Ultra-Processed Food and Prostate Cancer Risk: A Systemic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Study Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Literature Search Results
3.2. Characteristics of the Included Studies
3.3. Ultra-Processed Food Intake and Prostate Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Gann, P.H. Risk Factors for Prostate Cancer. Rev. Urol. 2002, 4, S3–S10. [Google Scholar] [PubMed]
- Nyberg, T.; Tischkowitz, M.; Antoniou, A.C. BRCA1 and BRCA2 Pathogenic Variants and Prostate Cancer Risk: Systematic Review and Meta-Analysis. Br. J. Cancer 2022, 126, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary Factors and Prostate Cancer Development, Progression, and Reduction. Nutrients 2021, 13, 496. [Google Scholar] [CrossRef]
- Benke, I.N.; Leitzmann, M.F.; Behrens, G.; Schmid, D. Physical Activity in Relation to Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Ann. Oncol. 2018, 29, 1154–1179. [Google Scholar] [CrossRef]
- Al-Fayez, S.; El-Metwally, A. Cigarette Smoking and Prostate Cancer: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Tob. Induc. Dis. 2023, 21, 19. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Forde, C.G. Beyond Ultra-Processed: Considering the Future Role of Food Processing in Human Health. Proc. Nutr. Soc. 2023, 82, 406–418. [Google Scholar] [CrossRef]
- Monteiro, C.A. Nutrition and Health. The Issue Is Not Food, nor Nutrients, so Much as Processing. Public Health Nutr. 2009, 12, 729–731. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. Increasing Consumption of Ultra-Processed Foods and Likely Impact on Human Health: Evidence from Brazil. Public Health Nutr. 2010, 14, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Gibney, M.J. Ultra-Processed Foods: Definitions and Policy Issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of Ultra-Processed Foods and Cancer Risk: Results from NutriNet-Santé Prospective Cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed]
- Deoula, S.M.; Kinany, E.K.; Huybrechts, I.; Gunter, M.J.; Hatime, Z.; Boudouaya, H.A.; Benslimane, A.; Nejjari, C.; El Abkari, M.; Badre, W.; et al. Consumption of Meat, Traditional and Modern Processed Meat and Colorectal Cancer Risk Among the Moroccan Population: A Large-Scale Case–Control Study. Int. J. Cancer 2020, 146, 1333–1345. [Google Scholar] [CrossRef]
- Romaguera, D.; Fernández-Barrés, S.; Gracia-Lavedán, E.; Vendrell, E.; Azpiri, M.; Ruiz-Moreno, E.; Martín, V.; Gómez-Acebo, I.; Obón, M.; Molinuevo, A.; et al. Consumption of Ultra-Processed Foods and Drinks and Colorectal, Breast, and Prostate Cancer. Clin. Nutr. 2021, 40, 1537–1545. [Google Scholar] [CrossRef]
- Song, S.; Park, S.; Song, B.M.; Lee, J.E.; Cha, C.; Park, H.-Y. Risk of Uterine Leiomyomata with Menstrual and Reproductive Factors in Premenopausal Women: Korea Nurses’ Health Study. BMC Women’s Health 2023, 23, 305. [Google Scholar] [CrossRef]
- Yammine, S.; Huybrechts, I.; Biessy, C.; Dossus, L.; Aglago, E.K.; Naudin, S.; Ferrari, P.; Weiderpass, E.; Tjønneland, A.; Hansen, L.; et al. Dietary and Circulating Fatty Acids and Ovarian Cancer Risk in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1739–1749. [Google Scholar] [CrossRef]
- Isaksen, I.M.; Dankel, S.N. Ultra-Processed Food Consumption and Cancer Risk: A Systematic Review and Meta-Analysis. Clin. Nutr. 2023, 42, 919–928. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for Examining and Interpreting Funnel Plot Asymmetry in Meta-Analyses of Randomised Controlled Trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to Perform a Meta-Analysis with R: A Practical Tutorial. Evid.-Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Gunter, M.J.; Rauber, F.; Levy, R.B.; Huybrechts, I.; Kliemann, N.; Millett, C.; Vamos, E.P. Ultra-Processed Food Consumption, Cancer Risk and Cancer Mortality: A Large-Scale Prospective Analysis within the UK Biobank. eClinicalMedicine 2023, 56, 101840. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.-Y.; Xu, W.; Zhu, Q.; Sun, W.-P.; Hu, J.-J.; Cai, D.; Zhang, J.-Y.; Gong, J.-P.; Xiong, B.; Zhong, G.-C. Prediagnosis Ultra-Processed Food Consumption and Prognosis of Patients with Colorectal, Lung, Prostate, or Breast Cancer: A Large Prospective Multicenter Study. Front. Nutr. 2023, 10, 1258242. [Google Scholar] [CrossRef] [PubMed]
- Kliemann, N.; Rauber, F.; Bertazzi Levy, R.; Viallon, V.; Vamos, E.P.; Cordova, R.; Freisling, H.; Casagrande, C.; Nicolas, G.; Aune, D.; et al. Food Processing and Cancer Risk in Europe: Results from the Prospective EPIC Cohort Study. Lancet Planet. Health 2023, 7, e219–e232. [Google Scholar] [CrossRef]
- Trudeau, K.; Rousseau, M.-C.; Parent, M.-É. Extent of Food Processing and Risk of Prostate Cancer: The PROtEuS Study in Montreal, Canada. Nutrients 2020, 12, 637. [Google Scholar] [CrossRef]
- Moradi, S.; Entezari, M.H.; Mohammadi, H.; Jayedi, A.; Lazaridi, A.-V.; Kermani, M.A.H.; Miraghajani, M. Ultra-Processed Food Consumption and Adult Obesity Risk: A Systematic Review and Dose-Response Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 63, 249–260. [Google Scholar] [CrossRef]
- Wang, M.; Du, X.; Huang, W.; Xu, Y. Ultra-Processed Foods Consumption Increases the Risk of Hypertension in Adults: A Systematic Review and Meta-Analysis. Am. J. Hypertens. 2022, 35, 892–901. [Google Scholar] [CrossRef]
- Shu, L.; Zhang, X.; Zhou, J.; Zhu, Q.; Si, C. Ultra-Processed Food Consumption and Increased Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Observational Studies. Front. Nutr. 2023, 10, 1211797. [Google Scholar] [CrossRef]
- Jochems, S.H.J.; Fritz, J.; Häggström, C.; Järvholm, B.; Stattin, P.; Stocks, T. Smoking and Risk of Prostate Cancer and Prostate Cancer Death: A Pooled Study. Eur. Urol. 2023, 83, 422–431. [Google Scholar] [CrossRef]
- Andersson, S.-O.; Wolk, A.; Bergström, R.; Adami, H.-O.; Engholm, G.; Englund, A.; Nyrén, O. Body Size and Prostate Cancer: A 20-Year Follow-up Study Among 135006 Swedish Construction Workers. J. Natl. Cancer Inst. 1997, 89, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.L.; Taaffe, D.R.; Newton, R.U.; Hart, N.H.; Lyons-Wall, P.; Galvão, D.A. Obesity and Prostate Cancer: A Narrative Review. Crit. Rev. Oncol. Hematol. 2022, 169, 103543. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, N.; Boezen, H.M.; Schouten, J.P.; Schröder, C.P.; de Vries, E.G.E.; Vonk, J.M. BMI and Lifetime Changes in BMI and Cancer Mortality Risk. PLoS ONE 2015, 10, e0125261. [Google Scholar] [CrossRef] [PubMed]
- de Paula, L.C.P.; Alves, C. Food Packaging and Endocrine Disruptors. J. Pediatr. 2023, 100, S40–S47. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Ripatti, S. Integrating Lipidomics and Genomics: Emerging Tools to Understand Cardiovascular Diseases. Cell Mol. Life Sci. 2021, 78, 2565–2584. [Google Scholar] [CrossRef]
- Koziol, J.A.; Schnitzer, J.E. State Government Policy Responses to the COVID-19 Pandemic in the United States 2020–2022: Concordant Heterogeneity? Med. Res. Arch. 2023, 11, 3693. [Google Scholar] [CrossRef]
- Crusz, S.M.; Balkwill, F.R. Inflammation and Cancer: Advances and New Agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Forbes, M.; Loughman, A.; Rocks, T.; O’Neil, A.; Machado, P.; Jacka, F.N.; Hodge, A.; Marx, W. Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study. Nutrients 2022, 14, 3309. [Google Scholar] [CrossRef]
- Lopes, A.E.S.C.; Araújo, L.F.; Levy, R.B.; Barreto, S.M.; Giatti, L. Association Between Consumption of Ultra-Processed Foods and Serum C-Reactive Protein Levels: Cross-Sectional Results from the ELSA-Brasil Study. Sao Paulo Med. J. 2019, 137, 169–176. [Google Scholar] [CrossRef]
- Carroll, J.F.; Fulda, K.G.; Chiapa, A.L.; Rodriquez, M.; Phelps, D.R.; Cardarelli, K.M.; Vishwanatha, J.K.; Cardarelli, R. Impact of Race/Ethnicity on the Relationship Between Visceral Fat and Inflammatory Biomarkers. Obesity 2009, 17, 1420–1427. [Google Scholar] [CrossRef]
- Gurel, B.; Lucia, M.S.; Thompson, I.M.; Goodman, P.J.; Tangen, C.M.; Kristal, A.R.; Parnes, H.L.; Hoque, A.; Lippman, S.M.; Sutcliffe, S.; et al. Chronic Inflammation in Benign Prostate Tissue Is Associated with High-Grade Prostate Cancer in the Placebo Arm of the Prostate Cancer Prevention Trial. Cancer Epidemiol. Biomark. Prev. 2014, 23, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Platz, E.A.; Kulac, I.; Barber, J.R.; Drake, C.G.; Joshu, C.E.; Nelson, W.G.; Lucia, M.S.; Klein, E.A.; Lippman, S.M.; Parnes, H.L.; et al. A Prospective Study of Chronic Inflammation in Benign Prostate Tissue and Risk of Prostate Cancer: Linked PCPT and SELECT Cohorts. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Bhindi, B.; Locke, J.; Alibhai, S.M.H.; Kulkarni, G.S.; Margel, D.S.; Hamilton, R.J.; Finelli, A.; Trachtenberg, J.; Zlotta, A.R.; Toi, A.; et al. Dissecting the Association Between Metabolic Syndrome and Prostate Cancer Risk: Analysis of a Large Clinical Cohort. Eur. Urol. 2015, 67, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Cicione, A.; De Nunzio, C.; Tubaro, A.; Cantiello, F.; Manno, S.; Oliveira, C.; Lima, E.; Damiano, R. Metabolic Syndrome Diagnosis and Widespread High Grade Prostatic Intraepithelial Neoplasia Significantly Increase Prostate Cancer Risk: Results from a Multicenter Biopsy Study. BMC Cancer 2016, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Unamuno, X.; Gómez-Ambrosi, J.; Rodríguez, A.; Becerril, S.; Frühbeck, G.; Catalán, V. Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity. Eur. J. Clin. Investig. 2018, 48, e12997. [Google Scholar] [CrossRef]
- Kolb, H. Obese Visceral Fat Tissue Inflammation: From Protective to Detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef]
- Menezes, C.A.; Magalhães, L.B.; da Silva, J.T.; da Silva Lago, R.M.R.; Gomes, A.N.; Ladeia, A.M.T.; Vianna, N.A.; Oliveira, R.R. Ultra-Processed Food Consumption Is Related to Higher Trans Fatty Acids, Sugar Intake, and Micronutrient-Impaired Status in Schoolchildren of Bahia, Brazil. Nutrients 2023, 15, 381. [Google Scholar] [CrossRef]
- Nouri, M.; Eskandarzadeh, S.; Makhtoomi, M.; Rajabzadeh-Dehkordi, M.; Omidbeigi, N.; Najafi, M.; Faghih, S. Association Between Ultra-Processed Foods Intake with Lipid Profile: A Cross-Sectional Study. Sci. Rep. 2023, 13, 7258. [Google Scholar] [CrossRef]
- Oteng, A.-B.; Kersten, S. Mechanisms of Action of Trans Fatty Acids. Adv. Nutr. 2020, 11, 697–708. [Google Scholar] [CrossRef]
- Michels, N.; Specht, I.O.; Heitmann, B.L.; Chajès, V.; Huybrechts, I. Dietary Trans-Fatty Acid Intake in Relation to Cancer Risk: A Systematic Review and Meta-Analysis. Nutr. Rev. 2021, 79, 758–776. [Google Scholar] [CrossRef]
- Minas, T.Z.; Lord, B.D.; Zhang, A.L.; Candia, J.; Dorsey, T.H.; Baker, F.S.; Tang, W.; Bailey-Whyte, M.; Smith, C.J.; Obadi, O.M.; et al. Circulating Trans Fatty Acids Are Associated with Prostate Cancer in Ghanaian and American Men. Nat. Commun. 2023, 14, 4322. [Google Scholar] [CrossRef] [PubMed]
- Petrus, R.R.; do Amaral Sobral, P.J.; Tadini, C.C.; Gonçalves, C.B. The NOVA Classification System: A Critical Perspective in Food Science. Trends Food Sci. Technol. 2021, 116, 603–608. [Google Scholar] [CrossRef]
- Chazelas, E.; Pierre, F.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Agaesse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; Srour, B.; et al. Nitrites and Nitrates from Food Additives and Natural Sources and Cancer Risk: Results from the NutriNet-Santé Cohort. Int. J. Epidemiol. 2022, 51, 1106–1119. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Park, Y.; Graubard, B.I.; Leitzmann, M.F.; Hollenbeck, A.; Schatzkin, A.; Cross, A.J. Meat and Meat-Related Compounds and Risk of Prostate Cancer in a Large Prospective Cohort Study in the United States. Am. J. Epidemiol. 2009, 170, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, S.; Marciniak, W.; Derkacz, R.; Matuszczak, M.; Kiljańczyk, A.; Baszuk, P.; Bryśkiewicz, M.; Sikorski, A.; Gronwald, J.; Słojewski, M.; et al. Correlation Between Selenium and Zinc Levels and Survival among Prostate Cancer Patients. Nutrients 2024, 16, 527. [Google Scholar] [CrossRef]
- Hsing, A.W. Hormones and Prostate Cancer: What’s Next? Epidemiol. Rev. 2001, 23, 42–58. [Google Scholar] [CrossRef]
- de Sanchez Badajoz, E.; Lage-Sánchez, J.M.; Sánchez-Gallegos, P. Endocrine Disruptors and Prostate Cancer. Arch. Esp. Urol. 2017, 70, 331–335. [Google Scholar]
- Kim, H.; Hu, E.A.; Rebholz, C.M. Ultra-Processed Food Intake and Mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Public Health Nutr. 2019, 22, 1777–1785. [Google Scholar] [CrossRef]
- Bailey, R.L. Overview of Dietary Assessment Methods for Measuring Intakes of Foods, Beverages, and Dietary Supplements in Research Studies. Curr. Opin. Biotechnol. 2021, 70, 91–96. [Google Scholar] [CrossRef]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary Assessment Methods in Epidemiologic Studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The Star Shines Bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Sadler, C.R.; Grassby, T.; Hart, K.; Raats, M.; Sokolović, M.; Timotijevic, L. Processed Food Classification: Conceptualisation and Challenges. Trends Food Sci. Technol. 2021, 112, 149–162. [Google Scholar] [CrossRef]
- Braesco, V.; Souchon, I.; Sauvant, P.; Haurogné, T.; Maillot, M.; Féart, C.; Darmon, N. Ultra-Processed Foods: How Functional Is the NOVA System? Eur. J. Clin. Nutr. 2022, 76, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Draisma, G.; Etzioni, R.; Tsodikov, A.; Mariotto, A.; Wever, E.; Gulati, R.; Feuer, E.; de Koning, H. Lead Time and Overdiagnosis in Prostate-Specific Antigen Screening: Importance of Methods and Context. J. Natl. Cancer Inst. 2009, 101, 374–383. [Google Scholar] [CrossRef]
- Hayes, J.H.; Barry, M.J. Screening for Prostate Cancer with the Prostate-Specific Antigen Test: A Review of Current Evidence. JAMA 2014, 311, 1143–1149. [Google Scholar] [CrossRef]
Author, Year, Country | Period Conducted (Mean Follow-Up Time) | Sample Size, Prostate Cancer Cases | Study Design, Population | Dietary Assessment Method | Comparison of Dietary Exposure (UPF Consumption) | Outcome of Interest | Ascertainment of Prostate Cancer |
---|---|---|---|---|---|---|---|
Fiolet, 2018; France [14]. | 2009–2014 (5 years) | 104,980; 281 | Cohort; Adults >18 (NutriNet-Santé) | 24-h dietary recall | Quartile 4 vs. Quartile 1 | Risk of various cancers | Medical records |
Kliemann, 2023; Multi-country * [25]. | 1991–2005 (14.1 years) | 450,111; 6926 | Cohort; Middle-aged adults (EPIC) | FFQ or country-specific dietary questionnaires | Quartile 4 vs. Quartile 1 | Risk of various site-specific cancers | Cancer registries, cancer/pathology centers, health insurance records, active follow-up |
Chang, 2023; UK [23]. | 2009–2019 (10 years) | 197,426; 3261 | Cohort; Adults 40–60 years (UK Biobank) | 24-h dietary recall | Quartile 4 vs. Quartile 1 | Risk of various site-specific cancers | National cancer and mortality registries |
Trudeau, 2020; Canada [26]. | 2005–2012 (cases confirmed from 2005–2009) | 3910; 1919 cases, 1991 controls | Case–control; Adults < 76 y/o (PROtEuS) | 63-item FFQ | Quartile 4 vs. Quartile 1 | Risk of prostate cancer | Histologically confirmed cancer cases via included hospitals |
Romaguera, 2021; Spain [16]. | 2008–2013 (dietary information gathered 2.1 months after diagnosis on average) | 7834; 953 cases, 1283 controls | Case–control; Adults 20–85 y/o (MCC-Spain) | 140-item semiquantitative FFQ | Tertile 3 vs. Tertile 1 | Risk of prostate, breast, and colorectal cancers | Histologically confirmed cancer cases via pathology departments |
Pu, 2022; USA [24]. | 1993–2009 (10.76 years) | 15,103; 4336 | Cohort; Adults aged 55–74 y/o (PLCO Screening Trial) | 124-item DHQ | Tertile 3 vs. Tertile 1 | Cancer-related/all-cause mortality in prostate, lung, colorectal, and ovarian cancer | Screening exams + medical record abstraction |
Author, Year, Country | Outcome of Interest | Covariates Adjusted * | Statistical Methods | Results | Conclusion |
---|---|---|---|---|---|
Fiolet, 2018; France [14]. | Prostate cancer incidence | Education, Nutritional Quality of Diet (e.g., Lipid, Sodium, Carbohydrate). | Cox proportional hazards model | No association (Each 10% increase in UPF) | Higher UPF intake not linked to prostate cancer |
Kliemann, 2023; Multi-country [25]. | Prostate cancer incidence | Education, Nutritional Quality of Diet (e.g., Fiber, Fat, Sodium, Carbohydrates), Other Dietary Factors (Mediterranean Diet). | Cox proportional hazards model | No association (Quartile 4 vs. Quartile 1) | No significant association between UPF intake and cancer risk |
Chang, 2023; UK [23]. | Prostate cancer incidence | Ethnicity, Education, Nutritional Quality of Diet (e.g., Sodium, Total Fat, Carbohydrate, Fiber), Household Income. | Cox proportional hazard model | No association (Quartile 4 vs. Quartile 1) | Results aligned with NutriNet-Santé for prostate cancer incidence |
Trudeau, 2020; Canada [26]. | Prostate cancer risk | Education, Marital Status, Prostate Screening (PSA/DRE), Diabetes Status. | Logistic regression | OR 1.29 (processed foods), OR 0.86 (minimally processed) | Slight risk increase with processed foods; no UPF association |
Romaguera, 2021; Spain [16]. | Prostate cancer risk | Nutritional Quality of Diet (e.g., Fiber, Fatty Acids, Consumption of Fruits/Vegetables). | Logistic regression | No association (Tertile 3 vs. Tertile 1, OR 1.06) | No link between UPF intake and prostate cancer |
Pu, 2022; USA [24]. | Prostate cancer mortality | Race/Ethnic Group, Nutrient Intake (e.g., Fiber, Added Sugar, Fatty Acids), History of Diabetes, History of Hypertension, Food Groups and Servings (e.g., Vegetables, Fruit, Coffee, Red and Processed Meat). | Multivariable Cox regression | Significant association (Tertile 3 vs. Tertile 1, HR 1.15) | Higher UPF intake associated with increased prostate cancer risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fichtel-Epstein, C.; Huang, J.; Rich, B.J.; Taswell, C.S.; Isrow, D.; Jin, W. Ultra-Processed Food and Prostate Cancer Risk: A Systemic Review and Meta-Analysis. Cancers 2024, 16, 3953. https://doi.org/10.3390/cancers16233953
Fichtel-Epstein C, Huang J, Rich BJ, Taswell CS, Isrow D, Jin W. Ultra-Processed Food and Prostate Cancer Risk: A Systemic Review and Meta-Analysis. Cancers. 2024; 16(23):3953. https://doi.org/10.3390/cancers16233953
Chicago/Turabian StyleFichtel-Epstein, Cayla, Janice Huang, Benjamin James Rich, Crystal Seldon Taswell, Derek Isrow, and William Jin. 2024. "Ultra-Processed Food and Prostate Cancer Risk: A Systemic Review and Meta-Analysis" Cancers 16, no. 23: 3953. https://doi.org/10.3390/cancers16233953
APA StyleFichtel-Epstein, C., Huang, J., Rich, B. J., Taswell, C. S., Isrow, D., & Jin, W. (2024). Ultra-Processed Food and Prostate Cancer Risk: A Systemic Review and Meta-Analysis. Cancers, 16(23), 3953. https://doi.org/10.3390/cancers16233953