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Simple Summary: This research aims to better understand the causes of Mycosis fungoides (MF)—a
disease where a type of immune cell, the T cell, malignantly transforms into cancer. It is not yet fully
understood what triggers MF or how it progresses, partly because it varies so much between patients
and because there is debate about whether the disease begins in immature T cells (thymocytes) or
in more mature T cells (memory T cells). Recent findings suggest that bacteria living on the skin,
particularly a harmful strain of Staphylococcus aureus, may aggravate MF by triggering specific
pathways in T cells. To investigate this hypothesis, we explored the gene expression and microbial
abundance of MF patients’ skin with advanced statistical methods. We found that varied microbial
skin colonization between patients may explain why the skin gene expression is so different from
patient to patient. We also observed additional evidence that S. aureus might indeed trigger pathways
in mature T cells that fuel cancer progression. Further, our statistical model suggested that certain
viruses, like Epstein—Barr virus, could play a role in starting the disease by disrupting thymocytes
(immature T cells). Based on these results, we speculate that both perspectives on the origin of
MF could be correct, immature (thymocytes) and mature T cells: Thymocytes undergo malignant
transformation, possibly caused by viruses, and bacteria like S. aureus fuel the malignant T cells to
become prominent cancer cells. Our research could help uncover the complex interplay between
bacteria, viruses, and T cells in ME. The findings may pave the way for new treatments targeting the
skin microbiome or T cell pathways, offering hope for better management of this challenging disease.

Abstract: Background: Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T
cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant
transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates
in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our
group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing,
pathogenic S. aureus strain carrying the virulence factor spa, which was shown by others to activate
the T cell signalling pathway NF-kB. Methods: To explore the role of the skin microbiome in MF
aetiopathogenesis, we here performed RNA sequencing, multi-omic data integration of the skin
microbiome and skin transcriptome using Multi-Omic Factor Analysis (MOFA), virome profiling,
and T cell receptor (TCR) sequencing in 10 MF patients from our previous study group. Results: We
observed that inter-patient transcriptional heterogeneity may be largely attributed to differential
activation of T cell signalling pathways. Notably, the MOFA model resolved the heterogenous
activation pattern of T cell signalling after denoising the transcriptome from microbial influence. The
MOFA model suggested that the outgrowing S. aureus strain evoked signalling by non-canonical
NF-«B and IL-1B, which in turn may have fuelled the aggravated disease course. Further, the MOFA
model indicated aberrant pathways of early thymopoiesis alongside enrichment of antiviral innate
immunity. In line with this, viral prevalence, particularly of Epstein-Barr virus (EBV), trended higher
in both lesional skin and the blood compared to nonlesional skin. Additionally, TCRs in both MF skin
lesions and the blood were significantly more likely to recognize EBV peptides involved in latent
infection. Conclusions: First, our findings suggest that S. aureus with its virulence factor spa fuels MF
progression through non-canonical NF-«B and IL-1B signalling. Second, our data provide insights
into the potential role of viruses in MF aetiology. Last, we propose a model of microbiome-driven
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MF aetiopathogenesis: Thymocytes undergo initial oncologic transformation, potentially caused by
viruses. After maturation and skin infiltration, an outgrowing, pathogenic S. aureus strain evokes
activation and maturation into effector memory T cells, resulting in aggressive disease. Further
studies are warranted to verify and extend our data, which are based on computational analyses.

Keywords: cutaneous T cell lymphoma (CTCL); Mycosis fungoides (MF); microbiome; transcrip-
tomics; multi-omics; data integration; bioinformatics; computational biology; disease signalling;
NF-«B; IL-1B; Staphylococcus aureus; protein A; microbiome-driven pathogenesis

1. Introduction

Cutaneous T cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin T cell
lymphomas with skin homing properties. The most common entity is Mycosis fungoides
(MF), with an incidence rate of 4.1 cases per million in the USA [1,2]. MF patients present
with several to many cutaneous lesions that are formed by the infiltration of neoplastic
T cells and benign reactive lymphocytes. With disease progression, both neoplastic and
benign infiltrates accumulate, resulting in inflammatory reddening of skin lesions [1,3,4].
Depending on the degree of lymphocyte infiltration and inflammation, lesions are classified
into the stages patch, plaque, and tumour. As MF is a lymphoproliferative disorder which
can involve extracutaneous compartments like the blood, a clinical staging system considers
these events and classifies patients into stages IA-IVB [1,5]. In early stages (IA-1IA), MF
is an indolent disease with a 5-year disease-specific survival of 89%, which, however,
dramatically drops to ~20% in the most advanced stages [5]. Because the aetiology and
pathogenesis of MF are incompletely understood, treatment options are limited, and a cure
is almost not achievable [6,7].

MF is thought to arise from mature, skin-resident CD4+ T cells [8], which resemble the
phenotype of tissue-resident effector memory T cells [9]. However, others suggest that the
initial oncologic transformation takes place during early thymopoiesis, specifically during
the double-negative (DN) stages DN-1 through DN-3. Those “premalignant clones” may
then migrate to the skin, where they proliferate [10-15]. The causative agent responsible for
the oncogenic transformation of T cells in MF remains uncertain [1]. Viruses are among the
potential factors considered due to their involvement in various lymphoma types, including
even two other entities of CTCL [16]. Viral involvement in MF is further supported by
the elevated risk of MF patients to develop one or more virus-initiated lymphoma types,
either simultaneously with MF or later in time [17-23]. However, the role of viruses in the
aetiology of MF remains unclear, as findings from different studies have yielded conflicting
results [24-26].

Likewise, the molecular drivers of MF pathogenesis remain incompletely under-
stood [27,28]. In benign T cells, three signals orchestrate activity and proliferation: First,
an initial T cell response is initiated by antigenic stimulation of the T cell receptor (TCR)
together with CD3. Second, co-stimulation is required to augment TCR signalling, which is
mediated by various molecules, including CD28 and the tumour necrosis factor receptor
superfamily (TNFRSF). Downstream, both TCR signalling and co-stimulation converge
on PI3K/AKT, NFAT, and NF-«B [29]. Third, sustained T cell activity is promoted by
cytokines, which activate JAK-STAT. While CD8+ T cells require interleukin (IL) 12 and
interferon (IFN) ot/ to initiate signal three, CD4+ T cells require IL-1 [30,31]. Because
these pathways are frequently dysregulated in T cell lymphomas, a “three-signal model”
of T cell lymphoma pathogenesis has been proposed [32]. In MF, dysregulation of TCR,
TNFRSF/NF-kB, and JAK-STAT pathways is recurrently observed, demonstrating the in-
volvement of all three “T cell lymphoma promoting” signalling pathways [33-38]. However,
the MF transcriptome exhibits substantial variability between patients and among lesions
within the same patient [27,39], which impedes the identification of a shared pathogenic
pathway to date.
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It has been proposed that the skin microbiome contributes to or evokes transcriptional
heterogeneity [40]. In agreement, we recently identified a subgroup of MF patients with a
significantly aggravated disease course and outgrowth of a distinct, pathogenic S. aureus
strain on plaque lesions. Conversely, another MF patient subgroup presented with a
more balanced skin microbiome and a favourable prognosis. Reflecting the differing
prevalences of S. aureus between the two subgroups, we referred to the subgroup with
aggravated disease and S. aureus outgrowth as ASA-positive, while the other subgroup
was termed ASA-neutral. Notably, the virulence factor staphylococcal protein A (spa) was
highly abundant in the genome of S. aureus in the ASA-positive subgroup [41]. It has been
demonstrated that spa activates the NF-«B pathway [42,43], which is involved in T cell
co-stimulation [29], and is a component of the “three-signal model” of T cell lymphoma
pathogenesis [32]. Moreover, some studies observed aberrant NF-«kB activity in subsets of
MF patients with aggressive disease [44—46]. We thus theorized that the skin microbiome
shapes MF disease signalling, resulting in exacerbated malignancy.

To investigate our hypothesis, we here performed bulk RNA sequencing (RNAseq),
multi-omic data integration of the microbiome and the transcriptome using Multi-Omic
Factor Analysis (MOFA) (48), virome profiling, and T cell receptor sequencing (TCRseq).
Our analyses yielded three main findings:

First, our data indicated that inter-patient transcriptional heterogeneity was largely
driven by differential expression of pathways involved in T cell signalling. Strikingly,
denoising the transcriptome from microbial influence using MOFA pronouncedly reduced
the heterogeneous activation pattern of T cell signalling pathways. This advocated that the
skin microbiome had a substantial impact on MF disease signalling.

Second, the MOFA model suggested that S. aureus with its virulence factor spa induced
ectopic activity of both non-canonical NF-kB and IL-1B signalling. While non-canonical
NF-«B signalling leads to survival and proliferation of naive T cells and their differentiation
into effector memory T cells (49), IL-1B facilitates sustained CD4+ T cell activation [30,31].
Given that CD4+ effector memory T cells are the malignant T cell subset in MF (9), spa-
bearing S. aureus may induce or augment the phenotypic characteristics of MF, resulting in
aggressive disease.

Third, the MOFA model implied augmented antiviral immune response along with en-
riched pathways involved in early thymopoiesis between DN1 and DN3. Viral prevalence,
particularly of Epstein-Barr virus (EBV) and human papillomavirus 71 (HPV), trended
higher in both lesional skin and the blood. In line with this, TCRs in both MF skin lesions
and the blood were significantly more likely to recognize epitopes of EBV compared to
TCRs in nonlesional skin. Notably, the most frequently recognized EBV-epitopes were
derived from proteins orchestrating latent EBV infection. Collectively, our findings provide
evidence to support potential viral involvement in the aetiology of MF, considering that
(I) malignant MF T cells infiltrate the skin from the blood (50), (II) the initial oncologic
transformation of malignant T cells in MF was mapped between DN1 and DN3 (10-15),
and (III) latent EBV infection can induce non-Hodgkin lymphoma, including peripheral T
cell lymphoma [47,48].

Taking findings from our preceding and this study together, we present a speculative
model delineating microbiome-driven MF aetiopathogenesis: The initial oncologic transfor-
mation occurs during early thymopoiesis, possibly induced by viral infection. Following
maturation and skin infiltration, outgrowth of a spa-bearing S. aureus strain exacerbates
disease by activating both non-canonical NF-«B and IL-1B signalling, resulting in the differ-
entiation of naive T cells into effector memory T cells with sustained activity. Our study
sheds light on the critical role of the microbiome in MF aetiopathogenesis.

2. Materials and Methods
2.1. Patients and Clinical Specimens

The patient group comprised a subset of patients included in our previous study [41]
that were recruited from the Department of Dermatology, University Medical Centre Mainz,
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Germany. Clinical specimens included metagenomic samples from the skin, skin punch
biopsies, and peripheral blood (see Table 1). Metagenomic skin samples were obtained
using a swab-scrape-swab procedure described earlier [41]. In brief, a pre-moistened swab
was brushed over the skin, then the same skin area was gently scraped with a scalpel, and
then it was brushed again with the same swab. To address the interindividual profile of
skin microbiomes [49], nonlesional skin from the contralateral site of the sampled lesion
was used as a control. The skin biopsies were obtained with 4 mm punches from the same
MF lesions sampled for the metagenome and were immediately snap frozen and stored at
—80 °C until RNA extraction. Peripheral blood was drawn for the isolation of peripheral
blood mononuclear cells (PBMCs) and subsequently enriched for the T cell fraction. For
full details, please refer to [41].

Table 1. Study group, clinical specimens, and patient metadata. This study group is a subset of the
group enrolled in Licht et al. [41], in which we characterized the skin microbiome of MF patients.
We demonstrated that S. aureus abundance is increased on MF lesions compared to nonlesional
skin in a subgroup of patients (ASA-positive), while S. aureus abundance does not change in the
other subgroup (ASA-neutral). ASA-positive patients exhibit a poor clinical course compared to
ASA-neutral patients. Patient IDs in this study match the given patient IDs in Licht et al. [41]. NA =
not available; f = female; m = male.

. Clinical ASA- Stage of Lesion RNAseq: TCRseq:
Patient ID Sex Age (Years) Stage Subgroup (Body Site) Tissues Included Tissues Included
Patl f 81 IA positive plaque (hip) lesion, blood lesion, blood

Pat3 f 47 1B neutral patch (thigh) 1e51(?n, NA
nonlesional
1 ( lesion, lesion,
Pat4 m 70 1IB positive p aq}l;e l‘:l)PP er nonlesional, nonlesional,
ac blood blood
. lesion, lesion,
Pat5 f 73 IB neutral patch (thigh) nonlesional nonlesional
lesion, lesion
Pat7 m 54 IB neutral plaque (flank) nonlesional, .
nonlesional
blood
atch (upper lesion,
Pat8 m 82 1IB positive pate ppe nonlesional, lesion, blood
back)
blood
Pat9 m 63 1B neutral plaque (forearm) lespn, lesion
nonlesional
Pat10 m 49 IB neutral patch (gluteus) 1e51(?n, lesion
nonlesional
Pat13 m 66 1B neutral patch (lower leg, lesion, NA
back) nonlesional
1 (i 1 lesi lesion,
Patl14 m 62 1B neutral plaque flower feg, espn, nonlesional,
front) nonlesional blood

2.2. RNA Sequencing and Bioinformatic Analysis of the Transcriptome

Total RNA was extracted from skin biopsies and T cell enriched PBMCs as described
previously [41]. Total RNA was sent to Novogene Company Ltd. (Cambridge, UK) for
library preparation and sequencing. Briefly, after a quality check with Caliper Life Sciences
GX I (Hopkinton, MA, USA), 400 ng RNA was used as input for the NEBNext Ultra RNA
Library Prep Kit (New England Biolabs, Ipswich, MA, USA). One sample (nonlesional
skin of Patl) was excluded due to low RNA quality. After the quality check, libraries were
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sequenced on a NovaSeq 6000 (Illumina, San Diego, CA, USA) at 150 bp paired-end to an
average of 78.74 (range 63.82-94.20) million raw reads, with 11.81 (range 9.57-14.13) giga
base pairs (Gbp) per sample.

For the transcriptome analysis, raw reads were quality-checked with Fastqc version
0.11.9 [50], and subsequently aligned against the human reference genome Ensembl built
GRCh38.p13 using STAR 2.7.9a with the flag -quantMode GeneCounts [51]. The data were
loaded into DESeq2 version 1.36.0 [52], filtered for genes with a minimum of ten cumulative
counts over all samples, and normalized using the internal DESeq2 method. Subsequently,
a differential expression analysis using the Wald test was carried out, adjusted for influences
from individual patients which may have been introduced by the paired-sample design. To
account for multiple testing, p-values were adjusted using Benjamini-Hochberg and genes
with <0.05 adjusted p-value were considered significant. Volcano plots were created using
the R package EnhancedVolcano [53]. For principal component analyses, the data were
first transformed with the variance-stabilization method (vst) and then analysed using the
plotPCA function within DESeq2. The PCA was visualized using ggplot2 [54].

Gene set enrichment analysis was performed using the R package pathfindeR [55].
Log?2 fold-changes of significantly deregulated genes determined by DESeq2 were used
as input. The Reactome database [56] was used to find enriched pathways. Because we
were particularly interested in signalling pathways that might orchestrate MF pathogene-
sis, we screened the literature for pathways that were described as deregulated in T cell
lymphomas or CTCL. The Reactome database was subsequently filtered to retain only
pathways that contain at least one of the following terms (case-insensitive): cascade, signal,
signalling, signaling, pathway, transition, cycle, regulation, activation, keratinization, corni-
fied, antimicrobial, interferon, IFN, stimulation, stimuli, activate, receptor, TLR. Enriched
pathways were clustered using the pathfindeR function cluster_enriched_terms. Plots were
created using pathfindeR.

Upregulated pathways in the plaque stage that, according to the literature, may have
been elicited by S. aureus were further investigated using PCA. Therefore, the influence from
the paired-sample design was regressed out from the normalized and rlog-transformed
count matrix with the removeBatchEffect function from the limma package [57]. For three
differentially regulated pathways of interest in the plaque stage, up- and downregulated
genes according to pathfindeR were determined. The corrected count matrix was filtered
for the genes of interest and plaque stage samples and parsed into the prcomp R stats
function to perform PCA. ggplot2 was used for visualization.

2.3. Multi-Omic Data Integration

We utilized the R implementation of MOFA (Multi-Omic Factor Analysis) version
1.6.0 [58] to integratively analyse the microbiome and transcriptome datasets. MOFA
integrates multiple omics datasets by discovering latent factors that capture both shared
and omic-specific patterns of variation. These latent factors help to identify key biological
signals, denoise the data, and identify relationships between different omics layers.

The microbiome dataset was created in our preceding study where we characterized
the MF skin microbiome using shotgun metagenomics and MetaPhlAn 3.0.2 [41,59,60]. To
obtain absolute counts of microbial taxa (rather than the relative abundance, which is the
default in MetaPhlAn and was used in our previous study), the metagenome was re-profiled
including the flag -t rel_ab_w_read_stats using MetaPhlAn 3.0.2 with the intermediate
bowtie2 mapping files as input. The resulting profiles were filtered to retain only taxa on
the species level and normalized using the wrench method, which accounts for sparse
metagenomic count data and is implemented in the R package wrench [61]. The normalized
data were log2-transformed with a pseudocount of 1. To select highly variable species
for the MOFA model, 50 species with the highest variance were filtered (with the R base
function var) and used for all subsequent steps.

The transcriptome dataset was created in this study as described above. After mapping
and normalization with STAR 2.7.9a and DESeq?2 version 1.36.0 (described above), the data
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were transformed with the regularized logarithm using the rlog function implemented
in DESeq2 [52]. As recommended by the MOFA authors, the large transcriptome dataset
was restricted to not overrepresent the smaller microbiome dataset in the MOFA model.
Therefore, the top 5000 highly variable genes were selected based on the median absolute
deviation calculated with the R base function mad. The MOFA model was trained with
a single group, the option scale_views set to TRUE, convergence_mode set to slow, and
eight factors.

Gene set enrichment analysis was performed with the MOFA function run_enrichment,
which is based on principal component gene set enrichment (PCGSE) [62] using only genes
with positive weights as input. The Reactome database, filtered for pathways of interest
(see the above section of transcriptome analysis), was used as a background. Pathway
enrichment plots were generated with ggplot2.

For the heatmaps in Figure 2A,B, an identical set of genes were plotted using the R
package pheatmap (refer to the caption of Figure 2 for more details on gene selection). The
heatmap in Figure 2A shows the normalized gene counts, while the heatmap in Figure 2B
shows the denoised version of the data, explained by the latent factors of the MOFA
model. This means that the MOFA model reconstructs the input data (transcriptome
and microbiome) based on the latent factors and shows patterns that are shared between
the omics layers and that are omics-specific. The denoised heatmap in Figure 2B was
generated with the MOFA function plot_data_heatmap with argument denoise set to TRUE.
Internally, plot_data_heatmap uses pheatmap for heatmap plotting, with the MOFA trained
data as input. The code used for Figure 2B (and other figures) can be found in the Data
Availability Statement.

2.4. Virus Profiling

The virome present on superficial skin layers was profiled via re-analysis of the
microbiome dataset generated in our previous investigation [41]. Briefly, human skin was
brushed topically with swabs, and whole metagenomic sequencing was performed and
subsequently profiled with MetaPhlAn 3.0.2. While viruses were excluded in our previous
study, here we activated the flag for viral identification (--add_viruses). The resulting
profiles were filtered to retain only viruses.

The virome present in deeper skin layers was profiled using RNAseq reads generated
from skin punch biopsies. In contrast to the swabbing procedure, punch biopsies obtain the
entire depth of skin layers. Virome profiles from RNAseq reads were generated with the
VIRTUS pipeline [63]. Briefly, non-human reads were filtered out through alignment to the
human reference genome Ensembl built GRCh38.p13. Next, unmapped (i.e., non-human)
reads were aligned against 762 viral genomes. Heatmaps visualizing the virome profile
were generated with the R package pheatmap [64].

2.5. Assessment of TCR—Epitope Binding

To investigate whether T cells of MF patients recognize EBV-epitopes, the T cell
receptor was sequenced as described previously [41]. Briefly, RNA isolated from skin punch
biopsies and T cell enriched PBMCs of MF patients were subjected to library preparation
spanning the variable part of the TCR using the NEBNext Immune Sequencing Kit, human
(E6320, New England Biolabs, USA), and sequenced on a MiSeq (Illumina, USA) running
300 bp PE. The sequencing data were processed with the pRESTO toolkit [65] (https://
usegalaxy.org/u/bradlanghorst/w/presto-nebnext-immune-seq-workflow-v320, accessed
on 20 May 2019) and the R package immunearch [66]. EBV-epitopes were obtained from the
Immune Epitope Database (IEDB) (https://www.iedb.org/, accessed on 2 April 2019) [67].
The Tool ERGO-II [68] was used to determine binding scores of pairs of TCRs and EBV-
epitopes. The closer the binding score is to 1, the higher the probability that a TCR
recognizes the epitope [68].
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3. Results
3.1. Study Group and Clinical Specimens

The study group consisted of 10 MF patients (mean age at sampling: 64.7 years; range:
47 to 82 years) and was a subset of patients that were enrolled in our preceding investigation
where we characterized the MF skin microbiome [41]. To ensure traceability, IDs of included
patients in this study were adopted from our previous investigation [41]. In that study, we
found that a subgroup of patients presented with an increased abundance of S. aureus on
MF lesions compared to nonlesional skin of the same patient. We termed this subgroup
ASA-positive as opposed to the ASA-neutral subgroup, where S. aureus abundance was
consistent between MF lesions and nonlesional skin of the same patient. The ASA-positive
subgroup had a strong dysbiosis and a significantly aggravated disease course compared
to the ASA-neutral subgroup [41]. Of the 10 MF patients included in the present study, 3
were in the ASA-positive subgroup and 7 were in the ASA-neutral subgroup.

Clinical specimens included skin swabs and punch biopsies of lesional skin (5 patch
stage and 5 plaque stage) and matched nonlesional skin of the same MF patients as an
intra-patient control (10 nonlesional skin samples). For more details about the rationale of
using internal controls, please refer to Licht, Dominelli et al. [41]. Additionally, blood was
drawn in four patients for the isolation of peripheral blood mononuclear cells (PBMCs).
All clinical specimens were taken at the same visit. Skin punch biopsies were used for
RNAseq. Where sufficient material was available, skin punch biopsies and PBMCs were
used for TCRseq. Shotgun metagenomics from skin swabs were initially carried out in
our previous investigation [41] and re-analysed in the present study in a multi-omic data
integration approach together with the skin transcriptome. Table 1 summarizes patient
metadata, clinical specimens, and data modalities used in the present study.

3.2. Transcriptional Heterogeneity May Be Largely Driven by Differential Activation of Pathways
of the “Three-Signal Model” of T Cell Lymphoma Pathogenesis

A number of studies investigated the CTCL transcriptome [27,39] and uncovered
various mechanisms of disease progression [33-38]. However, the transcriptome was also
found to exhibit significant heterogeneity among patients, complicating the identification
of a common pathological mechanism [27,39,46,69-73].

To explore the root of transcriptional heterogeneity, we employed differential gene
expression analysis and gene set enrichment analysis (GSEA). Principal component anal-
ysis (PCA) of the MF skin transcriptome clearly separated nonlesional skin, patch, and
plaque via principal component (PC) 1. However, lesional samples also spread along PC2,
demonstrating strong inter-patient transcriptional heterogeneity (Figure 1A). Likewise,
GSEA recovered several aberrant pathways known to promote MF exacerbation, such
as chemokine signalling [74] (Supplementary Material S2), but also showed substantial
activation differences between patients in both patch and plaque lesions (Supplementary
Material S3). Notably, pathways of the “three-signal model” of T cell lymphoma patho-
genesis exhibited different activation patterns between patch and plaque (Table 2): TCR
signalling was enriched in both patch and plaque, whereas interleukin-13 (IL-13) signalling,
CD28 co-stimulation, and co-stimulation through death receptors activating NF-«B [44,45]
were enriched solely in the plaque stage.

Next, we aimed to assess whether pathways of the “three-signal model” for T cell lym-
phoma pathogenesis [32] replicate transcriptional heterogeneity. To this end, we compiled
a list of genes that are (I) members of the “three-signal model” for T cell lymphomas and
(I) were differentially expressed in either or both patch and plaque stages. A clustered
heatmap of these genes closely resembled the pattern of the PCA of the entire transcriptome
(Figure 2A): Nonlesional skin and plaque samples formed separate clusters, while patch
samples exhibited intermediate expression levels. Importantly, plaque samples displayed
pronounced heterogeneity in RNA expression levels (Figure 2A). We thus reasoned that
inter-patient transcriptional heterogeneity can, at least to some extent, be attributed to
differential expression of pathways that orchestrate T cell lymphoma pathogenesis.
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Figure 1. Analysis of the MF skin transcriptome. (A) Principal component analysis (PCA) showing
inter-heterogeneity of plaque. (B) Volcano plots visualizing the distribution of gene fold-changes
and statistical significance between patch or plaque and nonlesional skin. For the complete results
table of DESeq?2 differential gene expression analysis, refer to Supplementary Material S1. (C) PCA
of genes belonging to upregulated pathways in the plaque stage that may have been elicited by S.

aureus according to the literature [75-79]. PC = principal component, NS = not significant.

Table 2. Gene set enrichment analysis. Displayed are selected pathways of interest. Please refer to
Supplementary Material S2 for the full GSEA list. log2fc = log?2 fold-change, NA = not available, padj
= p-value adjusted to multiple comparisons using Bonferroni.

Pathway II; agt;:?c padj Il’(l);;(;}lce padj
Keratinization 6.35 3.6 x 107° 1.18 7.1 x 1078

Antimicrobial peptides 8.69 14 x 1075 NA NA
TCR signalling 4.74 1.3 x 1077 1.63 1.4 x 10714
CD28 co-stimulation NA NA 1.74 1.1 x 107
Non-canonical NF-kB pathway NA NA 1.34 43 x 10711
Interleukin-13 signalling NA NA 141 6.2 x 1074
IFN-y signalling 8.32 6.7 x 107° 1.83 5.8 x 1073
Death receptor signalling NA NA 1.85 6.4 x 1072
Toll-Like Receptor 4 (TLR4) Cascade 2.55 1.5 x 1072 1.31 6.4 x 1071
NOD1/2 signalling pathway NA NA 1.84 43 x 107V
RHOA GTPase cycle NA NA 1.62 4x107%
Regulation of TP53 activity NA NA 1.28 1.8 x 10710
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Figure 2. Clustered heatmap of genes involved in the “three-signal model” of T cell lymphoma
pathogenesis. The clustered heatmap was created with genes involved in the “three-signal model” of
T cell lymphoma pathogenesis that were differentially expressed in the patch and/or plaque stage
and were included in the MOFA model (5000 highly variable genes; see Methods and Supplementary
Material S6). Raw gene counts were normalized using the median of ratios and rlog-transformed
with the DESeq2 package [52]. (A) Shown are normalized RNA expression levels before integration
of the microbiome. Notably, although only genes of the “three-signal model” of T cell lymphoma
pathogenesis were included, the clustering resembled the patterns of the PCA, which was based
on the entire transcriptome. Despite clustering together, plaque samples exhibited a high degree of
heterogeneity. (B) After data integration of the transcriptome with the microbiome, the heterogeneity
of plaque samples was largely resolved, suggesting that the microbiome had a strong impact on MF
disease signalling. Please refer to the Methods section for information on how the denoised heatmap
was generated.

3.3. The MF Skin Transcriptome Shows Responses to Microbial Stimuli

Since differential microbial skin colonization may contribute to transcriptional hetero-
geneity [40], and we recently identified that the skin microbiome stratifies MF patients and
determines the clinical course [41], our next objective was to identify microbial responses
in the skin transcriptome.

As expected, we uncovered enriched pathways likely activated by the skin micro-
biome (Table 2 and Supplementary Material S2). Notably, Toll-Like Receptor 4 (TLR4)
was upregulated in patch and showed attenuated activity in plaque. The pathway senses
lipopolysaccharides, a cell wall constituent of Gram-negative bacteria, and activates in-
flammatory responses as well as pyroptosis, which is a form of programmed necrosis.
Pyroptosis protects the host from microbial infection but, if overactivated, can also lead to
pathological inflammation [80], a typical condition of progressive MF [4]. In accordance, we
recently showed that the skin microbiome of patches is strongly dysbiotic, while dysbiosis
on plaques was observed only on a subgroup of MF patients [41], providing a potential
explanation for the differential TLR4 activation between patch and plaque.

Conversely, several microbe-associated pathways were uniquely upregulated in plaque
lesions, potentially driven by the outgrowth of a distinct S. aureus strain harbouring
virulence factors such as a-hemolysin and spa [41]. The innate immune sensor NOD2
(nucleotide-binding oligomerization domain 2) recognizes small peptides derived from the
peptidoglycan cell wall component of Gram-positive bacteria like S. aureus. Importantly,
NOD2 mediates protective responses specifically against S. aureus through its interaction
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with the virulence factor x-hemolysin [75,76]. Additionally, we observed enhanced activity
of the RHOA GTPase cycle, a pathway that S. aureus can exploit via its virulence factor
spa to facilitate epithelial invasion [77]. Further, we also noted enrichment of IL-13 sig-
nalling, consistent with reports that IL-13 expression is induced in healthy skin upon S.
aureus exposure [78,79]. Interestingly, malignant T cells in the skin of MF patients express
IL-13, whereas malignant T cells found in lymph nodes and blood do not [46]. To further
investigate whether the upregulation of NOD1/2 signalling, the RHOA GTPase cycle, and
IL-13 signalling might have been elicited by the microbiome, as suggested by the literature,
we conducted PCA of genes regulating these pathways (Figure 1C). Plaque samples with S.
aureus as the dominant species in the microbiome clearly separate from those with other
dominant species.

Collectively, we noted several enriched pathways that may be attributed to microbial
stimuli, consistent with the microbiome patterns identified on MF lesions in our preceding
study [41]. Consequently, our findings indicated that distinct microbial colonization led to
differential transcriptomic responses between patients.

3.4. Multi-Omic Data Integration of the Microbiome and the Transcriptome Resolves
Transcriptional Heterogeneity

To investigate whether differential skin colonization elicited the heterogeneous expres-
sion of genes related to the “three-signal model” for T cell lymphoma pathogenesis, we
performed data integration of the microbiome and the transcriptome using Multi-Omic
Factor Analysis (MOFA) [58]. Briefly, MOFA can be seen as a multi-omic implementation
of PCA and finds latent factors (comparable to principal components in PCA) that capture
the main sources of variation across different omic data modalities (which are called views
in the MOFA framework). Within the latent factors, weights are allocated to the features
of the different views. Consequently, latent factors are characterized by feature weights,
which indicate their importance or significance in the variation captured by the latent
factor. Downstream, additional analyses such as gene set enrichment analysis (GSEA)
can be conducted within each latent factor. The MOFA framework further enables the
identification of each view’s contribution to the variation captured by a latent factor across
the entire multi-omic dataset [58].

Regarding the multi-omic dataset in this study, the weights of the microbes (features
of the microbiome) and the weights of the genes (features of the transcriptome) characterize
the latent factors. The MOFA model showed a good fit to the multi-omic dataset, as the
patterns of the latent factors were congruent to the results observed in both the independent
transcriptome analysis (see above) and our previous study on the MF skin microbiome [41]
(see Supplementary Material S4). Latent factors 1 to 5 captured shared sources of variation
present in both data modalities, indicating a reciprocal influence between the transcriptome
and microbiome (Figure 3A). By leveraging the latent factors, MOFA reconstructs the input
data to separate shared and specific variations in each data modality, thereby denoising the
data and revealing underlying biological signals [58]. Strikingly, the differential expression
of genes involved in the “three-signal model” of T cell lymphoma pathogenesis was
resolved after integration of the microbiome and transcriptome data modalities (called
denoised in MOFA2 terms; Figure 2B). This indicated that the lesion-specific microbiome
heavily influences MF disease signalling. Please refer to the Methods section for information
how the denoised heatmap was generated.
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Figure 3. Overview of the latent factors of the MOFA model in the microbiome and transcriptome

data modalities. (A) Overview of the latent factors capturing variances in the microbiome and

transcriptome data modalities. Factor 4 captured the majority of variance in the microbiome, meaning

that this factor captured important impacts of the microbiome on the transcriptome. (B) Overview of

the feature weights of the microbiome per factor. (C—E) Gene set enrichment analysis. Factor 1 showed

pathomechanisms of high and sustained T cell activity in MF (TCR signalling, CD28 co-stimulation,

interleukin signals). Factor 4 showed pathways that were likely evoked by S. aureus. Factor 5 showed

strong antivirus responses along with enrichment of RUNX1 and RUNX2 signalling, which have

pivotal roles in thymopoiesis [81-84].

3.5. Spa-Bearing S. aureus Likely Activates Non-Canonical NF-xB and IL-1B Signalling

We next assessed the impact of the microbiome on MF disease signalling in more detail.
Factor 4 accounted for a substantial proportion of the total variance in the microbiome
(Figure 3A), and S. aureus was the only microbiome feature with a positive weight. No-
tably, microbes with anti-S. aureus properties, such as S. hominis and S. epidermidis [85-87],
displayed markedly negative weights. Thus, the microbiome feature weights exhibited a
pattern similar to plaque lesions of the ASA-positive subgroup. These patients presented
with S. aureus outgrowth and an aggravated clinical course [41].
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In the transcriptome, the following pathways controlling T cell activity were enriched:
Interleukin signalling, particularly IL-1B, and non-canonical NF-kB signalling (Figure 3D,
Supplementary Material S5). While non-canonical NF-«B serves as a co-stimulator and
generates and maintains effector memory T cells [88,89], IL-1B signalling facilitates sus-
tained activation of CD4+ T cells [32]. In agreement, the malignant T cell subset in MF is
thought to be CD4+ effector memory T cells [9]. Regarding IL-1B signalling, Chng et al. [90]
reported that human keratinocytes express IL-1B when challenged with S. aureus. This
suggests that outgrowth of virulent S. aureus may stimulate the tumour microenvironment
to activate malignant T cells via IL-1B in a paracrine fashion.

Regarding non-canonical NF-«B signalling, we intriguingly observed that the stimu-
lating ligand, TNF-« [91], displayed an almost neutral weight in factor 4 (Supplementary
Material S5), indicating an alternative stimulation route. Instead, we previously identified
high abundance of the virulence factor staphylococcal protein A (spa) in the genome of the
S. aureus strain colonizing ASA-positive patients. It was reported that spa can activate the
NEF-«kB pathway [42,43], and some studies associated aggressive CTCL with upregulated
NF-«B signalling [44—46]. Notably, several genes emphasized in these studies exhibited
positive weights in factor 4 (e.g., LTA, LTB, BIRC3, TNFSF13, TNFSF14, TNFRSF1B, and
TNFRSF7; Supplementary Material S5). Owing to the almost neutral weight of the NF-«B
stimulating agent TNF-« and the presence of spa as an alternative stimulator [41], we
theorized that outgrowing, spa-bearing S. aureus strains upregulated non-canonical NF-«B
signalling in MF patients with aggressive disease.

Collectively, the MOFA model indicated that the skin microbiome significantly influ-
ences MF disease signalling and is a major source of transcriptional heterogeneity. Further,
the MOFA model suggested that S. aureus fuelled malignant T cells to promote the ag-
gravated disease course of ASA-positive patients via two signalling axes: While spa may
activate non-canonical NF-kB signalling, resulting in survival, proliferation, and naive T
cell differentiation into mature, effector memory T cells, the neoplastic T cell subset in
MF [9], paracrine IL-1B signalling might facilitate sustained activation.

3.6. Aberrant Signalling of Early Thymopoiesis Alongside Enriched Antiviral Immunity Suggests
Viral Involvement in MF Aetiology

Additionally to factor 4, our attention was drawn to the results of factor 5. While the
microbiome weights showed only minimal signals (Figure 3B), GSEA identified significant
upregulation of host defence signals against viruses (Figure 3E), indicating that factor 5
represented a source of variation independent of bacteria. In particular, GSEA showed
upregulation of interferon alpha and beta (IFN-«/ ) signalling, which is the first line of
innate immune defence upon viral infection. Downstream, IFN-«/ 3 signalling stimulates
genes that inhibit the replication machinery of viruses at various mechanistic levels [92].
Several of these interferon-stimulated genes exhibited high weights in factor 5, for example
MX1, IFIT1, IFIT3, OAS1, OAS2, IFI27, and OASL (Supplementary Material S5). IFIT3,
which displayed the highest weight in factor 5, was shown to specifically boost antiviral
signalling by IFN-o/ 3 [93]. Further, GSEA found an enrichment of the ER-phagosome
pathway (Figure 3E), which can be hijacked by viruses for their own translation, replication,
and particle budding in order to spread into other host cells [94]. Notably, the phagosome-
pathway genes TAP1 and TAP2, which displayed high weights in factor 5 (Supplementary
Material S5), are highly expressed by Epstein—Barr virus (EBV)-infected lymphocytes [95],
and interact with Epstein—Barr-nuclear antigen 1 (EBNA1) [96].

Remarkably, EBV infection can lead to RUNX1 expression [97,98], and signalling by
RUNX1 and RUNX?2 was significantly enriched in factor 5 (Figure 3E). The RUNX family is
a frequent target of retroviral insertion [99-101], resulting in the development of several
T cell lymphoma entities [102,103]. RUNX1 regulates the expansion of mature CD4+ T
cells [82], which constitutes the neoplastic T cell subset in MF [9]. Interestingly, both RUNX1
and RUNX2 are important regulators of early thymopoiesis during the double-negative
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stages of T lymphocytes [81-84], a developmental step that has been mapped to the initial
oncologic transformation of T cells in MF [10-15].

Since the transcriptome dataset included in the MOFA model was restricted to
5000 genes (see Methods section), we screened the entire transcriptomic dataset to in-
vestigate signals of aberrant thymopoiesis in more detail. It has been reported that ectopic
expression of RUNX2 strongly expands immature thymocytes during the double-negative
stages, resulting in a preneoplastic state of thymocytes characterized by low proliferation
rates [81]. However, concomitant overexpression of MYC rescues proliferation and facil-
itates differentiation. Additionally, MYC and RUNX collaboratively inhibit the tumour
suppressor p53, resulting in decreased apoptosis of malignant T cells. Together, this ul-
timately leads to the accumulation of mature, neoplastic T cells [81,104]. In agreement
with these reports, several genes were aberrantly expressed in the MF transcriptome (Sup-
plementary Material S1): Besides RUNX1 and RUNX2, we identified enriched MYCBP2
(Figure 1B), which is a member of the c-myc family with the function to increase c-myc
activity [105]. Further, although the pathway to regulate p53 activity was upregulated
(Table 2), important components of the p53 machinery were downregulated (Figure 1B):
These included the p53 gene TP53 itself, the p53 stabilizing protein NOP53 [106], and
TP53AIP1, which is regulated by p53 and induces apoptosis [107]. A complete results table
of DESeq?2 differential gene expression analysis is available in Supplementary Material S1.

In summary, our data show dysregulation of pathways involved in early thymopoiesis,
probably representing the initial oncologic transformation of T cells in MF. Moreover,
factor 5 suggested a connection between viruses and MF aetiology given the concomitant
upregulation of host responses to viruses and RUNX1/2 signalling.

3.7. Increased Viral Prevalence and EBV-Epitope Recognition in MF Skin Lesions

In MF, malignant T cells circulate in the blood and infiltrate the upper dermis but
have not been described to be present in the most superficial layers of the skin [108]. To
determine whether viruses may be involved in in MF aetiology, we investigated viral
prevalence in different layers of the skin and the blood of MF patients. To this end, we
examined whole metagenomic sequencing (WMS) and RNAseq data. While the WMS data
were generated from skin swabs and thus only contain material from superficial skin layers,
the RN Aseq data were generated from both the blood and skin punch biopsies representing
the whole skin, including deeper skin layers like the epidermis and dermis.

In whole skin samples, total viral load trended higher in MF lesions compared to
nonlesional skin (Figure 4B). In contrast, total viral load did not differ in superficial skin
layers (Figure 4A). Among all viruses detected in MF lesions of whole skin samples, EBV
and human papillomavirus 71 (HPV71) displayed the highest prevalence, albeit HPV71 was
also frequently present in nonlesional skin. Remarkably, EBV and HPV71 were also present
in the blood of some patients (Figure 4B). Both EBV and various human papillomaviruses
are implicated in the development of cancer, including T cell lymphomas [109-111]. Since
MF is characterized by the infiltration of circulating T cells from the blood into the skin [108],
the concomitant presence of viruses in both compartments indicates a potential viral
involvement in MF.

Next, we evaluated whether T cells of whole skin samples or T cells in the blood
were directed against known EBV-epitopes obtained from the Inmune Epitope Database
(IEDB) [67]. We sequenced the TCRs of MF lesions, nonlesional skin, and blood and
utilized ERGO-II [68] to calculate binding scores for the most abundant TCRs of a given
sample with each of the EBV-epitopes. TCRs in MF lesions and the blood showed a
significantly higher probability to recognize EBV-epitopes than T cells in nonlesional skin
(Figure 4C), which agreed with the increased viral prevalence of MF lesions in whole skin
samples. Interestingly, latent membrane protein (LMP) 1, LMP2, and Epstein-Barr-nuclear
antigen (EBNA) 1 were the most frequently recognized EBV-epitopes by TCRs in the skin
and blood (Figure 4D). An expression pattern of LMP1, LMP2, and EBNA1 represents a
characteristic EBV gene profile of latency type I/1I, commonly observed in EBV-induced
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T cell lymphomas [112,113]. In NK/T cell lymphoma, LMP1 upregulates CD274 (PD-L1)
via the NF-«B axis [114], which agreed with our results of enriched CD274 and NF-kB
signalling in the plaque stage (Table 2, Figure 1B).
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Figure 4. Viral association with MF. (A,B), Viral prevalence identified in WMS reads of superficial skin
(A) and RNAseq reads of whole skin (B). Viral prevalence in MF lesions of whole skin trended higher
compared to nonlesional skin, specifically EBV and HPV71 (B), whereas no difference was present
on superficial skin (A). In (A), the top 20 viruses with the highest variation between MF lesions and
nonlesional skin are shown. In (B), all viruses detected are shown. In (C,D), T cells in MF lesions
and the blood specifically recognize EBV-epitopes. (C) The probability of TCRs in blood, nonlesional
skin, and MF lesions to recognize EBV-epitopes was assessed using ERGO-II [68]. Binding scores
(1 = perfect binding, 0 = no binding) were calculated for each TCR with each EBV-epitope. n = 175;
displayed are violin plots with the median (red), 1st quartile, and 3rd quartile. Kruskal-Wallis test: *
for p < 0.05, **** for p < 0.0001. (D) Displayed are the EBV-epitopes that were recognized most often
by TCRs of MF patients.

Together, the trend of increased EBV and HPV71 prevalence in whole skin samples
along with a significantly higher probability of EBV-epitope recognition by TCRs in
MF lesions and the blood compared to nonlesional skin suggest viral involvement in
MF aetiology.

4. Discussion

The clinical course of MF varies greatly, with some patients having only minor progress,
whereas others suffer from fast progression and high disease burden [5,115]. Likewise,
the transcriptome is tremendously heterogeneous, exhibiting patient and even lesion
specificity [27,39,73]. Moreover, ambiguity exists about the initial oncologic transformation
of malignant T cells, as studies from different groups mapped the event to either early
thymocytes [10-15] or mature, effector memory T cells [9]. Consequently, a common
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pathogenic mechanism of all patients or patient subgroups is still in doubt, resulting in a
non-optimal treatment regimen [27]. We recently demonstrated that the skin microbiome
of MF patients is altered, and identified a subgroup of patients that was overgrown with a
distinct, pathogenic S. aureus strain. This subgroup exhibited a significantly aggravated
disease course, possibly owing to the virulence factor spa, which was present in the S. aureus
genome [41]. In line with this, others showed that spa can activate the NF-kB axis [42],
which is recurrently deregulated in MF patients with aggressive disease [34,44—46,116]. We
thus theorized that (I) the lesion-specific microbiome determines transcriptomic response,
thereby contributing to or causing heterogeneity [40], and that (II) spa-bearing S. aureus
elicits NF-«B signalling to fuel MF. Therefore, we investigated how the skin microbiome
affects the skin transcriptome in a subset of 10 MF patients that were enrolled in our
preceding study [41]. Using RNAseq, multi-omic data integration, virome profiling, and
TCRseq, we obtained novel insights into the role of the microbiome in both the aetiology
and pathogenesis of MF.

First, we recovered substantial transcriptomic heterogeneity on both gene and pathway
levels and observed that this heterogeneity may be largely driven by differential expression
of T cell signalling pathways. Strikingly, our results suggested that the differential T
cell signalling pattern may have been caused by the skin microbiome, since denoising
the transcriptome with the microbiome using MOFA considerably reduced heterogeneity
(Figure 2A,B).

Second, latent factor 4 implied that S. aureus elicited upregulation of both non-
canonical NF-kB and IL-1B signalling, which could explain the aggravated disease course of
MF patients overgrown with a spa-bearing S. aureus strain. Non-canonical NF-«kB signalling
is known to promote survival and proliferation of thymocytes and mature T cells, induce
differentiation of naive T cells into effector memory T cells, and support clonal expan-
sion [88,89], which are all common characteristics of malignant T cells in MF [1,8,9,117].
NEF-«B signalling is typically initiated by the interaction of TNF« with either TNFRSF1A
(also known as TNFR1) or TNFRSF1B (also known as TNFR2) [88,89]. However, the enrich-
ment of non-canonical NF-«B signalling in factor 4 appeared to be independent of TNF,
since it displayed a very low weight. Instead, we propose that the S. aureus virulence
factor spa induced non-canonical NF-«B signalling since Gomez et al. showed that spa
activates TNFRSF1A [42,43]. In general, TNFRSF1A induces the canonical form of NF-«B
signalling leading to apoptosis, while TNFRSF1B induces non-canonical NF-«B signalling
resulting in survival and proliferation. However, there is some level of crosstalk between
the two forms of NF-«B pathways. In highly activated T cells, such as the malignant T
cells in MF, activation of TNFRSF1A results in survival rather than apoptosis [88,89,118].
Further, the extracellular domains of TNFRSF1A and TNFRSF1B exhibit a high degree of
structural similarity [119], possibly allowing spa to activate both receptors. Additionally,
while TNFRSF1A is expressed nearly ubiquitously across various cell types throughout
the body, TNFRSF1B expression is considerably more restricted, including thymocytes
and T cells [89]. Thus, spa may activate either TNFRSF1A, TNFRSF1B, or both to initiate
non-canonical NF-kB signalling to fuel MF progression.

In agreement with our findings, a clinical study reported that systemic inhibition of
NEF-«B in CTCL patients induced a skin response in 30.4% of patients, whereas the blood
response was mixed [120-122] Further, Shin et al. identified ectopic NF-kB signalling in
30.6% of MF patients and that these patients had an aggravated disease course compared
to patients without ectopic NF-«B signalling [44]. We previously identified that 31.3% of
MF patients were overgrown with the virulent, spa-bearing S. aureus strain and had an
aggravated disease course [41]. Considering the comparable prevalences of the specified
subgroups and the presumed NF-«kB-activating effect of spa, this may suggest a potential
association between skin colonization by a spa-carrying S. aureus strain and exacerbation of
the disease in the aforementioned studies. Additional research on the spa-NF-«B interaction
including mechanistic assays with bigger patient groups is warranted.
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Regarding our finding of upregulated IL-1B signalling in factor 4, it was shown that
S. aureus induces secretion of IL-1B by eosinophils [123], which infiltrate MF lesions [124].
Furthermore, human keratinocytes, skin-derived dendritic cells, and lymphocytes produce
several cytokines, including IL-1A, IL-1B, and IL-4, when challenged with S. aureus or
spa [90,125,126]. This suggests a paracrine stimulation of malignant T cells by the tumour
microenvironment via cytokine signalling in response to S. aureus.

Last, we discovered evidence indicating viral involvement in the aetiology of MF.
Latent factor 5 captured a concomitant upregulation of innate antivirus defence mechanisms
and aberrant RUNX1/2 signalling. The latter is known to coordinate thymopoiesis during
double-negative (DN) stages DN1 through DN3 [81,82,127], which have been mapped
to the initial oncologic transformation in MF [10-15]. We further observed that viral
load, particularly of HPV71 and EBYV, trended higher in both deeper skin layers of MF
lesions and the blood compared to nonlesional skin, whereas superficial skin layers of
MF lesions showed no difference. HPV71 was shown to degrade p53 [128], which can
result in neoplasia [129]. Nevertheless, while certain papillomaviruses are categorized as
high-risk factors for the onset of solid cancers [130] and have also been loosely linked to an
elevated risk of lymphomas [131], HPV71 is generally regarded as having low oncogenic
potential [132]. In contrast, EBV is a well-known oncovirus [133-135]. Remarkably, we
found that T cells residing in MF lesions or in the blood were significantly more affinitive
to EBV-epitopes than T cells of nonlesional skin (Figure 4C). Moreover, the most frequently
recognized EBV-epitopes were epitopes of LMP1, LMP2, and EBNA1, which are genes
commonly expressed by EBV in latent infection [113]. Although EBV has a strong B cell
tropism, leading to B cell Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma
(nHL) [133-135], the virus also infects T cells, thereby causing some entities of T cell
nHL [47,48]. Notably, CTCL patients have an increased risk of developing secondary
HL and nHL [17-20]. It has been proposed that a single precursor malignant T cell can
trigger HL, CTCL, and lymphomatoid papulosis, a benign T cell neoplasm, in the same
patient [21,22]. Others reported the simultaneous presence of HL and CTCL within the
same lymph node and theorized that the two malignancies arise from distinct B and T
cells [23], indicating that a common trigger induced oncogenesis.

To the best of our knowledge, we were the first to investigate viral prevalence in
different skin compartments and found that EBV and HPV71 trended higher solely in
deeper skin layers of MF lesions, where malignant T cells in MF reside [108]. Collectively,
our data indicate that viruses, probably EBV and/or HPV71, might play a role in MF
aetiology. However, the sample size was rather small and not all lesional and blood samples
were positive for EBV and/or HPV71. Moreover, despite a significantly higher EBV-epitope
recognition of these tissues defined by computational estimation, mechanistic assays are
warranted for a definitive conclusion. Thus, hypotheses on viral involvement in MF need
to be considered speculative at this point. Additional investigations with more participants
and longitudinal viral monitoring across tissues and different skin compartments are
necessary to determine whether viruses are the aetiologic agent in ME.

An open question remains whether the age distribution of our patient group may have
influenced the skin condition/clinical appearance, since 7 out of 10 patients were aged 60
or older (4 ASA-neutral, 3 ASA-neutral). In skin-disease-free subjects, several skin integrity
parameters such as hydration, sebum production, or cytokine production decrease with
age [136,137]. Studies in MF have indicated that skin integrity and moisture levels are
lower in comparison to age-matched healthy subjects, which could lead to an increased
susceptibility to bacterial infection [138-140]. This implies that older MF patients could
experience a more severe skin barrier defect than younger MF patients and hence could
experience infections more frequently. Notably, a cut-point of 60 years of age has been
identified as a clinically prognostic outcome factor. Given that 70% of the patients in our
study group were aged 60 and older and were evenly distributed between the two ASA
groups, this indicates appropriate age matching within our study group. However, bigger
patient groups with a more diverse population are warranted.
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Further limitations of our study are the small patient group size, the mono-centric
nature of our study, and the lack of mechanistic assays to confirm our findings, which are
based on computational analyses from primary clinical specimens.

Additionally, the skewed distribution of patients between the two ASA groups could
have introduced bias. To mitigate this concern, we specifically opted to utilize MOFA2,
which is an unsupervised method agnostic of grouping variables. Analogous to PCA,
MOFA2 generates clusters based on integrated multi-omic profiles [58]. Therefore, the
input to MOFA2 entails the entire group rather than a comparison of two (potentially
imbalanced) groups. Importantly, despite the smaller size of the ASA-positive group
compared to the ASA-neutral group, the MOFA2 model identified substantial upregulation
of both non-canonical NF-«B and IL-1B signalling, which was largely disregarded by
conventional GSEA (Supplementary Material 52, plaque vs. nonlesional skin). Nonetheless,
our findings are based on a small patient group derived from our preceding study [41]. To
assess the robustness of the MOFA2 model, we performed a thorough evaluation of (a.) the
stability of our model throughout iterations and (b.) the robustness of our model against
technical noise. Our assessment suggests that MOFA robustly detects the same latent factors
and patterns with and without noise. Please refer to Supplementary Material S7 for the
full stability assessment. The current study represents an in-depth investigation of a rather
limited patient group, and further research is required for validation and generalization.

5. Conclusions

In this study, we provided novel insights into the role of the microbiome in MF
aetiopathogenesis. First, our results indicated that the skin microbiome largely contributes
to transcriptional heterogeneity. Second, our data suggest that a spa-bearing S. aureus
strain, which overgrows a subgroup of MF patients with aggravated disease course, might
evoke non-canonical NF-«kB and IL-1B signalling in the skin. Third, our data collectively
suggested that viruses, particularly EBV and HPV71, may be the aetiologic agent in MF.

Together with the results from our preceding study, these findings led us to propose a
model of microbiome-driven MF aetiopathogenesis (Figure 5): The initial oncologic trans-
formation could emerge during early thymopoiesis triggered by aberrant RUNX expression,
potentially caused by viral infection such as with EBV and/or HPV71. Malignant T cells
infiltrate the skin, leading the microenvironment to release AMPs. Eventually, this process
eliminates microbes, resulting in skin dysbiosis and a diminished epithelial barrier. Addi-
tionally, certain AMPs attract CD4+ T cells, which could include malignant T cells, thereby
augmenting the infiltration of (malignant) T cells into MF lesions. Over time, some mi-
crobes acquire resistance to AMPs and recolonize the lesions. In the ASA-neutral subgroup,
microbes with anti-S. aureus properties accumulate, resulting in a balanced microbiome
and favourable clinical course. However, in the ASA-positive subgroup, a virulent S. aureus
strain carrying the virulence factor spa outgrows and activates non-canonical NF-kB and
IL-1B signalling, resulting in the generation of mature effector memory T cells and poor
outcome. Hence, both perspectives on the cells of origin in MF may apply: early T cell
progenitors [10-14] and mature, effector memory T cells [8,9].

Additional research is warranted to validate and generalize our findings, which are
based on a rather small patient group. Furthermore, research allowing mechanistic insights
is needed to understand how the microbiome affects malignant T cells in MF.
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Figure 5. Proposed model of microbiome-driven MF aetiopathogenesis. T cell precursors undergo
initial oncologic transformation due to aberrant expression of RUNX1 and RUNX2, probably caused
by viruses like EBV and/or HPV71. After maturation and skin infiltration, the malignant T cells
trigger the microenvironment to secrete AMPs. AMPs kill most of the physiological skin microbiota,
resulting in dysbiosis and a diminished epithelial barrier. In addition, AMPs may recruit benign and
malignant CD4+ T cells, establishing a loop of sustained dysbiosis and T cell infiltration. Since AMP
levels remain constant over the disease course, some microbes eventually acquire resistance and
recolonize the lesions. In the ASA-neutral subgroup, microbes with anti-S. aureus activity accumulate,
resulting in a balanced microbiome that does not fuel the disease. However, in the ASA-positive
subgroup, virulent S. aureus strains bearing the virulence factor spa overgrow and activate non-
canonical NF-«B as well as IL-1B signalling. The two pathways cause inflammation, sustained activity,
survival, and proliferation of T cells, as well as the generation and maintenance of effector memory T
cells. These characteristics are hallmarks of malignant T cells in MF and may explain the significantly
aggravated clinical course of the ASA-positive subgroup.
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