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Simple Summary: Inflammatory bowel disease includes ulcerative colitis and Crohn’s disease.
Ulcerative colitis affects the colon; its pathogenesis involves genetic susceptibility, microbes, and
immune dysregulation, and a higher risk of colorectal cancer. This study classified images of
ulcerative colitis using deep learning. A dataset was created to process images of the large intestine
capturing the three diagnoses of ulcerative colitis, colorectal cancer (adenocarcinoma), and normal
colon. The convolutional neural network (CNN) was trained to classify the images into three
diagnostic classes, and the performance was tested on an independent dataset. The gradient-weighted
class activation mapping (Grad-CAM) heatmap technique was used to understand the classification
decisions. Finally, LAIR1 and TOX2 expressions were analyzed in the ulcerative colitis cases. In
conclusion, the network classified the three diagnoses with high performance, and LAIR1 and TOX2
were found to correlate with the severity of ulcerative colitis.

Abstract: Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mu-
cosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin
and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer us-
ing artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was
designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis
(n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were
partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%)
to test the performance on the new data. The CNNs included transfer learning from ResNet-18,
and a comparison with other CNN models was performed. Explainable artificial intelligence for
computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 im-
munohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment.
Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis
was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression
in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05)
compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for
ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap
confirmed which regions of the images were the most important. The CNNs also differentiated
between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and
TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were
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correctly classified. Conclusions: CNNs are especially suited for image classification in conditions
such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology
markers in ulcerative colitis.

Keywords: artificial intelligence; machine learning; neural network; computer vision; deep learning;
pre-trained model; ImageNet; ResNet-18 network; ulcerative colitis; adenocarcinoma

1. Introduction

The aim of this study was to classify hematoxylin and eosin (H&E) images of ulcerative
colitis, colorectal cancer (adenocarcinoma), and normal colon using a convolutional neural
network (CNN) and the transfer learning strategy. The CNN that was used was the pre-
trained ResNet-18, but other CNN models were also tested for comparison. The analysis
also included immunohistochemical images of two immuno-oncology markers, LAIR1
and TOX2. In the case of ulcerative colitis, the distinction between steroid-requiring and
mesalizine-responsive types was also analyzed. The study also performed conventional
histopathological analysis of the samples and markers to strengthen the clinical implications
of the study.

Inflammatory bowel disease is a chronic inflammatory condition characterized by
relapsing-remitting inflammation of the gastrointestinal tract. It includes two main entities:
ulcerative colitis, which affects the colon, and Crohn’s disease, which can involve any part
of the gastrointestinal tract [1]. The estimated prevalence of inflammatory bowel disease is
up to 0.8% in countries such as the UK [2]. The pathogenesis of this condition is still not well
understood in either entity, and there is overlap between the two [3]. In pathogenesis, both
the host immune response and microbial factors are involved, including alterations of the
epithelial barrier [4], dysregulation of immune cells, dysregulation of secreted mediators,
microbes, and genetic susceptibility [5] (Table 1).

Table 1. Pathogenesis of inflammatory bowel disease.

Mechanisms Key Players

Dysregulation of the epithelial barrier Alterations of the mucus, increased number of bacteria
within the mucus, and increased intestinal
permeability [6–8].

Dysregulation of immune cells Increased recruitment and activation of immune cell,
including myeloid inflammatory cells, natural killer
cells, T cells, B cells, plasma cells, neutrophils, and
other leukocytes [9–17].

Dysregulation of immune regulators
and inflammatory cytokines

CD4 + T lymphocytes, interferon (IFN)-gamma, Th1,
Th2, Th17, FOXP3 + regulatory T lymphocytes (Tregs),
IL-10, TGFB, CD8 + cytotoxic T lymphocytes [18–25].

Microbes Alterations in the diversity and density of
bacteria [26–29], specific microbial components,
intestinal viruses [9,30–32], and fungi [33–35].

Genetic susceptibility Over 240 different susceptibility loci, NOD2, ATG16L1,
NADPH, and immune-related (Th17/IL-23, IL-10,
TNFSF15, cytokine, adaptive immune response, and
epithelial pathways) [14,36–44].

Ulcerative colitis is an inflammatory disease limited to the colon that usually affects the
rectum and extends to the proximal side. The prevalence of ulcerative colitis is estimated
to be 5 million cases worldwide [45]. The onset of the disease is usually gradual and
progressive over time and is typically accompanied by diarrhea. Systemic symptoms
include weight loss, fatigue, and fever [5,45]. The disease severity ranges from mild to
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moderate and severe, and the Mayo scoring system/Disease Activity Index (DAI) can be
used to assess disease severity and monitor the response to therapy [46,47]. The variables
of the Mayo score are stool pattern, most severe rectal bleeding of the day, endoscopic
findings, and global assessment by the clinician [48].

Acute complications of ulcerative colitis include severe bleeding that occurs in up
to 10% of patients, fulminant colitis and toxic megacolon, and perforation [5,45]. Ulcer-
ative colitis is a primary disease of the colon. However, extraintestinal manifestations
are also present: musculoskeletal (arthritis and arthropathy), eye (uveitis and episcleritis),
skin (erythema nodosum and pyoderma gangrenosum), hepatobiliary (primary scleros-
ing cholangitis, fatty liver and autoimmune liver disease), hematopoietic/coagulation
(thromboembolism), and pulmonary [5,45,49–54].

The diagnosis of ulcerative colitis is based on the presence of chronic diarrhea for
>4 weeks and evidence of colon inflammation on histological biopsy [45]. Because these
characteristics are not specific, other diseases must be excluded before the diagnosis of
ulcerative colitis, including Crohn’s disease, infection colitis, radiation colitis, diverti-
culitis, diversion colitis, solitary rectal ulcer syndrome, graft-versus-host disease, and
medication-associated colitis [5]. Of note, patients with ulcerative colitis have a higher risk
of developing dysplasia and colorectal cancer [5]. The extent of the affected area (patients
with pancolitis) and the duration of the disease are the two major risk factors associated
with the development of neoplasia [55].

The aim of treatment in patients with active ulcerative colitis is to achieve clinical
and endoscopic remission. Mesalamine (mesalazine) is a 5-aminosalicylic acid derivative
initially used. If there is no improvement, glucocorticoids are used (for example, budes-
onide or prednisone). Failure to respond and refractory disease may require systemic
glucocorticoids and biological agents, such as anti-tumor necrosis (TNF) agents, anti-α4β7-
integrin (vedolizumab), anti-interleukin antibody-based therapy, sphingosine-1-phosphate
(S1P) receptor modulators, or small molecules (tofacitinib, a small-molecule Janus kinase
inhibitor) [56–66].

Colorectal cancer (CRC) is a common and lethal disease, with an annual incidence
of approximately 153,000 cases [67]. The risk of CRC depends on environmental and
genetic factors such as inflammatory bowel disease [68]. The diagnosis is usually made by
colonoscopy. The management of localized disease involves surgical resection and adjuvant
chemotherapy [69].

Convolutional neural networks for deep learning image classification are an applica-
tion of digital pathology and artificial intelligence in translational medicine and clinical
practice [70]. The deep learning workflow includes data preprocessing, network build-
ing, training, network performance improvement by tuning hyperparameters or running
multiple trials, and visualization and verification of network behavior during and after
training [71].

This study used several convolutional neural networks to classify images of ulcerative
colitis and differentiate between colonic control and colorectal cancer (adenocarcinoma).
In addition, the protein expression of a new immuno-oncology marker was explored in
ulcerative colitis cases.

2. Materials and Methods
2.1. Patients and Samples

The hematoxylin and eosin (H&E) histological slides of 35 ulcerative colitis patients
were retrieved from our previous publication [72]. All patients were started on 5-ASA
(mesalazine) treatment with or without probiotics. A more aggressive treatment (pred-
nisolone as the first choice) was used if the initial treatment failed to induce remission state
(UC-DAI score, 1–2) or if the disease relapsed as defined by symptoms (UC-DAI > 2, with
bloody stool) as well as by laboratory data and/or colonoscopy [72]. After a follow-up of
2 years, 35 cases were classified into two groups: 22 cases of mesalazine-responsive ulcera-
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tive colitis (clinically denominated as “benign”) and 13 cases of steroid-requiring ulcerative
colitis (clinically characterized by a more “aggressive” behavior).

Other recorded clinicopathological characteristics included age at biopsy, sex, biopsy
location, Baron score for endoscopic grading of ulcerative colitis [73–75], and histopatho-
logical Geboes score for ulcerative colitis [76]. This study was conducted in accordance
with the World Medical Association (WMA) Declaration of Helsinki on ethical principles
for medical research involving human subjects (IRB 13R-119, IRB14R-080, and IRB20-156).

2.2. Immunohistochemistry

Immunohistochemistry targeting LAIR1 was performed using a Bond-Max fully au-
tomated immunohistochemistry and in situ hybridization staining system, following the
manufacturer’s instructions (Leica Biosystems K.K., Tokyo, Japan). For immunohistochem-
istry using DAB chromogen and hematoxylin counterstain, a polymer detection system
DS9800 was used (Leica Byosystems). The primary antibody, targeting the leukocyte-
associated immunoglobulin-like receptor (LAIR1/CD305), was developed by Dr. Gio-
vanna Roncador of the Monoclonal Antibodies Core Unit, located at the Spanish National
Cancer Research Center (also known as CNIO: Centro Nacional de Investigaciones On-
cologicas). LAIR1 is a rat monoclonal antibody (clone JAVI82A) antigen using RBL-1-
LAIR1-MYC-DDK-transfected cells, with the final booster containing LAIR1 recombinant
protein (Gln22-His163, with a C-terminal 6-His tag); isotype IgG2a; reactivity, human;
localization, membrane.

The TOX2 antibody targeted the TOX High Mobility Group Box Family Member 2 and
was also developed by CNIO. Properties: clone name TOM924D, rat monoclonal, IgG2b K,
antigen HIS-SUMO-hTOX2-Strep-tag2 full-length protein, human reactivity, nucleus local-
ization. Conventional immunohistochemical analysis was performed using digital image
quantification with Fiji software (Release 2.16.0), as we have previously described [77,78].

2.3. Image Classification Using CNN

This study classified images using CNNs [79]. The slides were scanned using a
NanoZoomer S360 virtual slide scanner (#C13220-01, Hamamatsu Photonics, Hamamatsu,
Japan). Digital whole-slide images were visualized using the NDP.view2 software (#U12388-
01, Hamamatsu Photonics), and each intestinal biopsy was exported into a jpeg file at 200×
magnification and 150 dpi. Subsequently, the whole-slide images were split at 243 × 243
size (PhotoScape v3.7, website: http://www.photoscape.org, last accessed on 4 December
2024), reviewed by the pathologist (J.C.), and unproductive image patches were excluded
from the analysis.

The filtering criteria were as follows: (1) image patches that were not 243 × 243 pixels
in size; (2) image patches smaller than 5–31 KB, which usually do not contain tissue;
(3) image patches that did not contain diagnostic areas based on histopathological criteria;
(4) image patches with artifacts, such as broken or folded tissue, or incorrect staining. The
dataset included 18 cases of colorectal cancer (adenocarcinoma) and 21 patients classified as
colon controls, all of whom had undergone diagnostic biopsies and surgical resection. For
each diagnosis, all image patches from all cases were initially pooled into a single folder.

A CNN was designed based on transfer learning from ResNet-18 and trained to
classify three diagnostic classes: ulcerative colitis (n = 9281), colon control (n = 12,246),
and colorectal cancer (n = 63,725). The data were partitioned into a training set (70% of
the image patches) to train the network, a validation set (10%) to test the performance
of the network during training, and a test set (20%) as a holdout (new data) to test the
performance on new data. The order of the image patches was randomized to ensure that
learning across classes was even.

Data normalization was applied to the input images as previously described [71]. The
code was run in the MATLAB programming language and the numeric computing envi-
ronment (R2023b, update 9 released 30 July 2024, MathWorks, Natick, Apple Hill Campus,
1 Apple Hill Drive, Natick, MA 01760-2098, USA), as we have recently described [71]. The

http://www.photoscape.org
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input size was 224-by-224 (224 × 224 × 3). In summary, the code loaded the pre-trained
CNN, replaced the final layers, trained the network, made predictions, assessed the accu-
racy, and deployed the results. The design and training parameters of the CNN are listed
in Table 2.

Table 2. Design and training parameters of the convolutional neural network.

ResNet-18-Based CNN Training (70%) Validation (10%) Training Options

Input type: image patches
Output type: classification
Number of layers: 71
Number of connections: 78

Observations: 59,677
Classes: 3
Ulcerative colitis: 6497
Colorectal cancer: 44,608
Colon control: 8572

Observations: 8525
Classes: 3
Ulcerative colitis: 928
Colorectal cancer: 6372
Colon control: 1225

Solver: sgdm
Initial learning rate: 0.001
MiniBatch size: 128
MaxEpochs: 5
Validation frequency: 50
Iterations: 2330
Iterations per epoch: 466

Based on transfer learning of ResNet-18. Convolutional neural network, CNN.

Advanced explainable artificial intelligence for computer vision was performed to
understand the classification decisions by the deep learning network using the gradient-
weighted class activation mapping (Grad-CAM) heatmap technique. The performance was
calculated using the confusion matrices as we have previously described [80].

Using transfer learning, the performance of the ResNet-18-based network was com-
pared to other pre-trained networks, including AlexNet, DenseNet-201, EfficientNet-b0,
GoogLeNet, Inception-v3, MobileNet-v2, NASNet-Large, NASNet-Mobile, ResNet-18,
ResNet-50, ResNet-101, ShuffleNet, VGG-16, VGG-19, and Xception (Table 3).

Figures 1–4 show characteristic H&E images of the different diagnoses and the splitting
of images.
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Figure 1. Histological types. Upper section: the three types of samples that were included in this
study were ulcerative colitis (left), colon control (middle), and colorectal cancer (adenocarcinoma,
right); original magnification 100×. Lower section: the whole-slide images were split into patches
of 224 × 224 size (i.e., divided into multiple images of 224 px width and 224 px height). Only the
diagnostic areas marked in yellow were used in the CNN analysis; original magnification 200×.

Table 3. Transfer learning using pre-trained neural networks.

Name [References] Model Name Argument Depth Size (MB) Parameters (Millions) Image Input Size

AlexNet [81] “alexnet” 8 227 61 227-by-227
DenseNet-201 [82] “densenet201” 201 77 20 224-by-224
EfficientNet-b0 [83] “efficientnetb0” 82 20 5.3 224-by-224
GoogLeNet [84,85] “googlenet” 22 27 7 224-by-224

“googlenet-places365”
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Table 3. Cont.

Name [References] Model Name Argument Depth Size (MB) Parameters (Millions) Image Input Size

Inception-v3 [86] “inceptionv3” 48 89 23.9 299-by-299
MobileNet-v2 [87] “mobilenetv2” 53 13 3.5 224-by-224
NASNet-Large [88] “nasnetlarge” * 332 88.9 331-by-331

NASNet-Mobile [88] “nasnetmobile” * 20 5.3 224-by-224
ResNet-18 [89] “resnet18” 18 44 11.7 224-by-224
ResNet-50 [89] “resnet50” 50 96 25.6 224-by-224
ResNet-101 [89] “resnet101” 101 167 44.6 224-by-224
ShuffleNet [90] “shufflenet” 50 5.4 1.4 224-by-224

VGG-16 [91] “vgg16” 16 515 138 224-by-224
VGG-19 [91] “vgg19” 19 535 144 224-by-224
Xception [92] “xception” 71 85 22.9 299-by-299

* The NASNet-Mobile and NASNet-Large neural networks do not consist of a linear sequence of modules.
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submucosa, and granulomas and fissuring ulcers are absent. Well-established disease can be asso-
ciated with dysplasia of the epithelium, either low-grade or high-grade. The most commonly used 
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Figure 2. Images of ulcerative colitis. Whole-slide images at original magnification 200× were split
into image patches of 224 × 224 size (i.e., divided into multiple images of 224 px width and 224 px
height). Ulcerative colitis is an idiopathic chronic inflammation that affects the colon mucosa. This
disorder characteristically affects the rectum and extends toward proximal sections of the colon
in a continuous manner. Microscopically, there are signs of active chronic colitis when untreated.
Chronicity includes distorted architecture of the crypts, such as atrophy, irregular spacing, shortening,
and branching; inflammation of the lamina propria with basal lymphoplasmacytosis; and Panet cell
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metaplasia or hyperplasia. Disease activity is confirmed by neutrophil infiltration of the muscosa,
cryptitis, crypt abscess, or ulceration. Typically, inflammation is limited to the mucosa and submucosa,
and granulomas and fissuring ulcers are absent. Well-established disease can be associated with
dysplasia of the epithelium, either low-grade or high-grade. The most commonly used score to
evaluate the histological features is the Geboes score [93–97].
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Figure 3. Images of colorectal cancer (adenocarcinoma). Original magnification 200×. Whole-slide
images were split into patches of 224 × 224 size. Adenocarcinoma of the colon is a glandular neoplasm
that accounts for approximately 98% of all colonic cancers. Patients with inflammatory bowel disease,
polyposis, and Lynch syndrome [98,99] are at a higher risk of developing colorectal cancer. Most
cases display high or moderate differentiation of the carcinoma glands accompanied by marked
growth of the fibrous connective tissue, known as desmoplasia [100,101]. The glands can show a
cribriform pattern and are filled with necrotic debris. Adenocarcinomas are characterized by epithelial
cells with stretched and stratified nuclei, which create complex glandular structures. The nuclei
exhibit polymorphism and loss of polarity. The tumor immune microenvironment exhibits variable
infiltration of inflammatory cells. There are several recognized subtypes, including adenoma-like,
adenosquamous, mucinous, micropapillary, signet-ring, serrated, and sarcomatoid [93,101–107].
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Figure 4. Images of the colon control. Original magnification 200×. Whole-slide images were split into
patches of 224 × 224 size. The colonic mucosa functions primarily to absorb water and electrolytes,
a process carried out by absorptive columnar cells, and to produce mucus for lubrication, which
is secreted by goblet cells. The mucosa comprises the epithelium, lamina propria, and muscularis
mucosa. The epithelium invaginates and forms glands (crypts), where at its base there is also the
presence of enteroendocrine, Paneth cells, and stem cells. The lamina propria is rich in capillaries and
lymphatics. Loose connective tissue and nerve plexuses are found in the submucosa. The muscularis
propria has an inner circular layer and an outer longitudinal layer, and within them, the Auerbach
nerve plexus is located. The outer layers are the subserosa and serosa [93,108,109].

3. Results
3.1. Clinicopathological Characteristics and Conventional Histological Analysis

The clinicopathological characteristics of the series are shown in Table 4. The number
of cases in the series was 35, with a mean age of 38.4 years and a male/female ratio of
20/35. Most of the biopsies were from the rectum, which was the most pathological area.
Most cases had an endoscopic Baron score of 1 and 2. The most frequent histologic Geboes
scores were 2 to 4. In comparison to mesalazine-responsive ulcerative colitis, the steroid-
requiring type was characterized by higher protein expression of LAIR1 (20.74% ± 7.48 vs.
28.18% ± 6.26, p = 0.001) and lower TOX2-positive cells in the isolated lymphoid follicles
(ILFs) (11.74% ± 3.47 vs. 7.03% ± 5.03, p = 0.019) (Table 4 and Figure 5).
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Table 4. Clinicopathological characteristics of ulcerative colitis.

Variable
No. (%)

Mesalazine
-Responsive

Steroid
-Requiring All Cases p Value

Number of patients 22 13 35
Age (mean ± STD) 43.7 ± 13.6 29.5 ± 17.6 38.4 ± 16.4 0.012
Sex (male/female) 14/22 (63.6) 6/13 (46.2) 20/35 (57.1) 0.481

Colon biopsy location
Ascending 0/22 (0) 1/13 (7.7) 1/35 (2.9) 0.009
Transverse 0/22 (0) 2/13 (15.4) 2/35 (5.7)
Descending 2/22 (9.1) 3/13 (23.1) 5/35 (14.3)

Sigmoid 2/22 (9.1) 3/13 (23.1) 5/35 (14.3)
Rectum 18/22 (81.8) 4/13 (30.8) 22/35 (62.9)

Endoscopic Baron score
1 13/22 (59.1) 2/13 (15.4 15/35 (42.9) 0.009
2 9/22 (40.9) 8/13 (61.5) 17/35 (48.6)
3 0/22 (0) 3/13 (23.1) 3/35 (8.6)

Histologic Geboes score
1 2/22 (9.1) 0/13 (0) 2/35 (5.) 0.101 (0.007 *1)
2 13/22 (59.1) 4/13 (30.8) 17/35 (48.6)
3 5/22 (22.7) 3/13 (23.1) 8/35 (22.9)
4 2/22 (9.1) 5/13 (38.5) 7/35 (20)
5 0/22 (0) 1/13 (7.7) 1/35 (2.9)

Immuno-oncology markers
LAIR1 20.74% ± 7.48 28.18% ± 6.26 23.28% ± 7.86 0.001
TOX2 2.98% ± 1.78 2.39% ± 1.05 2.79% ± 1.59 0.360

TOX2 isolated lymphoid follicles *2 11.74% ± 3.47 7.03% ± 5.03 10.37% ± 2.45 0.019

*1 Linear-by-linear association within the chi-square test. *2 Isolated lymphoid follicles were only present in
24 cases.
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Figure 5. Conventional immunohistochemical analysis of LAIR1 and TOX2 in ulcerative colitis. LAIR1
and TOX2 are two new immuno-oncology markers that target cells of the microenvironment. TOX2 is
comparable to PD-1. In comparison to mesalazine-responsive ulcerative colitis, the steroid-requiring
type was characterized by higher protein expression of LAIR1 (20.74% ± 7.48 vs. 28.18% ± 6.26,
p = 0.001) and lower TOX2-positive cells in the isolated lymphoid follicles (ILFs) (11.74% ± 3.47 vs.
7.03% ± 5.03, p = 0.019). ILFs, isolated lymphoid follicles of the lamina propria. Original magnification
200×. The isolated lymphoid follicles are highlighted using a yellow circle.
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3.2. Image Classification Based on Transfer Learning from ResNet-18

Transfer learning using the pre-trained ResNet-18 CNN was used to classify the image
patches of ulcerative colitis, colorectal cancer (adenocarcinoma), and colon control. The
data (image patches) were partitioned into a training set (70% of the images) to train the
network, a validation set (10%) to test the performance (accuracy and loss) of the network
during training, and a test set (20%) as a holdout (new data) to test the performance on new
data. The network performance during training and validation is shown in Figure 6. The
network achieved high accuracy and low loss during the first 100 iterations.
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partitioned into a training set (70% of the images) to train the network and a validation set (10%)
to test the performance of the network during the training; a test set (20%) was used as a holdout
to test the performance of the trained network on new data. This figure shows the accuracy and
loss during the training (70%) and validation (10%) sets. The CNN was based on transfer learning
from ResNet-18.

After training, new images of the test set (holdout) were classified using the trained
CNN. The result achieved a performance of 99% (accuracy). The confusion matrix is shown
in Figure 7.

The classification performance for each diagnosis is presented in Table 5. Raw data is
shown in Supplementary Material.

Table 5. Parameters of the network performance of the test dataset (holdout, new data).

Predicted Variable Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) False Positive Rate (%)

Ulcerative colitis 99.10 97.09 94.79 95.93 99.64 0.36
Adenocarcinoma 99.84 99.90 99.88 99.89 99.70 0.30

Colon control 99.06 95.75 97.63 96.68 99.29 0.71

Based on ResNet-18 transfer learning. Recall also refers to sensitivity and the true positive rate (TPR). False
positive rate (FPR).
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Figure 7. Confusion matrix of the test dataset (new data). The data were partitioned into a training
set (70% of the image patches) to train the network and a validation set (10%) to test the performance
of the network during the training; a test set (20%) was used as a holdout to test the performance of
the trained network on new data.

3.3. Grad-CAM Heatmap Analysis

The Grad-CAM heatmap was used to visualize which regions of the images were
important to the classification decision of the network. This method uses the classification
score gradient relative to the final convolutional feature map. The regions of the images
with large values for the Grad-CAM maps had the greatest effect on the network score
for that diagnosis (image classification). Some examples of correctly classified images
are shown in Figure 8; the network focused on the epithelial layer and inflammatory
components of the lamina propria.
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Figure 8. Explanation of network predictions using Grad-CAM. Grad-CAM was used to visualize
which regions of the image were important for the classification decision (diagnosis) of the network.
The most relevant regions are highlighted in red (jet colormap). The prediction scores for each
diagnosis are shown below each hematoxylin and eosin (H&E) image. ADK, adenocarcinoma
(colorectal cancer); CC, colon control; UC, ulcerative colitis. Original magnification 200× (whole-slide
images were split into patches of 224 × 224 size).
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In a few instances, the classification of images was incorrect, resulting in discrepancies
between diagnosis and prediction. A review of these cases showed that, in most instances,
the discrepancies arose because the images were not diagnostic from a histopathological
point of view or because the network was focusing on an incorrect region of the image
during classification, as shown in the Grad-CAM analysis (Figure 9).
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Figure 9. Grad-CAM analysis of incorrectly classified images. Grad-CAM analysis was used to
visualize which regions of the image were important for the classification decision (diagnosis) of the
network. In most cases, the classification errors occurred because the network focused on incorrect
areas within the image or because the image itself was not diagnostic from a histopathological point
of view. Original magnification 200× (whole-slide images were split into patches of 224 × 224 size).

3.4. Differentiation Between Steroid-Requiring and Mesalazine-Responsive Ulcerative Colitis

Ulcerative colitis can be divided into two clinical groups based on the requirement for
steroids to control colon inflammation. Transfer learning from ResNet-18 was performed to
predict and classify the H&E images of ulcerative colitis into the two subtypes of steroid-
requiring (“aggressive”) and mesalazine-responsive (“benign”). In the test set, the accuracy
was 79.53%. The confusion matrix is shown in Figure 10, and the network performance is
shown in Table 6.

Table 6. Parameters of the network performance of the test dataset (holdout, new data) using H&E
images.

Predicted Variable Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) False Positive Rate (%)

Steroid-requiring 79.53 66.18 70.74 68.39 83.53 16.47
Mesalazine-responsive 79.53 86.23 83.53 84.86 70.74 29.26

Based on ResNet-18 transfer learning. Recall also refers to sensitivity and the true positive rate (TPR). False
positive rate (FPR).
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Figure 10. Confusion matrix of the test dataset for the classification of steroid-requiring and
nonsteroid-requiring/mesalazine-responsive. The test dataset included new data (holdout, 20%).
The analysis was based on transfer learning from ResNet-18. The accuracy was 79.53%.

3.5. Differentiation Between Steroid-Requiring (SR) and Mesalazine-Responsive Ulcerative Colitis
Using LAIR1 Immunohistochemistry

Ulcerative colitis can be divided into two clinical groups based on the requirement
for steroids to control colon inflammation, as described in Section 3.3. The analysis of
H&E highlighted the importance of both the epithelial and inflammatory components.
LAIR1 is a new marker of the immune microenvironment and an immuno-oncology target.
Therefore, transfer learning from ResNet-18 was performed to predict and classify the
LAIR1 images of ulcerative colitis into the two subtypes of steroid-requiring (“aggressive”)
and mesalazine-responsive (“benign”). In the test set, the accuracy was 88.31%. The
confusion matrix is shown in Figure 11, and the network performance is shown in Table 7.
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Figure 11. Confusion matrix of the test dataset for the classification of steroid-requiring and
nonsteroid-requiring/mesalazine-responsive using LAIR1 immunohistochemistry. The test dataset
included new data (holdout, 20%). The analysis was based on transfer learning from ResNet-18. The
accuracy was 88.31%.

Table 7. Parameters of network performance of the test dataset (holdout, new data) using LAIR1
immunohistochemistry.

Predicted Variable Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) False Positive Rate (%)

Steroid-requiring 88.31 79.38 82.26 80.79 90.89 9.11
Mesalazine-responsive 88.31 92.31 90.89 91.59 82.26 17.74

Based on ResNet-18 transfer learning. Recall also refers to sensitivity and the true positive rate (TPR). False
positive rate (FPR).

Examples of steroid-requiring and mesalazine-response ulcerative colitis and character-
istic LAIR1 immunohistochemistry are shown in Figure 11. Evaluation of the whole-tissue
images of LAIR1 showed that steroid-requiring patients had a more prominent inflamma-
tion of the lamina propria, as shown in Figures 12 and 13.
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Figure 13. Examples of the split images of LAIR1 immunohistochemistry in the ulcerative colitis
dataset. The split images were used as input data in the CNN, which managed to classify between
steroid-requiring and nonsteroid-requiring/mesalazine-responsive ulcerative cases. Overall, the
inflammatory component was higher in the steroid-requiring cases. Original magnification 200×
(whole-slide images were split into patches of 224 × 224 size).

3.6. Differentiation Between Steroid-Requiring (SR) and Mesalazine-Responsive Ulcerative Colitis
Using TOX2 Immunohistochemistry

TOX2 (TOX high mobility group box family member 2) is a new marker of the immune
microenvironment and an immuno-oncology target. Transfer learning using ResNet-18
classified the TOX2 images of ulcerative colitis into steroid-requiring and mesalazine-
responsive. In the test set, the accuracy was 85.62%. The confusion matrix is shown in
Figure 14, and the network performance is shown in Table 8.
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Examples of steroid-requiring and mesalazine-response ulcerative colitis and char-
acteristic TOX2 immunohistochemistry are shown in Figure 14. Evaluation of the whole-
tissue images of TOX2 showed that the TOX2-positive inflammatory component was 
higher in mesalazine-responsive cases, as shown in Figures 15 and 16. 

 
Figure 15. TOX2 immunohistochemistry in the ulcerative colitis dataset and classification of steroid-
requiring and nonsteroid-requiring/mesalazine-responsive ulcerative colitis cases. Overall, the 

Figure 14. Confusion matrix of the test dataset for the classification of steroid-requiring and
nonsteroid-requiring/mesalazine-responsive using TOX2 immunohistochemistry. The test dataset
included new data (holdout, 20%). The analysis was based on transfer learning from ResNet-18. The
accuracy was 85.62%.

Table 8. Parameters of the network performance of the test dataset (holdout, new data) using TOX2
immunohistochemistry.

Predicted Variable Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) False Positive Rate (%)

Steroid-requiring 85.62 72.04 79.51 75.59 87.99 12.01
Mesalazine-responsive 85.62 91.69 87.99 89.80 79.51 20.49

Based on ResNet-18 transfer learning. Recall also refers to sensitivity and the true positive rate (TPR). False
positive rate (FPR).

Examples of steroid-requiring and mesalazine-response ulcerative colitis and charac-
teristic TOX2 immunohistochemistry are shown in Figure 14. Evaluation of the whole-tissue
images of TOX2 showed that the TOX2-positive inflammatory component was higher in
mesalazine-responsive cases, as shown in Figures 15 and 16.
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Figure 15. TOX2 immunohistochemistry in the ulcerative colitis dataset and classification of steroid-
requiring and nonsteroid-requiring/mesalazine-responsive ulcerative colitis cases. Overall, the
TOX2-positive inflammatory component was higher in the mesalazine-responsive cases. Original
magnification 100×.
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Transfer learning using several pre-trained CNN was used to classify images of ulcerative 
colitis, colorectal cancer (adenocarcinoma), and colon control. The network performance 
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Figure 16. Examples of the split images of TOX2 immunohistochemistry in the ulcerative colitis
dataset. The split images were used as input data in the CNN, which managed to classify between
steroid-requiring and nonsteroid-requiring/mesalazine-responsive ulcerative cases. Overall, the
TOX2-positive inflammatory component was higher in the mesalazine-responsive cases. Original
magnification 200× (whole-slide images were split into patches of 224 × 224 size).

3.7. Image Classification Using Transfer Learning with Other Convolutional Neural Networks

The performance of ResNet-18 using H&E images was compared to other CNNs.
Transfer learning using several pre-trained CNN was used to classify images of ulcerative
colitis, colorectal cancer (adenocarcinoma), and colon control. The network performance of
the validation test set (holdout, new data) is shown in Table 9 and Appendix A. ResNet-18
demonstrated strong performance with an accuracy of 99%. However, when all CNNs
were run, the best results were obtained using DenseNet-201 (99.3%), ResNet-50 (99.14%),
Inception-v3 (99.13%), and ResNet-101 (99.1%). Notably, the NasNet-Large CNN required
a significantly longer training time (12,495 min 37 s) than the other models.

Table 9. Performance comparison of CNN networks on the test set (holdout, new data) using H&E
images.

Model Accuracy (%) Training Time

DenseNet-201 99.30 302 min 29 s
ResNet-50 99.14 24 min 30 s

Inception-v3 99.13 138 min 28 s
ResNet-101 99.10 252 min 45 s
ResNet-18 99.00 38 min 31 s
ShuffleNet 98.94 10 min 13 s

MobileNet-v2 98.89 22 min 27 s
NasNet-Large 98.88 12,495 min 37 s

GoogLeNet-Places365 98.86 17 min 16 s
VGG-19 98.80 439 min 48 s

EfficientNet-b0 98.79 55 min 25 s
AlexNet 98.77 8 min 23 s
Xception 98.66 497 min 23 s
VGG-16 98.65 365 min 54 s

GoogLeNet 98.60 17 min 5 s
NasNet-Mobile 98.58 88 min 34 s

This analysis was performed using transfer learning from several types of pre-trained convolutional neural
networks (CNN) for image classification. Transfer learning using several pre-trained CNNs was used to classify
images of ulcerative colitis, colorectal cancer (adenocarcinoma), and colon control.
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3.8. Image Classification of Additional Cases of Colorectal Cancer Using the ResNet-18
Trained Network

In this study, the image patches of the three diagnoses were pooled and later split
into training, validation, and test sets. However, this strategy can create an information
leak. Therefore, an additional independent series of 10 cases of colorectal cancer (ade-
nocarcinoma) were classified to confirm the performance of the trained CNN (based on
ResNet-18 architecture). In this analysis, each patient was analyzed independently. The
CNN classified all cases as adenocarcinoma. The results are shown in Table 10.

Table 10. Image classification of 10 additional cases of colorectal adenocarcinoma using the trained
network.

Classification Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

True CRC CRC CRC CRC CRC CRC CRC CRC CRC CRC
Predicted

Adenocarcinoma 460 970 769 961 356 67 376 504 677 210
(%) (98.08) (99.18) (96.13) (100) (83.76) (82.72) (96.66) (98.82) (96.58) (50.60)

Ulcerative colitis 9 1 19 0 66 11 10 6 24 195
(%) (1.92) (0.10) (2.38) (0.00) (15.53) (13.58) (2.57) (1.18) (3.42) (46.99)

Colon control 0 7 12 0 3 3 3 0 0 10
(%) (0.00) (0.72) (1.50) (0.00) (0.71) (3.70) (0.77) (0.00) (0.00) (2.41)

Total image patches 469 978 800 961 425 81 389 510 701 415
(%) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)

In this analysis, each whole-slide image of each patient with colon adenocarcinoma was analyzed independently,
and the image patches were analyzed using the previously trained ResNet-18 CNN. Colorectal cancer (CRC,
adenocarcinoma).

3.9. Image Classification of Additional Cases of Mesalazine-Responsive Ulcerative Colitis with
Absent/Mild Histological Changes Using the ResNet-18 Trained Network

An additional independent series of 10 cases of mesalazine-responsive ulcerative colitis
with absent/mild histological epithelial changes was analyzed to confirm the performance
of the trained CNN (based on ResNet-18 architecture). In this analysis, each patient was
analyzed independently. The CNN classified most of the cases as colon control. Therefore,
the CNN did not outperform the diagnostic abilities of the experienced medical pathologist,
who also incorporated clinical variables into their final diagnosis. Notably, the Grad-CAM
analysis showed that the CNN was focusing on the epithelial layer. The results are shown
in Table 11.

Table 11. Image classification of 10 additional cases of mesalazine-responsive ulcerative colitis with
absent/mild histological changes and an almost normal epithelial layer.

Classification Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

True UC UC UC UC UC UC UC UC UC UC
Baron score 1 1 1 1 2 2 2 2 2 1

Geboes score 2 4 2 2 2 1 3 2 4 1
Predicted

Adenocarcinoma 0 81 438 1 8 5 2 1 11 0
(%) (0.00) (17.31) (78.21) 1(0.28) (1.29) (1.69) (0.56) (0.31) (2.64) (0.00)

Ulcerative colitis 1 4 4 70 302 0 79 18 223 91
(%) (0.46) (0.85) (0.71) (19.83) (48.79) (0.00) 22.07 5.66 53.48 56.88

Colon control 217 383 118 282 309 291 277 299 183 69
(%) 99.54 81.84 21.07 79.89 49.92 98.31 77.37 94.03 43.88 43.13

Total image patches 218 468 560 353 619 296 358 318 417 160
(%) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)

In this analysis, each whole-slide image from each patient was analyzed independently, and the image patches
were analyzed using the previously trained ResNet-18 CNN through transfer learning. These cases were charac-
terized by absent or mild architectural changes in the epithelium, mild inflammation, and variable inflammation
in some cases. The trained ResNet-18 CNN failed to properly classify these cases. Therefore, the CNN did not
outperform the diagnostic abilities of the medical specialist in pathology, who also incorporated clinical variables
into their final diagnosis.
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4. Discussion

Ulcerative colitis is a chronic inflammatory bowel disease that primarily affects the mu-
cosal layer of the colon recurrently. It usually affects the rectum and extends continuously
toward the proximal segments of the colon [5,110]. Patients usually present with diarrhea
that may include blood, with a gradual and progressive onset of symptoms [5,45,110].
Disease evaluation includes history, laboratory studies, endoscopy, and biopsy. Several
factors affect the disease course, including age at diagnosis, mucosal healing, extension
of colitis, and smoking. Chronic complications include stricture, dysplasia, and colorectal
cancer [49].

The endoscopic findings are nonspecific and include loss of vascular marking, granular
mucosa, petechiae, exudates, edema, erosions, friability, ulcerations, and bleeding [111].
Endoscopic biopsies show neutrophilic infiltration with cryptitis, crypt abscesses, and ulcer-
ations when the disease is active. Chronic disease involves crypt architectural alterations,
chronic inflammation of the lamina propria with lymphoplasmocytosis, and Paneth cell
metaplasia or hyperplasia [93,94,108]. This study analyzed images of ulcerative colitis
using a convolutional neural network (CNN).

A CNN is a deep learning technique in machine learning, trained using a large
dataset of images. In this study, a CNN was used to analyze whole-slide images (WSI)
from hematoxylin and eosin (H&E) microscope pathology slides of ulcerative colitis, colon
control, and colorectal cancer (adenocarcinoma). Artificial intelligence (AI) refers to systems
capable of simulating human intelligence by mimicking cognitive functions such as learning
and problem solving. AI can be divided into two types: artificial general intelligence, or
strong AI, which exhibits generalized human cognitive abilities [112–114]; and narrow AI,
or weak AI, which focuses on specific tasks of human intelligence [115,116]. There are two
types of narrow AI: rule-based AI follows predefined machine rules, while example-based
AI learns patterns from provided examples [117]. This study employed narrow AI for
histological analysis to classify gut images. The slides were digitalized using a slide scanner
that converted glass slides into digital data. In this study, both endoscopic biopsy and
surgical resection specimens were used. The CNN could differentiate the three types of
diagnoses with high performance (99%). However, careful consideration is necessary in the
differential diagnosis of ulcerative colitis.

The evaluation and establishment of a diagnosis of ulcerative colitis require the exclu-
sion of other causes of colitis through a combination of patient history, laboratory studies,
endoscopic imaging, and colon biopsies. In the history, other causes of colitis should be
excluded, including parasitic infections, sexually transmitted infections (Neisseria gon-
orrhoeae and herpes simplex virus), atherosclerotic disease (chronic colonic ischemia),
abdominal/pelvic radiation, and the use of non-steroidal anti-inflammatory drugs. The
stool should also be tested for C. trachomatis, N. gonorrhoeae, HSV, and Treponema
pallidum. The endoscopic and histological findings of ulcerative colitis are not specific.
However, differentiating ulcerative colitis from Crohn’s disease is important because of
its different prognoses and treatments [118]. A comprehensive review and update on
ulcerative colitis, including an extended differential diagnosis, was described by Gajendran
et al. [119]. Among the relevant diseases, neoplasm, Crohn’s disease, and Celiac disease
were highlighted [119]. In this study, the image classification comprised cases of ulcerative
colitis and colorectal cancer (adenocarcinoma). We recently performed histological image
classification of Celiac disease, small intestine control, unspecific duodenal inflammation,
and Crohn’s disease [71]. Narrow artificial intelligence (AI) is designed to perform tasks
that typically require human intelligence; however, it operates within limited constraints
and is task-specific [71]. In future, integrated analysis can be performed.

Computer vision provides a series of algorithms for visual inspection, object detection,
and tracking, as well as feature detection, extraction, and matching. Pre-trained object
detection can be performed using the YOLO, SSD, and ACF algorithms. Semantic and
instance segmentation methods include U-Net, SOLO, and the Mask R-CNN [120]. Image
classification can be performed using vision transformers such as ViT. In this study, we
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employed pre-trained image classification neural networks. These pre-trained networks
had already learned to extract the characteristics of natural images. Therefore, we used
them as a starting point to learn the new task of classifying ulcerative colitis, colonic
control, and colorectal cancer (adenocarcinoma). Several CNNs were used, with the highest
accuracies achieved by DenseNet-201 (99.30% accuracy), ResNet-50 (99.14%), Inception-v3
(99.13%), ResNet-101 (99.1%), and ResNet-18 (99%). The most relevant features of a CNN
are accuracy, speed, and size. In this study, ResNet-18 was the most convenient CNN to use
due to its accuracy and relative prediction time using GPU. NASNet-Large also delivered
high accuracy; however, despite its high accuracy, its prediction time was the slowest.

Explainable AI (XAI) allows humans to understand and trust results by providing
clear and understandable explanations [121–124]. In computer vision, a common method to
demonstrate XAI techniques is to overlay an explanation on the image using an explanation
heatmap. In this study, Grad-CAM was used [125,126]. The other XAI methods are LIME
and SHAP [127]. Grad-CAM uses a gradient-weighted class activation mapping technique
to understand how a deep learning network makes its classification decisions. As shown
in the results section, the Grad-CAM analysis confirmed that the CNN focused on the
correct area of the images to perform classification. Interestingly, in the discordant cases,
the Grad-CAM analysis revealed incorrect focus by the CNN. In addition, some discordant
cases were due to nondiagnostic images.

In the last 5 years there have been several reports on ulcerative colitis and deep learn-
ing. Most applications have focused on endoscopic image analysis [128–135]. However,
some research has been published regarding histological images. Rymarczk et al. used
deep learning models to analyze the histological disease activity in Crohn’s disease and
ulcerative colitis [136]. Vande Casteele et al. used a deep learning algorithm to identify
eosinophils in colonic biopsies of active ulcerative colitis [137]. Ohara et al. applied deep
learning to detect goblet cell mucus [138]. Peyrin-Biroulet used an AI algorithm to measure
the Nancy index in histological images of patients with ulcerative colitis [139]. Our study
differs from previous research in that it not only diagnosed ulcerative colitis in compar-
ison to colon controls but also identified images of colorectal cancer. To the best of our
knowledge, no similar study has been conducted to date.

LAIR1 protein functions as an inhibitory receptor that is expressed in monocytes, nat-
ural killer cells, and T and B lymphocytes. LAIR1 is also expressed in macrophages, where
it regulates their activation [140]. In lymphoma, LAIR1 expression by tumor-associated
macrophages has been described [141]. In ulcerative colitis, the expression of LAIR1 has
been recently described by Hassan-Zahraee et al. [142]. However, to the best of our knowl-
edge, LAIR1 has not been described in other inflammatory bowel diseases. In our study,
LAIR1 was expressed by cells of the immune microenvironment, and the CNN managed to
classify between steroid-requiring (SR) and nonsteroid requiring (non-SR) ulcerative colitis.
Therefore, LAIR1 is a promising immuno-oncology marker in ulcerative colitis.

TOX2 (TOX high mobility group box family member 2) is a transcription factor related
to T cell exhaustion [143], which is a broad term used to describe the T cell functions in
conditions of chronic antigen stimulation, such as inflammatory bowel disease and response
to tumors [144]. Evidence indicates that TOX2 is expressed in T follicular helper (TFH) cells,
similar to the PD-1 marker, and may suppress CD4 cytotoxic T cell differentiation [145].
TOX2 has been related to the survival of patients with acute myeloid leukemia [144] and
the pathogenesis of atopic dermatitis [146]. Due to its relationship with PD-1, TOX2 is a
promising immuno-oncology marker in ulcerative colitis as well.

This study has the limitation of the number of samples used for the CNN analysis.
Therefore, in future research, the series should be increased and the trained network
retrained. There is also a limitation regarding the classification of mesalazine-responsive
ulcerative colitis with absent/mild histological changes.

Notably, this study highlighted clinical implications. Conventional clinicopathological
analysis showed that steroid-requiring ulcerative colitis was characterized by higher endo-
scopic Baron and histologic Geboes scores, as well as increased LAIR1 expression in the
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lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05)
compared to mesalazine-responsive ulcerative colitis. The use of CNNs holds promise, but
validation will require larger series of cases, particularly in mesalazine-responsive cases.

5. Conclusions

A convolutional neural network demonstrates strong performance in predicting ulcer-
ative colitis, colon control, and colorectal cancer (adenocarcinoma). LAIR1 and TOX2 have
emerged as two promising immuno-oncology markers for ulcerative colitis.
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Appendix A. Confusion Matrices (Test Set, New Data) (Accuracy)

DenseNet-201 (99.3%)

Adenocarcinoma 12,741 3 0

Colon control 1 2362 29

Ulcerative colitis 3 84 1827

Adenocarcinoma Colon control Ulcerative colitis

ResNet-50 (99.14%)

Adenocarcinoma 12,740 12 4

Colon control 3 2355 44

Ulcerative colitis 2 82 1808

Adenocarcinoma Colon control Ulcerative colitis

Inception-v3 (99.13%)

Adenocarcinoma 12,737 12 5

Colon control 3 2350 37

Ulcerative colitis 5 87 1814

Adenocarcinoma Colon control Ulcerative colitis
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ResNet-101 (99.1%)

Adenocarcinoma 12,740 11 8

Colon control 0 2359 51

Ulcerative colitis 5 79 1797

Adenocarcinoma Colon control Ulcerative colitis

ResNet-18 (99%)

Adenocarcinoma 12,732 13 2

Colon control 5 2345 52

Ulcerative colitis 8 91 1802

Adenocarcinoma Colon control Ulcerative colitis

ShuffleNet (98.94%)

Adenocarcinoma 12,734 14 8

Colon control 7 2336 49

Ulcerative colitis 4 99 1799

Adenocarcinoma Colon control Ulcerative colitis

MobileNet-v2 (98.89%)

Adenocarcinoma 12,734 19 24

Colon control 7 2334 40

Ulcerative colitis 4 96 1792

Adenocarcinoma Colon control Ulcerative colitis

NasNet-Large (98.88%)

Adenocarcinoma 12,732 23 8

Colon control 5 2287 8

Ulcerative colitis 8 139 1840

Adenocarcinoma Colon control Ulcerative colitis

GoogLeNet-Places365 (98.86%)

Adenocarcinoma 12,702 4 0

Colon control 24 2332 35

Ulcerative colitis 19 113 1821

Adenocarcinoma Colon control Ulcerative colitis

VGG-19 (98.8%)

Adenocarcinoma 1270 19 13

Colon control 3 2371 109

Ulcerative colitis 2 59 1734

Adenocarcinoma Colon control Ulcerative colitis

EfficientNet-b0 (98.79%)

Adenocarcinoma 12,733 8 8

Colon control 4 2311 49

Ulcerative colitis 8 130 1799

Adenocarcinoma Colon control Ulcerative colitis

AlexNet (98.77%)

Adenocarcinoma 12,740 18 12

Colon control 2 2302 46

Ulcerative colitis 3 129 1798

Adenocarcinoma Colon control Ulcerative colitis
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Xception (98.66%)

Adenocarcinoma 12,718 30 12

Colon control 16 2302 43

Ulcerative colitis 11 117 1801

Adenocarcinoma Colon control Ulcerative colitis

VGG-16 (98.65%)

Adenocarcinoma 12,744 26 59

Colon control 1 2363 85

Ulcerative colitis 0 60 1712

Adenocarcinoma Colon control Ulcerative colitis

GoogLeNet (98.6%)

Adenocarcinoma 12,726 23 9

Colon control 5 2256 17

Ulcerative colitis 14 170 1830

Adenocarcinoma Colon control Ulcerative colitis

NasNet-Mobile (98.58%)

Adenocarcinoma 12,724 18 4

Colon control 17 2320 88

Ulcerative colitis 4 111 1764

Adenocarcinoma Colon control Ulcerative colitis
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