
SRS and the efficiency attained in image stitching. To attain speed, the study incorporated
parallel dual-phase SRS detection with strip mosaicking. The dual-phase SRS Stokes beam
is split into two beams, each probing specific target Raman frequencies that are modulated
with a 90° phase difference. Hence, the SRS signals at two specific Raman frequencies are
generated as in-phase and in-quadrature components. The respective time delays are pro-
grammed to probe high-frequency Raman modes corresponding to (2845 cm™) and (2930
cm™), allowing simultaneous imaging of lipid and protein contents with minimal
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crosstalk, allowing faster imaging. The study also used a strip mosaicking methodology,
where a focused laser in line-scan mode is used, with the sample moving at a constant
speed perpendicular to the laser line. This methodology delivers comparable imaging re-
sults to the tiling method, but with improved speed. The study yielded results with an
AUC above 98% and an R value of 0.97 for cell counting correlation between SRS and
H&E-stained histological images.

Core-needle biopsy (CNB) is an initial diagnostic approach for breast cancer. Never-
theless, the intricacies of tissue processing and worldwide scarcity of pathologists fre-
quently present hurdles to swift diagnosis of fresh biopsies. The work done by Yang et al.
compared the results of SRS imaging with gold standard H&E staining on adjacent frozen
tissue sections, using a home-built non-linear optical microscope [82]. Utilizing SRS, the
fresh, unprocessed biopsy tissues underwent imaging. A weakly-supervised learning ap-
proach, namely the multi-instance learning (MIL) model, was employed to differentiate
between benign and malignant cases, and was subsequently compared with the perfor-
mance of supervised learning model. Additionally, gradient-weighted class activation
mapping (Grad-CAM) and semantic segmentation were employed to spatially delineate
benign/malignant areas. Results indicated that the MIL model could achieve superior clas-
sification performance compared to supervised learning, attaining diagnostic accuracy of
95% on 61 biopsy specimens. Grad-CAM facilitated the visualization of histological het-
erogeneity within the CNB by the trained machine learning (ML) model.

2.4. Gastric

Gastric cancer ranks as the fifth most diagnosed cancer and the third primary con-
tributor to cancer-related fatalities globally. Surgical resection and lymphadenectomy are
the only potentially curative treatment approaches for gastric cancer. There is a serious
need for new modalities that can rapidly image and diagnose tissues, especially in an in-
traoperative evaluation and gastroscopy context. Sarri et al. developed a framework based
on SRH and SHG to render images of colon and pancreas sections, both frozen and fresh,
in alignment with conventional H&E staining-based techniques for healthy, precancerous
and cancerous colon and pancreas tissue sections [83]. Additionally, a new rapid SRH im-
aging method was devised, capturing all essential information at the pixel level to gener-
ate instantaneous SRH images. These results were attained using a customized instrument
which could perform a variety of non-linear, label-free imaging modes, employing a cus-
tom-built three-color setup, which was obtained from elsewhere. The two modalities se-
lected for tissue imaging were A-switch and frequency-modulated SRS, which were com-
bined with SHG- and TPEF-generated SRH images (H&E-staining quality at pixel level),
eliminating the need for sequential acquisitions and making the whole process instanta-
neous. The reported time requirement for scanning 100 pm x 100 um (200 px x 200 px with
dwelling time of 40 ps/px and 3 accumulations/pixel) was 9 s, making the imaging time
for a1 mm x 1 mm stitched image ~25 min. Although the recorded time is unable to chal-
lenge the speed of the intraoperative quick staining method, the image quality of the SRH
output can be compared to full H&E staining, which takes anywhere from 24 h to 72 h to
produce. Another notable advantage is that the images remain unaffected by the subtle
tissue movements during the analysis, as signals are acquired simultaneously.

In yet another work, Sarri et al. compared the consistency of the alignment between
SRH and H&E images on identical cryogenic slides for both normal and cancerous tissues
[84]. The same instrumentation as reported in the previous study was used for image ac-
quisition, combining SRS and SHG modalities. The fresh colon and pancreas tissues ob-
tained from tissue resection surgery were assessed. The samples were imaged with SRS
and SHG, and two slides from the same sample were stained with toluidine blue and HES
for comparison with SRH. SRS, coherent anti-Stokes Raman scattering (CARS), second
harmonic generation (SHG), and two-photon excited fluorescence (TPEF) imaging were
performed using a custom-built three-color setup. Tissues were examined by trained his-
topathologists at both microscopic and macroscopic scales to perform accurate medical
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diagnosis. The Raman peaks corresponding to 2845 cm™ (CH2 bonds) and 2930 cm (CHs
bonds) were identified and nuclei images generated by simple subtraction. The study es-
tablished quasi-faultless complete matching between SRH and H&E-stained images. It
also substantiated the ability of SRH imaging to rapidly determine critical instances usu-
ally encountered intraoperatively, such as detecting peritoneal metastasis in the omen-
tum, which played a decisive role in the workflow of the surgery. The work also showed
that SRH could produce results comparable to H&E against thick tissue biopsies too (ob-
tained directly after excision surgery). General architecture variations of the tissue and
structural shifts at the subcellular level could be assessed by SRH microscopy on millime-
ter-sized GI tract tissues.

Conventional SRS necessitates adjusting picosecond lasers to achieve considerable
chemical specificity, albeit at the expense of the speed of analysis, which can be a down-
side in instances like that of gastroscopy, where speed of analysis is also critical. A study
by Liu et al. demonstrated that single-shot femtosecond SRS delivers maximum speed and
sensitivity and preserves the chemical resolution by using U-Net [85]. The femtosecond-
U-Net combination enabled real-time pseudocoloring, attaining rapid SRH imaging of a
~2 x 2 mm? tissue, which highly agreed with the findings of standard H&E. The isolated
flavors of the chemical contrast deliver important histological details that can help to at-
tain high diagnostic accuracy. The optical simplicity, speed and stability of the developed
method makes it highly favorable for clinical translation. The Al part of the work is dis-
cussed in detail in Section 3. Furthermore, they also developed a diagnostic neural net-
work (CNN) with data from 279 patients that eventually diagnosed gastric cancer with an
accuracy of >96%. The study demonstrated the possibility of SRH to be used as a valuable
tool for automated intraoperative diagnosis.

2.5. Gout

Gout is a prevalent type of inflammatory arthritis that is extremely painful. It is char-
acterized by deposition of monosodium urate (MSU) monohydrate crystals in the tissues,
which can be rapidly detected by using SRS microscopy in a label-free manner [86]. Zhang
et al. first tested SRS and SHG methods using rat models, simultaneously analyzing MSU,
checking its diagnostic capability, and distinguishing between pseudogout and calcium py-
rophosphate deposition disease (CPDD), acute gout arthritis and comorbidity [87]. A home-
built setup with combined SRS and SHG microscopies was used to characterize MSU in
crystalline and amorphous forms simultaneously. The study imaged synovial fluid and sur-
gical specimens to obtain the histopathology of MSU deposition. By analyzing MSU depo-
sitions in human surgical specimens and rat models, the study enabled early diagnosis of
gout and distinguished it from pseudogout based on the unique Raman signatures of MSU
and CPPD. SRS analysis unveiled the optical traits of MSU deposition across various path-
ophysiological stages, aligning closely with corresponding features observed through im-
munofluorescence histochemistry, thereby confirming its reliability. The MSU peak at 630
cm™ and the corresponding CPPD peak at 1050 cm were used to distinguish gout from
pseudogout. SRS microscopy has the advantage of background-free detection and enhanced
tissue penetration depths. It was also observed that MSU correlates reasonably with the in-
flammatory cytokine expression levels, consistent with previous studies. These observations
can critically establish the capability of the SRS methodology.

2.6. Liver

Liver transplantation has turned out to be a lifesaving means and is an established
intervention in patients with chronic and acute final-stage liver diseases. Liver transplan-
tation has evolved into a safety net to treat various liver diseases where all other medical
interventions have failed. However, the process of liver transplantation is very delicate,
and a few factors influencing graft quality can affect the success of the procedure.

Typically, graft quality for transplantation is evaluated by visual inspection, which
heavily depends on the surgeon’s expertise and is thus prone to high variability. Ember



Cancers 2024, 16, 3917

12 of 29

et al. developed a method for objectively assessing graft tissue quality in real time, non-
invasively and quantitatively using SRH [88]. A porcine model-based trial confirmed cir-
culatory death followed by normothermic regional perfusion (NRP), which enables the
evaluation of liver quality under three distinct conditions: preceding cardiac arrest, dur-
ing warm ischemia (WI) and post-NRP. To understand the changes, liver left-median lobe
biopsies were acquired prior to circulatory arrest, following 45 min of WI 2 h post-NRP.
These were all analyzed using three different methods: spontaneous Raman spectroscopy,
SRS and staining. The study utilized three forms of Raman spectroscopy: spontaneous,
stimulated and handheld. Conventional spontaneous Raman microspectroscopy was
used to analyze tissue sections up close. SRS microspectroscopy was achieved using a
Leica microsystem SP8 multiphoton confocal microscope armed with a CARS 12005 filter
wheel, which detected signals in a photomultiplier tube detector in transmission mode,
acquiring images at 1024 x 1024 resolution. The work made important observations in the
context of liver transplantation, such as diminishing blood volume preventing microvas-
cular impairment post-circulatory arrest. The work also established that SRS can be uti-
lized to visualize intact red blood cells (RBCs) at high resolutions.

2.7. Neuro

In 2017, Orringer et al. reported groundbreaking work in developing a clinically com-
patible SRH device for detecting infiltration of brain tumors within human tissue [48].
This work demonstrated the first intra-surgical application of SRS microscopy by using a
portable fiber-laser-based microscope, which generated SRS images that matched H&E
and revealed vital diagnostic features. This work was soon to be followed by another im-
aging study on fresh tissue samples gathered from paediatric participants enrolled in ad-
vance for brain tumors. Diagnoses based on SRH reported near-perfect diagnostic agree-
ment (Cohen’s kappa, k > 0.90) and an accuracy of 92% to 96% against the gold standard
[89]. Neurological tissues are among the most common subjects for SRH methodologies
ever since. The methodology found applications in meningiomas, which constitute a sub-
stantial proportion of all central nervous system (CNS) tumors and are the most common
form of intracranial, extra-axial neoplasms. Surgical resection is the main mode of treat-
ment. However, in lots of instances, such as those arising from the skull base, complete
removal is often difficult owing to the proximity to critical anatomic structures. Luther et
al. used SRH as a method to delineate tissue boundaries while resecting a recurrent, ex-
tensive, atypical spheno-orbital meningioma [90].

Identifying glioma recurrence continuously poses a challenge in contemporary
neuro-oncology. Differentiating between glioma tumor recurrence and pseudoprogres-
sion is crucial to determining treatment options and prognosis. Hollon et al. employed the
combination of SRH and deep neural networks to establish its potential in improving the
intrasurgical detection of glioma recurrence [91]. In this study, a fiber-laser-based SRH
system (<60 s per 1 x 1 mm?) was employed to image 35 patients (cohort) with suspected
recurrent gliomas following resection or biopsy. The resultant SRH images served to train
a convolutional neural network (CNN) and develop an inference algorithm to detect pos-
sible recurrent gliomas. The diagnostic performance was evaluated in a retrospective co-
hort of 48 patients (from an external validation medical center), achieving an accuracy of
95.8%. This clinical SRH approach could successfully image critical diagnostic features of
recurrent glial tumors and treatment-induced histologic changes associated with pseudo-
progression. It also identified regions with a high probability of recurrence, enhancing
clinicians” assessments of automated diagnostic results. In another approach, Bae et al.
applied epi-detected, spectral-focusing hyperspectral SRS microscopy for rapid, label-free
molecular analysis of intra-tumoral heterogeneity in glioblastoma (GBM), achieving sub-
micron resolution. This distinctive diagnostic platform consists of distinctive spectral-fo-
cusing hyperspectral SRS imaging of GBM tissue specimens, SRS images, and spectrum
retrieval through a multivariate curve resolution algorithm. Additionally, a quadratic sup-
port vector machine model enabled subtype classification for rapid molecular subtyping
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of GBMs. Both stain-free SRS histological images and 2D subtype maps were obtained
within 20-30 min. While SRS histology assesses demyelination status as a new diagnostic
feature, SRS mapping provides insights into the intra-tumoral heterogeneity of GBM tis-
sue specimens [92]. The prediction variance for each of the subtypes when using SRH was
within a range from 0.44 to 0.79, signifying considerable intra-tumoral heterogeneity
across the tissue samples. It also aligned well with single-cell RNA sequencing data,
where the correlation coefficients among tumor cells that matched with the GBM samples
varied from 0.2 to 0.7, indicating intra-tumoral heterogeneity that is in turn driven by the
tumor microenvironment. The authors propose that diagnostic time could be reduced to
mere seconds by using a resonant scanner rather than a Galvano scanner.

Beta-amyloid proteins clump together to form plaques that disrupt cell functions,
leading to Alzheimer’s disease. Lochocki et al. compared high-resolution fluorescence im-
aging (both pre- and post-staining) and spectroscopic techniques (Raman mapping under
pre-resonance conditions and SRS of amyloid deposits in snap-frozen AD human brain
tissue) [93]. The SRS instrument is an in-house-built picosecond system. Three different
methods—spectroscopic imaging, fluorescence and ensuant thioflavin-S staining —were
performed on the same tissue slices to render direct indications of plaque location and
correlate spectroscopic biomarkers with plaque morphology, and especially to reveal dif-
ferences between cored and fibrillar plaques. The study eventually identified carotenoids
as a unique marker that could differentiate between a cored amyloid plaque area and a
non-plaque area without prior knowledge of their location. The observed presence of ca-
rotenoids suggests a specific neuroinflammatory response to the accumulation of mis-
folded proteins.

Ji et al. used multicolor SRS microscopy to visualize amyloid plaques in brain tissue
from an Alzheimer’s disease (AD) mouse model [94]. The study demonstrated the tech-
nique’s ability to differentiate misfolded proteins from normal ones by detecting a blue
shift (~10 cm™) in the amide I SRS spectra. The customized SRS microscope performed
imaging in the amide I region at approximately 5 s per frame for 512 x 512-pixel images,
using a dwell time of 10 s per pixel. Imaging 40 images took ~4 min. In addition, imaging
in the high-frequency CH stretch region was performed at ~1 s per frame with a dwell
time of 2 s per pixel. The spatial resolution was ~400 nm laterally and ~2 pm axially, with
a spectral resolution of ~8 cm. Afterwards, the results were evaluated by antibody stain-
ing on frozen thin sections and fluorescence imaging of fresh tissues. Both imaging meth-
ods successfully visualized normal brain structures, including the cortex, white matter,
hippocampus, and dentate gyrus. In regions where amyloid plaques were identified by
immunohistochemistry, three-color SRS imaging consistently captured them, showing a
direct correlation. An intriguing observation revealed by the three-color SRS was the pres-
ence of a lipid-rich halo structure surrounding each plaque, potentially originating from
degenerated neurites and myelin sheaths. The spectral shift of the amide I band of Beta
sheets facilitated the differentiation of misfolded A{ from lipids and normal proteins.

Pekmezci et al. used a NIO system to measure glioma margin samples for SRH, his-
tology, and tumor-specific tissue characterization [95]. The work addressed the question
of whether SRH can be used to image cancer margins that are generally considered to be
less cellular and hence harder to image. Alongside semi-quantitative scoring of the mar-
gins by three neuropathologists using morphologic features, the work performed a cellu-
larity count, which, as anticipated, corresponded with the semiquantitative scoring mod-
els utilized. The successful use of SRH images to identify margins with minimal tumor
presence confirms that SRH imaging offers ample cellular and architectural details, sur-
passing mere cellularity. Generalized linear mixed models were employed to evaluate
agreement. The study found that SRH identified residual tumors in 82 of 167 margin spec-
imens (49%), while IHC substantiated residual tumors in 72 of 128 samples (56%) and
H&E confirmed residual tumors in 82 of 169 samples (49%). Interobserver compatibility
between all three modalities was confirmed.
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Neidert et al. utilized SRH to achieve intraoperative near-real-time histopathological
analysis. In the study, a total of 429 SRH images from 108 patients were generated and
analyzed using the NIO system. The work demonstrated that the utilization of SRH is
feasible and beneficial in intraoperative assessment contexts [96].

The user-friendliness and interpretability of an analytical methodology are important
parameters that was assessed for SRH by Straehle et al., who attempted to quantify the
neuropathological interpretability of SRH acquired in a routine clinical setting without
any specialized training or prior experience [97]. SRS microscopy was performed on 117
pathological tissues obtained from 73 brain-spine tumor surgeries. A neuropathologist
who was inexperienced in dealing with SRH interpretation assessed the quality of the
images in terms of tumor infiltration and provided diagnoses based on the SRH images.
Diagnostic accuracy was subsequently measured by comparing the SRH-based diagnoses
to conventional frozen H&E-stained sections, with the definitive neuropathological diag-
nosis serving as the ground truth. Overall, SRH imaging quality turned out to be rated
highly, with only 4.2% of all images marked as inconclusive for detecting tumor cells. The
diagnostic accuracy of neuropathological conditions was 87.7% and was comparable to
the current standard of fast-frozen H&E-stained sections (87.3 vs. 88.9%, p = 0.783). This
study demonstrated a strong diagnostic agreement between SRH-based and H&E-stained
frozen sections (x = 0.8), indicating that intraoperative SRH imaging provides necessary
diagnostic clarity on par with traditional H&E-stained frozen sections.

Autofluorescence differs in the gray and white matter of a healthy brain, just as it
does in different brain regions and tumor types. The relationship between autofluores-
cence characteristics of the human brain and neoplastic changes at a microscopiclevel was
studied by Furtjes et al. using the combination of two-photon fluorescence and SRH [98].
The study found an increased mean autofluorescence signal in healthy brain tissue, in the
gray compared to the white matter and in the cerebrum versus the cerebellum, respec-
tively. The signal intensity of carcinoma metastases, meningiomas, gliomas and pituitary
adenomas was notably lower compared to the autofluorescence in the cerebrum and dura,
but significantly higher than that in the cerebellum. Conversely, melanoma metastases
exhibited a higher fluorescent signal compared to both the cerebrum and cerebellum.

2.8. Oral

Oral diseases, while being largely preventable, are turning out to be a major health
burden for many countries. They are estimated to affect nearly 3.5 billion people. Oral
cancer specifically affects the parts of the mouth, the lip and oropharynx, and it is ranked
thirteenth most common cancer globally.

When it comes to laryngeal squamous cell carcinoma, the importance of maximally
resecting the tumor while preserving the healthy tissue is high, as is that of intraoperative
histology. Zhang et al. utilized deep learning methodologies in SRS microscopy-acquired
images to analyze the diagnostic concordance and its classification efficiency when com-
pared with standard histology [99]. The study first analyzed the ability of SRS imaging in
detecting characteristic features using a custom-made SRS microscopy arrangement. The
study proved that zoom-in SRS images could reveal microscopic features of normal laryn-
ges, including intact basal lamina, basal layer and the squamous mucosa layer, as well as
clearly differentiate its diagnostic features, including cytological atypia, abnormal ar-
rangement of neoplastic cells and lymphocytes, cancer nests and keratin pearl. Further-
more, the study evaluated the ability of SRS microscopy in intraoperative tissue assess-
ment contexts; they collected 80 SRS and 80 H&E images, and the mix of these images was
assessed by three professional laryngeal pathologists. Cells were assessed to be neoplastic
or normal based on cytology and histoarchitecture. Statistical analysis of the pathologists
interpretations of SRS and H&E yielded high concordance, with the Cohen’s kappa value
(k) between them ranging between 0.905 and 0.942. Notably, the pathologists were highly
accurate in distinguishing between neoplastic and normal larynx tissues, with a Cohen’s
kappa, k > 90. The team utilized a deep learning methodology, ResNet34, to differentiate
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between normal and neoplastic cells; this methodology classified 33 specimens with 100%
accuracy and identified tissue neoplasia even in instances where it appeared normal to
the naked eye.

Cancer heterogeneity is expressed through multiple aspects, which include evolving
genetic changes, molecular variations and morphologic abnormalities of cells in distinct
subpopulations. It is helpful to analysz tumor heterogeneity in a precise and comprehen-
sive way. Chen et al. attempted to combine various modalities to fully characterize the
genomic and transcriptomic profiles of cells with high spatial resolution to characterize
human oral squamous cell carcinoma [100]. To attain this, they combined histological
analysis coupled with spatially resolved multiomics analysis in tissue sections, without
fixation or staining. This approach employed SRS microscopy to furnish chemical contrast
that reveals histological tissue architecture, facilitating high-resolution in situ laser micro-
dissection, which was performed using a home-built SRS system. The system generated
2-color SRS images based on 2850 cm™ and 2950 cm™ Raman shifts. Furthermore, SRH-
profiled microtissue samples were processed for DNA / RNA sequencing to determine
unique genetic profiles corresponding to distinct anatomical regions. Named as the SRH-
SMD methodology, this study demonstrated its capabilities by profiling copy number and
gene expression alterations to histologically characterized regions in human oral squa-
mous cell carcinoma (OSCC). This approach enabled the dissection of cancer heterogene-
ity across multiple measurement modalities encompassing morphology, genome altera-
tion, gene expression and gene fusions.

Steybe et al. used SRH to produce digital histopathologic images of 80 tissue samples
from eight OSCC patients [101]. Subsequently, the obtained images were compared with
conventional H&E normal mucosa, squamous cell carcinoma, lymphatic tissue, muscle
tissue, salivary gland tissue, connective tissue, adipose tissue and inflammatory cells. Co-
hen’s kappa agreements were calculated between images and sections to analyze the
match between two. High correspondence between H&E and SRH (kappa: 0.880) and high
accuracy of SRH (sensitivity: 100%; specificity: 90.91%; PPV: 90.00%, NPV: 100%; AUC:
0.954) were showcased in the study. The work concludes that SRH provides high accuracy
in discriminating neoplastic and non-neoplastic tissues, while the subclassification results
of non-neoplastic tissues in OSCC patients also depend on tissue type. However, all pa-
tients involved in the study had a diagnosis of oral squamous cell carcinoma, and the
authors perceive that this might have introduced some bias that boosted the sensitivity,
specificity and predictive values of the study.

2.9. Respiratory

Pure multi-walled carbon nanotubes are anticipated to have very low toxicity in vitro,
which was assessed for lung and systemic impacts in mouse trials by Migliaccio et al.
[102]. SRS was used to recognize particles in the lungs, kidneys, spleen, liver, mediastinal
and brachial lymph nodes, and olfactory bulb. The images were obtained using an in-
house-built SRS imaging setup. The imaging was first performed at 2700 cm and later at
2930 cm™, which represents the -CHs symmetric stretch, with the assumption being that
the first signal originated from the MWCNT (multiwalled carbon nanotubes) due to two-
photon absorption and/or thermal response, while the latter signal corresponded to bio-
logical tissue. Thus, MWCNT localization was obtained by overlaying it with the tissue
SRS image at 2930 cm™. This work advocates the need for extensive assessments of nano-
material exposures that address both short- and long-term effects.

3. Al Based SRH

In a study aimed at implementing a swift, automated analysis of skull base tumors
using intraoperative SRH imaging alongside Al Jiang et al. implemented a ResNet50 ar-
chitecture, containing 25.6 million trainable parameters, as a feature extractor [67]. The
work was designed to probe into the ability of SRH to (a) capture diagnostic features of
skull base tumors, (b) use an Al-based computer vision system to effectively identify
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diagnostic parameters from an SRH image and (c) detect microscopic tumor infiltration in
meningioma surgeries. The SRH imaging was conducted utilizing two imaging systems:
a prototype clinical SRH microscope, and intraoperative imaging performed using the
NIO system). Two Raman regions at 2845 and 2930 cm™! were chosen to feature lipid-rich
and cellular locales. The subtracted image of these regions highlighted cellularity and nu-
clei. A virtual H&E color scheme was applied to transform the raw SRS images into SRH
images. Then, a learning methodology called contrastive learning was employed, where
the overall objective was to create an embedding space where similar data points are
placed close together and dissimilar data points are placed far apart. A contrastive loss
function was used to encourage the model to minimize the distance between the repre-
sentations of similar points while maximizing the distance between dissimilar pairs, based
on theoretical aspects. The team hypothesized that contrastive representation learning is
more robust to label noise, based on theoretical aspects. In this study, a ResNet50 CNN
architecture was used as a feature extractor. The feature extraction model produces a 2048-
dimensional feature vector for each input image, which is subsequently reduced to 128
dimensions prior to calculating the cosine similarity metric. The model analyzed three
separate loss functions—supervised categorical cross-entropy, self-supervised contras-
tive, and supervised contrastive—to identify the best performer. In the self-supervised
learning setting, a pair of data was generated through transformation processes, such as
blurring or flipping, attaining image versions x1 and x2 and then normalized vector rep-
resentations z1 and z2. This process eventually attains separate clustering of positive and
negative vector representations on a unit hypersphere. The contrastive learning models
were optimized using stochastic gradient descent, and each model was trained using a
batch size of 176 for 4 days on GPUs. Upon completion of training the feature extraction
model, the features were classified using a linear classifier layer trained with cross-en-
tropy loss, the Adam optimizer, and a batch size of 64 over 24 h on GPUs to obtain a
probability distribution of output classes.

For testing purposes, the whole-slide image was fragmented into 300 x 300-pixel
patches. These patches were fed into the trained models to work out the probability
distribution. The patch-level probability distributions were summed up to infer the
overall slide status using a “soft” aggregation approach as opposed to the “hard”
aggregation of the patches. This facilitated the detection of microscopic tumor infiltration,
which was proven in a skull base meningioma surgery. The study attained a 5.1% increase
in the accuracy of diagnostic classification using supervised contrastive learning
compared to models based on cross-entropy. In the multicenter testing set, cross-entropy
achieved an overall diagnostic accuracy of 91.5%, self-supervised contrastive learning
achieved 83.9%, and supervised contrastive learning achieved 96.6%. The trained model
was able to segment tumor-normal margins and detect regions of microscopic tumor
infiltration in meningioma SRH images. For segmentation purposes, the team impro-
vised a previously engineered method for segmenting the SRH image by employing
patch-level forecasting, which incorporated a local neighborhood of overlapping patch
predictions to render a high-resolution probability heatmap, generating a two-channel
image with the predicted tumor class as the first channel and the most probable non-tu-
mor class as the second channel.

Liu et al. compared picosecond laser-based imaging with single-shot femtosecond
SRS (Femto-SRS) and demonstrated that the methodology can reach maximal speed and
accuracy by integrating with U-Net [85]. As shown in Figure 2, excised tissues from
gastroscopic surger, were placed upon a glass slide and analyzed with an SRS microscope.
The speciality of the work was that it could generate highly chemically precise Pico-SRS
from Femto-SRS. The basic difference observed between Femto- and Pico-SRS
methodologies was that the former, despite having the advantages of high speed and high
SNR, is compromised by its weakness in chemical selectivity. While Femto-SRS casts
single-shot single channel images, Pico-SRS takes raw images at two Raman frequencies
(w1=2845 cm™! for CHz, w2=2930 cm™! for CHs) to extract lipid/protein distributions with
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very high compositional precision. An engineered U-Net was designed to take in the
single channel Femto-SRS and split it up into a dual channel Pico-SRS, eliminating the
need for complicated optical engineering or physical tuning of detection frequencies,
thereby doubling the imaging speed at half of the laser power, while preserving the
spatio-chemical information of the image. The U-Net consisted of convolutional layers
with five down-sampling layers and five up-sampling layers and a pooling layer in each.
Conversion efficiency was confirmed by cross-comparing with originally recorded Pico-
SRS images using the same FOV (Figure 2b). As an aid, SHG was used to image collagen
fibers. Multi-chemical imaging results of gastric tissues composed of lipid (green), protein
(blue) and collagen fibers (red) from the output SRH can be observed in Figure 2c. The
originally acquired picosecond SRS images were used as the ground truth for training the
U-Net. After U-Net processing into dual-channel SRS images, chemical decomposition
was implemented to output images of proteins and lipids by simple linear algebra, and
collagen images were sourced from SHG.
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Figure 2. (a) The representation portrays the process of gastroscopy and the collection of fresh bi-
opsies for direct SRS imaging. (b) It features the properties of Femto-SRS and Pico-SRS, including
pulse chirping, spectral resolution and the conversion of a single Femto-SRS image into a pair of
Pico-SRS images using deep U-Net. (c) Multi-chemical imaging of gastric tissue including lipid, pro-
tein and collagen fibers visualized through converted Femto-SRS and SHG channels, color-coded to
SRH. Scale bars: 50 um. (adopted from Liu et al. [85]).
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The application of this methodology can be observed in Figure 3a, where the origi-
nally acquired Pico-SRS at two different Raman shifts (ground truth), a conventional
Femto-SRS raw image (input), and the results obtained from the U-Net-mediated conver-
sion of Femto-SRS to a dual channel Pico-SRS (prediction) are presented. It can be ob-
served that the U-Net image closely matches with the ground truth image, especially in
the 2845 cm™. The intensity profiles of the dashed line for ground truth corresponding to
the f cell nucleus region can be observed in Figure 3b. It can also be observed that the peak
intensity profiles of ground truth and prediction match very closely, with slight variation
in the 2845 cm™ regions, especially in the shaded region used for image generation. Over-
all results indicate that the U-Net methodology is extremely capable of realistically con-
verting the single channel Pico-SRS into dual channel Femto-SRS.
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Figure 3. (a) Deep U-Net based Femto-SRS imaging originally acquired Pico-SRS images of two
channels (ground truth): the single channel Femto-SRS raw image (input), and the U-Net based pre-
diction. Scale bars: 50 um. (b) Intensity profiles corresponding to the dashed lines in (a) of the pre-
dicted and ground-truth data, showing chemical contrast in the cell nucleus regions (marked in
yellow arrows (a) and in grey (b). (Source Liu et al. [85]).

Furthermore, the team utilized these two CNNs to perform semantic segmentation
and derive a heatmap of the SRS image. Each sub-tile of size (50 x 50 px) was analyzed 36
times to generate probability maps, which were then projected onto the Femto-SRS image
to generate the heatmap denoting intratumor heterogeneity and possible resection mar-
gins. In the first instance of deep learning-based cell counting on SRS images, Zhang et al.
developed a split and combine method wherein the U-Net is adapted to efficiently per-
form cell segmentation and cell counting from brain tumor SRS images [103]. The conven-
tional U-Net architecture is altered and tailored to segment cells across brain tumor sam-
ples, utilizing a limited set of annotations. The process flow can be observed in Figure 4,
which shows the overview of the cell counting framework. This can be regarded as a hi-
erarchical approach involving (1) cell semantic segmentation and (2) morphological
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operation. The first stage involves cell semantic segmentation, where there are two ma-
chine learning options: deep learning near-real-time segmentation with U-Net, and K-
means clustering. The second stage of morphological analysis involves distance transform
and watershed segmentation algorithms, which recognize distinct cell instances.

Handeld SRS probe
(a) — Neurosur,
surgery /

¥ Fresh tissue
174

. dl—

Option 1: Deep learning, real-time cell segmentation | Option 2: H&E staining
U-Net - ¥ ¥
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Figure 4. (a) The process flow of the SRH analysis. The tissue extracted during excision surgery was
analyzed using SRH and H&E analysis. SRH image analysis was performed using U-Net as option
1. Option 2 performs H&E staining and subsequent analysis using K-means clustering. The outputs
from option 1 and option 2 were subjected to morphological operation. (b) Cell segmentation and
identification results in a FOV, where the number of cells for each patch is mapped to visualize cell
distribution within a sample (Adopted from Zhang et al. [103]).

As can be seen, excised tissue samples are extracted intraoperatively and are ana-
lyzed using SRS setup. The tissue samples are subjected to U-Net-based split and combine
method analysis. The architecture of the U-Net model can be observed in Figure 4a. Cell
segmentation involves cropping images into small patches of size 256 x 256 pixels and
later combining the segmented patch results, which results in dependable analysis. The
U-Net architecture includes an encoder and decoder, where the encoder implements the
convolutional process, and decoder applies the deconvolutional process. The U-Net
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architecture also included 16, 32, 64, 128, and 256 kernels for the encoder and decoder in
the five levels, which reduces the model’s complexity and the number of parameters to be
optimized. Option 1 involves analyzing the SRH images using the deep learning, real-
time U-Net cell segmentation method. For option 2, the study utilized the K-means clus-
tering method, which involves a H&E staining process, making it time-consuming and
hence impractical as a quick diagnostic methodology. The K-means clustering methodol-
ogy is an unsupervised learning algorithm that has the advantages of efficient calculation
and better understanding. The objective function of the samples X = {xi, ..., xn} used for
clustering samples with K clusters is

k
1O= D T gl —wl?

where xi — pk is the similarity between xi and p, and px is the centroid of cluster k. The
similarity measure selected is Euclidean distance. The paired H&E brain sample images
served as a reference to assess the cell counting results using the SRS images. H&E images
were also analyzed in parallel via the clustering method, which groups the pixels from
the H&E image into groups by recognizing statistically comparable clusters.

Cell counting was performed on SRS and H&E images using option 1 and option 2,
respectively, as shown in Figure 4. Furthermore, a morphological opening operation was
employed to reduce noise, and associated regions are labeled as initial cell instances using
the OpenCV toolbox. However, the presence of overlapping cells affects the precision of
the counting; to address this, a post-morphological analysis that uses distance transform
and watershed segmentation algorithms was used for each region. The distance transform
algorithm creates a distance map among the pixels of each cell image, standardizing it to
determine a threshold value that distinguishes between the cell and background. Any pix-
els falling within the ridgeline are further processed by the watershed algorithm, which
works by tracing all pixels toward a local minimum in the direction of steepest descent,
which helps to group the pixels according to the paths to a cell instance. This combination
of methodologies yielded high efficiency in cell instance segmentation and cell counting.
Finally, suppression of noise is attained by excluding regions smaller than 0.37 um and
removing strong protein or lipid signals that generate noise.

The team further compared various U-NET configurations like U-Net, 7 layer-U-Net, 5
layer-U-Net, FCN and the modified U-Net, of which the modified U-Net reported the best
efficiency. Along with the parameters of accuracy, AUC, sensitivity and specificity, DICE
coefficient and percentage error were included. DICE coefficient is used to evaluate the spa-
tial overlap of models and percentage error is used to evaluate the performance of cell count-
ing. In cell counting using SRS images of real human brain tumor specimens, results were
obtained with >98% AUC and R = 0.97 in comparison with H&E staining. The study illus-
trates the immense potential of SRS to be used as a modality for pathology analysis and cell
counting in near-real time. However, the necessity of U-Net for manually generated cell an-
notation often exposes the model to subjective errors and weak cell contrast. Despite the
implementation of the watershed segmentation algorithm, all overlapped cells cannot be
split, which also poses challenges to absolute accuracy in cell counting.

In 2020, Hollon et al. reported a study that utilized CNNs, trained over 2.5 million
SRH images, capable of intraoperatively diagnosing brain tumors in under 150 s, which is
far better than conventional methods, which take up to 30 min [104]. The study was a
multicenter clinical trial with 278 participants, and CNN-based diagnoses attained 94.6%
accuracy in comparison with 93.9% attained by conventional methods. To identify the fea-
tures learned by the CNN for each class, a methodology called maximal mean activation
was employed. This methodology refers to the highest average activation value of the neu-
rons in a particular layer of a CNN for a given class, by engaging gradient ascent in the
input space. It was revealed that the deep hidden layers detected nuclear and chromatin
morphology, axonal density and histoarchitecture as domain-specific features. The im-
ages generated through activation maximization produced recognizable features for each
histologic class, such as lipid-rich axons in gray matter and, in the case of malignant
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glioma, high nuclear density, lipid droplets, and features associated with higher-grade
gliomas. In the case of metastatic tumor cells and pyramidal neurons, cytoplasmic vesicles
and large nuclei with prominent nucleoli were observed, indicating that the CNN had
learned importance of specific histomorphologic, nuclear and cytologic features for image
classifications. The methodology also attempted semantic segmentation of SRH images to
identify tumor-infiltrated diagnostic regions within SRH images.

In 2021, Hollon et al. reported a study that was aimed at exploiting the possibilities of
using CNNs to create an inference algorithm for identifying viable recurrent glioma [91].
The 300 x 300-pixel sliding window algorithm was employed, rolling at a 100-pixel step size
to generate patches from SRH images. As can be observed from Figure 5, the sliding meth-
odology yielded high-resolution, high-magnification patches, resulting in a substantially
large dataset. Generated patches were rescaled and readjusted for contrast by trimming
the top and bottom 3% of pixels (based on intensity) from individual channels. Subse-
quently, CNN employed Inception-ResNet-v2 architecture for classification, as shown in
Figure 5A. Pre-training of the CNN model was conducted on approximately 3.5 million
SRH images representing 14 histologic subtypes. For data augmentation, affine transfor-
mations such as rotation, shift, and reflection were applied. After pre-training, convolu-
tional layers were retained while the final classification layers were modified for classifi-
cation into three diagnostic classes: tumor recurrence, pseudo-progression, and nondiag-
nostic tissue. Subsequently, the network was trained for a fixed number of epochs for each
fold using 406,800 patches from 35 patients; training was performed without hyperparam-
eter tuning to prevent overfitting to the validation set. This was followed by five iterations
of k-fold cross-validation, resulting in five predictions for each patient. The Al model,
based on the Inception-ResNet-v2 CNN architecture, classified image patches sized 300 x
300 pixels. The best-performing CNN was selected based on cross-validation and sub-
jected to external validation on a separate testing set comprising 48 patients.

To integrate the patch-based classifications into an aggregated CNN prediction of a
single specimen, a method termed as an inference algorithm had to be developed. The
CNN softmax product for each SRH patch gives a distribution of probability across the
diagnostic classes. All such individual patch diagnoses from the sample were consoli-
dated, non-diagnostic patches were eliminated, and the softmax vectors were added ele-
mentwise to generate an unnormalized probability distribution over the entire specimen.
Based on the diagnostic threshold calculated from ROC, a final diagnosis can be attained.
The semantic segmentation technique was tailored for SRH images to portion regions of
tumor recurrence, pseudo-progression, and nondiagnostic areas. The team also enforced
a semantic segmentation method that covers SRH-CNN probability heatmaps to deter-
mine the spatial regions of tumor recurrence or pseudo-progression.
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Figure 5. (A) (a-d) The SRH and CNN workflow for the automated detection of recurrent glioma.
(a) A1 x 1-mm SRH image is captured in about 60 s, (b) which gets split into 300 x 300-pixel patches
using a dense sliding window method. (c¢) Each patch is analyzed by a feedforward CNN. (d) The
final softmax layer produces a categorical probability distribution across classes: recurrence,
pseudo-progression/treatment effect, and nondiagnostic. (e) An aggregation algorithm aggregates
patch-level prediction probabilities to yield a single probability of recurrence for each specimen or
patient. Scale bars = 50 um. (B) Probability heatmaps for each of the three output classes are gener-
ated using patch-level predictions obtained from a dense, overlapping sliding window algorithm.
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This method ensures that each pixel in the image has a corresponding probability distribution, re-
sulting in high-resolution, smoother heatmaps. (C) Each heatmap is assigned to an RGB channel,
producing an overlay of predictions on the entire SRH slide. An SRH image from a patient with
recurrent glioblastoma is shown, where dense tumor areas (red) are highlighted alongside nondi-
agnostic regions such as hemorrhagic and necrotic tissue (blue) and gliotic brain tissue (green). This
semantic segmentation technique enhances the interpretation of SRH images by combining CNN
predictions with spatial information about recurrent tumor areas. Scale bars = 50 um (adopted from
Hollon et al. [91]).

Hollon et al. produced another study in which they developed an AI model named
‘DeepGlioma’ which attained 93.2% accuracy in molecular classification [105]. DeepGli-
oma is a deep neural network-based Al model and is designed to predict paramount ge-
netic changes in diagnosing diffuse glioma. It achieves molecular classification within two
minutes, avoiding the need for human interpretation. The Al workflow started when, after
acquiring SRH images, the molecular classification model was trained with a multimodal
approach on two datasets: clinical SRH images and genomic sequencing data. This work
identified that weakly supervised patch-based contrastive learning (patchcon) was ideal
for whole-slide SRH classification. The team formed a simple and general framework for
multi-label contrastive learning of visual representations and trained the SRH encoder
using this framework. A genetic embedding model (with which gene information is effec-
tively represented as numerical vectors), inspired by joint semantic-visual embedding
space and text-to-image generation methodologies, was pre-trained using large-scale,
public glioma genomic data. The co-accompaniment of specific mutations in the same tu-
mor type portrays the molecular subgroup of diffuse gliomas. These co-occurrences were
effectively learned by the model using global vector embeddings, and the training strategy
learned a linear substructure that matches known molecular subgroups of diffuse glio-
mas. Afterwards, the pre-trained SRH and genetic encoders are combined within a unified
transformer model for multi-label molecular classification. Masked labeling, where a
group of genes were masked during input was also employed during training to leverage
the advantages of genetic encoder pre-training and the learned substructure of molecular
subgroups, wherein the transformer output acts as the pre-trained embedding space. To
display the advantages of patchcon, genetic pre-training, and masked label transformer
training, the team conducted iterative hold-out cross-validation. Subsequently, to strictly
evaluate the model, a series of leave-institution-out cross-validation (LIOCV) trials were
conducted to assess DeepGlioma’s stability across multiple medical centers involved in
the study, and to investigate the impact of increased training data on model performance.
To sum up, the study developed a transformer-based multi modal training strategy that
uses a pre-trained SRH image feature encoder and a large-scale genetic embedding model
to achieve optimal molecular classification performance, accomplishing a genetic classifi-
cation accuracy of 93.2% and accurately identifying the diffuse glioma molecular sub-
group with 91.5% precision. The developed methodology was further evaluated in a pro-
spective international study. The leave-institution-out cross-validation yielded stable per-
formance, with a molecular classification accuracy standard deviation range of +2.75-
6.06% and an F1 score range of +1.71-4.70%.

Attempting to accelerate predictions of intraoperative tumor presence, Reinecke et
al. devised a novel Al model featuring a deep residual CNN with an automated pipeline
[106]. In a monocentric prospective clinical study conducted with 94 patients undergoing
biopsy or resection of brain or spinal tumors, intraoperative tissue samples were imaged
using a fiber-laser-based SRS microscope to obtain SRH images. A ResNetV50 residual
network was orchestrated and trained to classify three classes of images as tumor, nontu-
mor and low-quality. The network was trained on a separate previously acquired and
annotated dataset of 570 whole-slide SRH images that result in 1.2 million labeled patches
(300 x 300 px) after patch extraction. The CNN training/validation ratio was maintained
at 90:10. Class imbalance of the dataset was mitigated utilizing inverse class frequencies
as weights for the categorical cross-entropy loss function of the CNN. Training continued
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until the accuracy surpassed 95% and the loss fell below 0.10. Three CNN models were
separately trained and evaluated using different random seeds on the same dataset. The
CNNs yielded tumor mean probabilities of 73.9 (+33.2), 76.9 (+35.0) and 76.5 (+33.7), re-
spectively. Inter-rater analysis of probability values among the three CNNs demonstrated
excellent reliability, with an ICC value of 0.962 (99% CI 0.953-0.969). Similarly, the mean
probabilities for the non-tumor class were 18.9 (£33.1), 18.0 (+32.7) and 18.2 (+31.6), with
an ICC value of 0.977 (99% CI 0.973-0.981) between the CNNs. For the low-quality output
class, the mean probabilities were 7.2 (+15.2), 5.1 (+16.4) and 5.3 (+15.7) for the three CNNs,
respectively, with an ICC of 0.914 (99% CI 0.895-0.929) indicating excellent inter-rater re-
liability. The formulated residual network was evaluated by analyzing images from three
randomly selected areas within the tissue samples in comparison with neuropathologists’
observations.

4. Conclusions and Perspectives

Exponentially growing rates of diseases like cancer, along with a worldwide scarcity
of pathologists, have created an acute need for devices that can swiftly characterize tissues
with high precision in a label-free manner without the need of staining, which can often
alter the integrity of the sample. SRH has evolved over years, leveraging the recent ad-
vancements in fiber-laser, hardware and optical fields, to be a prominent alternative based
on vibrational imaging modalities. This innovative, non-linear technique exploits the prin-
ciples of Raman spectroscopy to render comprehensive molecular information about tis-
sue analytes. The methodology has already been able to deliver reliable-quality imaging
that is helpful for precise diagnosis within reasonable time frames and continues to im-
prove with advancements in technology, AI/ML, multiplex tags, probes, etc. This laser-
based modality holds potential to be incorporated into microscopes, biopsy needles and
point probes, which extends its usefulness as a diagnostic device. This can further be com-
bined with other useful modalities like SHG, TPEF, etc., which can aid histologic imaging
processes and reliable decision making. In the context of stimulated Raman histology
(SRH), the balance between Raman bandwidth and imaging speed is a crucial aspect of
achieving high-quality images while maintaining practicality for biological tissue analy-
sis. To attain practically feasible timelines, the current system confines the analysis to li-
pid- and protein-representing Raman peaks. If a wider bandwidth is used, the imaging
process might become slower as more data points are collected. However, narrowing the
bandwidth may speed up the process but lose important information about the biochem-
ical makeup of the tissue, which may be very crucial in representing the biochemical pro-
file of the analyte. Simultaneously improving Raman bandwidth and imaging speed may
be attained by engaging recent advancements in multiplexed Raman, while fast spectral
acquisition techniques can facilitate higher-speed acquisition with more spectral data.
Such an improvement can help to overcome the biggest challenge of SRH, especially in
the context of broader organ application, i.e., overdependence on lipid-protein contrast.
This lipid-protein contrast is not dependable in all contexts, and new recording color
schemes must be employed to reflect more molecular compositions. These advancements
should aim to record high-quality signals while keeping both speed and bandwidth in an
optimal range for histological analysis.

It is also worth noting that there is scope for improvement in a few other aspects,
such as automated tissue handling during analysis. Currently, tissue samples for analysis
should be of uniform consistency and size, which permits uniform compression over the
glass slides, and be positioned well within the focal area of the excitation laser. Stiffer
tissues and those greater than 3 mm in size can affect the imaging quality, as they may fall
outside the field of vision of the device, necessitating multiple sessions of imaging. These
aspects may be addressed by incorporating an Al-based surface profiling methodology,
which can map the tissue for consistency, texture and geometry beforehand. Such auto-
mated handling can retain the imaging surface sharply within the laser focal area to per-
form optimal imaging. It is also worth noting that, even though SRH imaging closely
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resembles conventional H&E staining, the matches between both methodologies are not
exact and require some expertise for histopathologists to analyze them.

Recent advancements in AI/ML-based image analysis have tremendously helped the
modality in shortening time frames while attaining high precision. Several studies have
established the effectiveness of the modality in histologic purposes, most of which have
been summarized in this review. The blend of Al and SRH has huge potential and can
safely be considered as a next-generation imaging tool that can aid and relieve the work-
load for pathologists.
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