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Simple Summary: This research explores the potential of machine learning (ML) to predict late-stage
colorectal cancer (CRC) diagnoses. The focus is on understanding how socioeconomic and regional
factors affect cancer care, particularly in detecting CRC at an advanced stage. We aim to merge data
on social determinants of health with individual demographics to uncover patterns indicating higher
CRC risk. We compared various ML models, such as decision trees, random forest, and gradient
boosting to find the most effective tool for this task. The goal is to utilize artificial intelligence (AI)
for early, more accurate CRC detection, which can lead to better treatment outcomes. This study
promises to significantly contribute to cancer research, potentially leading to more personalized and
efficient healthcare strategies that could ultimately save lives.

Abstract: Purpose: To assess the efficacy of various machine learning (ML) algorithms in predicting
late-stage colorectal cancer (CRC) diagnoses against the backdrop of socio-economic and regional
healthcare disparities. Methods: An innovative theoretical framework was developed to integrate
individual- and census tract-level social determinants of health (SDOH) with sociodemographic
factors. A comparative analysis of the ML models was conducted using key performance metrics such
as AUC-ROC to evaluate their predictive accuracy. Spatio-temporal analysis was used to identify
disparities in late-stage CRC diagnosis probabilities. Results: Gradient boosting emerged as the
superior model, with the top predictors for late-stage CRC diagnosis being anatomic site, year of
diagnosis, age, proximity to superfund sites, and primary payer. Spatio-temporal clusters highlighted
geographic areas with a statistically significant high probability of late-stage diagnoses, emphasizing
the need for targeted healthcare interventions. Conclusions: This research underlines the potential of
ML in enhancing the prognostic predictions in oncology, particularly in CRC. The gradient boosting
model, with its robust performance, holds promise for deployment in healthcare systems to aid
early detection and formulate localized cancer prevention strategies. The study’s methodology
demonstrates a significant step toward utilizing AI in public health to mitigate disparities and
improve cancer care outcomes.

Keywords: socioeconomic disparity; cancer care; predictive modeling; machine learning; AI; social
determinants of health in oncology; spatial analysis; precision care

1. Introduction

Colorectal cancer (CRC) represents one of the most prevalent malignancies globally [1],
standing as the third most commonly diagnosed cancer in both men and women and the
third leading cause of cancer-related deaths in the United States in 2023 [2]. Overall, the
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incidence of CRC is declining among adults in the U.S., influenced by multiple factors.
Increased adherence to CRC screening plays a crucial role in early detection, resulting in
higher curability rates and improved survival rates [2–7]. Additionally, factors such as
dietary improvements and lifestyle changes also contribute to lower incidence by prevent-
ing cancer occurrence [8,9]. However, despite advancements in detection methods and
treatment modalities to reduce the overall incidence of advanced-stage CRC, it remains a
significant public health challenge owing to its substantial mortality rates [2,10]. Compre-
hensive understanding and awareness of its risk factors, prevention strategies, and early
symptoms are essential in combating its progression and ensuring timely medical intervention.

Literature has recognized a combination of genetic, environmental, and lifestyle factors
plays a contributory role in CRC etiology [11]. Several demographic variables are related
to CRC health outcomes, disparity, and mortality, including sex, age, race/ethnicity, and
others. These demographic variables have also been proposed as factors influencing the
determination of disease progression at diagnosis, ultimately impacting treatment decisions
and plans of care. Several studies have also highlighted the lifelong effects on health that
social determinants of health (SDOHs)—defined as the “conditions in which people are
born, grow, live, work, and age” [12]—and their interactions with non-modifiable factors
can have [13,14]. However, such studies tend to focus on elucidating the effect-modifying
role of one factor at a time, even though other factors may be involved. A reason for this
approach may be the scarcity of analytical tools (due to analytical complexity) for properly
accounting for the complex interaction patterns that exist among several potential cancer
factors. A more comprehensive approach to describing and evaluating how multi-level
factors affect cancer health outcomes require a clear emphasis on how multiple factors
at different levels interact with one another. One promising approach to this problem
is machine learning. While there are well-established ‘traditional’ statistical methods to
predict cancer-risk outcomes based on several potential risk factors, many of these methods
are not optimal for accurately delineating complex non-linear relationships that might exist
between many risk factors and an outcome of interest. Machine learning (ML) techniques
allow for an agnostic, data-driven approach to map out potentially complex relationships
that are difficult to specify analytically (e.g., in the form of a regression-type equation).

1.1. Machine Learning Approaches in Predicting Cancer Outcomes—A Literature Review

Machine learning (ML) is a rapidly evolving field within biomedical research, par-
ticularly in oncology. It leverages the vast amount of data collected from various health
platforms to enhance the precision of cancer diagnoses [15,16]. At its core, ML involves the
use of algorithms and statistical techniques to analyze and learn from data patterns [17–19].
In the context of cancer research, ML techniques often utilize rich gene expression datasets
and integrate various risk factors to create predictive models [20–22]. For instance, in a
study by Hornbrook et al, ML integrated demographic factors such as gender and age with
clinical metrics, such as blood count to predict early colorectal cancer [23]. Following a
similar trajectory, numerous studies have successfully employed ML to integrate clinical
parameters such as tumor grade, blood indices, gender, smoking history, and age, leading
to accurate predictions of bone metastases in thyroid cancer patients [24]. Similar factors
have been instrumental in predicting the probability of advanced colorectal neoplasia in
asymptomatic adults using deep learning model [25]. There is a growing repository of
ML models constructed on data sourced from cancer databases such as the surveillance,
epidemiology, and end results (SEER) Program (https://seer.cancer.gov/), which utilize
predictors encompassing tumor attributes, demographic characteristics, and clinical charac-
teristics, to forecast metrics such as mortality and survivorship across a range of cancers
including oral, endometrial, and lung cancers [26–30].

Recent advancements in ML, particularly methods such as artificial neural networks
(ANN) and deep learning, have showcased promising results. They have been pivotal
in estimating the likelihood of cancers such as lung and colorectal spreading further.
These techniques integrate both clinical and demographic data for their predictions [31,32].

https://seer.cancer.gov/
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Moreover, ML models have been meticulously curated to classify patients based on their
susceptibility to cancer development, disease stage, and potential treatment outcomes,
employing data from varied sources such as electronic health record (EHR) and SEER [33–35].

Furthermore, certain studies have explored the complex interplay between different
variables using ML techniques. A prime example would be the study by Levitsky et al.,
which employed patient-reported data within an ML framework, aiming to discern how
varying factors might collaboratively influence the prediction of lung cancer onset [36].
In summation, machine learning, with its innovative approaches, emerges as an invalu-
able tool in contemporary medical research that could significantly enhance conventional
methods of predicting cancer outcomes.

1.2. Role of Social Determinants of Health in Cancer Research

In line with population and public health research, increasingly, social determinants of
health (SDOHs), at the time of diagnosis or study enrollment are collected in epidemiologic
studies of cancer that enable a comprehensive analysis of cancer risk factors [37–40]. While
population-based cancer registries play a crucial role in monitoring cancer trends, they
may not comprehensively capture all incidences of cancer. Additionally, limitations in the
collection of variables for hypothesis-driven research within these registries can potentially
introduce bias into the results [41–43]. For example, information on patient insurance
status, patient comorbidities, and active follow-up of patients are inconsistently available.
Cancer data can be improved when used in combination with other secondary databases
containing social determinants of health to increase our understanding of the underlying
causes of cancer health disparities [43,44].

The influence of SDOH, neighborhood and environmental attributes on cancer-related
outcomes such as mortality, survivorship, and stage at diagnosis has been increasingly rec-
ognized in the scientific community. Health care accessibility, represented by factors such as
the presence or absence of a primary care physician and insurance status, holds substantial
sway over cancer screening rates and subsequent outcomes. For instance, residing in neigh-
borhoods characterized by high levels of racial and ethnic segregation has been associated
with low cancer screening rates and detrimental health outcomes [45,46]. Notably, a lack
of insurance coverage has been linked to poorer health outcomes [47–52]. Socioeconomic
elements, including financial insecurity, poverty, low-income status, and employment
conditions, also exert a significant impact on cancer-related health metrics [45,48,52–54].
In addition, adverse social and educational determinants such as high social vulnerability
and limited educational attainment have been correlated with negative outcomes in cancer
screening and overall health [45,55].

In addition to these established factors, other variables have emerged as potentially
relevant based on authoritative recommendations. Korn et al. proposed a systematic
review protocol to compile variables related to SDOH constructs for cancer screening and
outcomes. These include variables such as food insecurity, housing, language and literacy
skills, transportation, affordability, incarceration, and more [56]. These SDOH constructs
were identified and organized based on established frameworks and definitions, providing
a comprehensive view of the complex interplay between SDOH and cancer outcomes.

Through these studies, it becomes evident that SDOH are not merely peripheral
elements but integral components that significantly modulate cancer outcomes. This
evidence emphasizes the need for a more holistic approach to cancer research and treatment,
one that encompasses the complex interplay of these determinants.

1.3. Study Purpose

The purpose of this study is to explore the advanced capabilities of machine learning
(ML) and artificial intelligence (AI) in predicting late-stage colorectal cancer (CRC) diag-
noses, within the broader context of addressing socioeconomic and regional disparities
in cancer care. By integrating individual- and census tract-level social determinants of
health (SDOHs) with sociodemographic factors, the study aims to identify patterns that
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may signal a higher risk of late-stage CRC, which is characterized here as diagnoses made
at regional stage or with distant metastasis/systemic disease. Central to the research is the
comparative analysis of a suite of ML models—including penalized lasso logistic regres-
sion, decision tree, random forest, gradient boosting, and SVM classifier—to evaluate their
predictive prowess and ensure the most effective algorithm is deployed for this critical
healthcare challenge. This approach, which focuses on prognostic predictions using ML
algorithms, is a crucial element in cancer care, offering potential for early detection and
improved treatment outcomes. The study’s ultimate goal is to harness the power of AI
to generate precise, population-level predictions, thereby contributing significantly to the
field of cancer care and management.

2. Materials and Methods
2.1. Study Design and Setting

This study uses an ecological design to examine CRC outcomes for the period 2000 to
2020 in men and women aged 18 years of age and older residing in the state of Virginia.
The chosen study setting offers a distinct structure for exploring CRC since it represents a
significant health issue in Virginia, where 26 counties have been recognized as having the
highest colorectal cancer mortality rates in the country [57–59].

2.2. Theoretical Framework

This study introduces an innovative theoretical framework, the adaptive predictive
framework for cancer outcomes (APF-CO) in Figure 1, that synergistically merges elements
from the social-ecological model [60], the healthy people 2030 model [61], and the Kaiser
Foundation’s framework on social determinants of health (SDOHs) [62]. Designed to
foster a nuanced understanding of cancer outcomes, this integrative framework serves as a
substrate for employing machine learning algorithms to predict cancer outcomes effectively.

In this multifaceted approach, we combine both clinical variables and SDOH to
construct a more holistic understanding of cancer outcomes. The framework is structured
around several key categories that span individual and societal determinants of health:
healthcare access, socio-economic status, diet and physical activity, educational attainment,
environmental factors, neighborhood characteristics, social and community support, clinical
metrics, treatment options, demographic attributes, and health behaviors.

To add depth and context to our framework, these categories are strategically mapped
across four levels of influence as outlined in the social-ecological model: individual, inter-
personal, organizational, and community. The intention behind this mapping is to illustrate
that variables from these categories are not isolated entities but interact dynamically across
different layers of the social fabric. This facilitates a comprehensive understanding of how
such complex interactions can exert a cascading influence on cancer outcomes.

By amalgamating a wealth of variables, drawn from diverse yet interconnected do-
mains, this modified theoretical framework offers an enriched, layered perspective. The
ultimate goal is to capitalize on machine-learning methodologies to decipher the intricate
web of determinants, thereby offering predictive understandings that are both accurate and
encompassing. This unprecedented approach, incorporating an expansive database that
combines traditional cancer registry data with metrics related to SDOH, sets the stage for
ground-breaking advancements in predictive oncology.

2.3. Data Sources

The primary data for this project i.e., cancer cases specific to CRC are obtained from
the Virginia Cancer Registry (VCR) [63]. The data include information on patient demo-
graphic characteristics, residential locations, as well as histological and clinical characteris-
tics, among other information. Census tracts-level social determinants of health include
data from the U.S. Census Bureau’s 2019 American Community Survey 5-year estimates
(2015–2019) [64], and from the mySidewalk health data [65]. mySidewalk includes more
than 6000 preloaded community-level indicators from more than 50 trusted sources for the
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entire country; these include data from the National Neighborhood Data Archive (NaNDA),
the Health Resources and Services Administration (HRSA), the Centers for Disease Con-
trol (CDC), the Environmental Protection Agency (EPA) National Air Toxics Assessment,
etc. [65]. These datasets are merged with the VCR dataset based on the patient’s residential
census tract at time of diagnosis as a common identifier.
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2.4. Study Population

Individuals aged 18 to 89, residing in Virginia between 2000 and 2020, and who were
diagnosed with primary and secondary CRC were selected for the analysis. The CRC cases
were identified using the following International Classification of Disease, 10th revision,
Clinical Modification (ICD-10-CM) codes: C18.0-C18.9, C19.9, and C20. Cases with missing
or invalid residential information at diagnosis were excluded.
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2.5. Data Collection and Variables Definitions

Individual-level Variables: Baseline characteristics were obtained from the VCR. They
include patient demographic characteristics (age at diagnosis, sex, patient race and eth-
nicity, marital status), year of CRC diagnosis, primary payer at diagnosis, residential
location (county, zip code, census tract); clinical characteristics such as tumor stage at
the time of diagnosis, tumor characteristics, primary tumor site, histologic type, grade,
laterality, and treatment information. Previous studies have shown individual factors
that have been associated with adverse cancer outcomes include age, gender, race and
ethnicity [66,67]. Important individual clinical factors include tumor size and thickness,
tumor grade, histology, stage at diagnosis, lymph node count and location, and treatment
types [68–71].

Neighborhood Social Determinant of Health Measures: The neighborhood SDOH
variables used in this study are summarized in Figure 1. They include socioeconomic,
racial, and geographic disparities (urban vs. rural). It has been shown that there is a higher
incidence and risk of adverse CRC outcomes amongst rural populations when compared
to urban populations [52,72,73].

Outcome Measure: The primary outcome of interest is a binary variable representing
the stage of CRC at diagnosis (late-stage vs. early stage). We defined “late” stage as all CRC
diagnoses recorded at regional stage (regional by direct extension, regional lymph nodes
only, and regional by both extension and lymph nodes) and distant metastasis/systemic
disease. We defined ‘early’ stage as all CRC diagnoses recorded as ‘localized’ and in
situ [70].

2.6. Data Linkage and Management

The integration of the cancer registry data and the social determinants of health
(SDOH) information from census tracts was pivotal in constructing a comprehensive dataset
that not only highlights individual cancer outcomes but also provides an invaluable lens
into their potential interplays with socio-economic determinants at the micro-geographic
level. The primary dataset from the cancer registry contained specific residence information
for each patient. These residence data served as a key attribute for the data linkage.

Initially, we accessed a comprehensive dataset from a 20-year-long cancer registry,
revealing 74,921 documented CRC cases. Using the ArcGIS platform, a majority of the
cancer cases were geocoded based on patients’ residence information, translating them to
specific geographic co-ordinates. As a result, 74,435 records (99.35% of the total cases) were
perfectly georeferenced into their respective census tracts. For the 0.65% (486 records) that
were not initially georeferenced, the Missouri Census Data Center’s (MCDC) “apportioned”
population weight methodology was employed. This method, available on the MCDC’s
online platform [74], employs patients’ zip codes to transition or “crosswalk” these cases
into designated census tracts. The procedure involves assigning a case to the census
tract with the highest population percentage from the given zip code, resulting in the zip
code-census tract crosswalk methodology. From the 486 records processed using MCDC,
454 were successfully matched, and only 32 records (0.04% of the total sample) remained
un-georeferenced.

The culmination of the linkage process yielded a unified dataset, encompassing 87 fea-
tures and a total of 74,921 rows. Rigorous data management protocols were meticulously
applied post-integration to address any missing values, discrepancies, or inconsistencies
that might have emerged during the merger. Specifically, an initial assessment revealed
that 75 features had missing values. To ensure data quality, columns with more than 90%
missing values were dropped, and missing values in numerical features were imputed with
median values, ensuring minimal impact on data distribution, while categorical features
were filled with a placeholder string ‘unknown’, preserving the original structure without
introducing bias. Rows lacking the crucial ‘stage at diagnosis’ data were also removed,
resulting in a refined dataset of 41,839 samples and 86 features. This rigorous approach
enhanced the dataset’s analytical robustness and reliability.



Cancers 2024, 16, 540 7 of 21

2.7. An Overview of Machine Learning Techniques in Predicting Cancer Outcomes

Lasso Logistic Regression, a variant of logistic regression, is a statistical method used
for modeling the probability of a binary outcome based on multiple predictor variables. This
method, ideal for handling high-dimensional data, simplifies the model by reducing the
coefficients of less significant predictors. More specifically, this method reduces the impact
of less significant variables by shrinking their coefficients towards zero, thus simplifying
the model and enhancing interpretability [75–77].

Decision trees is a machine learning algorithm used for both classification and re-
gression tasks. This algorithm operates by sorting instances based on their feature values
through a process known as recursive binary partitioning. Each node in a decision tree
represents a specific feature, and each branch represents a decision path based on feature
values that leads to the next node [78,79]. They function through a sequence of binary
decisions: for example, in our context of 86 features, if a feature value Xk is less than or
equal to threshold S, the tree follows the left branch; otherwise, it follows the right. This
process continues recursively until a leaf node, representing the final decision, is reached.
The process of node selection and thresholds determination (‘S’) is determined through
optimization techniques, making decision trees highly adaptable to specific datasets.

Random forest is an ensemble learning method. It operates by constructing a multitude
of decision trees during the training phase. For classification tasks, the random forest model
predicts the output class by employing a majority voting system across all the decision
trees, where each tree votes for a class, and the class receiving the most votes becomes the
model’s prediction. For regression tasks, it aggregates the predictions of individual trees
by calculating their mean. Unlike a single decision tree, random forest reduces the risk of
overfitting and increases prediction accuracy by combining the predictions of numerous
trees [79,80].

Gradient Boosting is a powerful machine learning technique used in both regression
and classification problems. It operates by training decision trees iteratively [81]. Each
subsequent tree in a gradient-boosted model focuses more on observations that previous
trees predicted inaccurately, essentially placing higher weight on these errors. This error-
correcting approach allows gradient boosting to continuously improve its predictions
throughout the training process [79]. The emphasis in gradient boosting is on improving
accuracy and reducing bias through iterative refinement, making it particularly effective in
complex predictive tasks such as cancer diagnosis and prognosis.

Support Vector Machines (SVMs) are supervised learning models that analyze data
and recognize patterns. They are used for classification and regression analysis. In scenarios
where data are linearly separable, SVMs employ a linear approach to establish a hyperplane
that best divides the data into distinct classes [82]. However, given the complexity and
non-linear relationships often present in medical datasets, including those related to cancer,
the use of SVMs with non-linear kernels is recommended. These non-linear kernels enable
the delineation of intricate decision boundaries and are more adept at handling high-
dimensional data.

2.8. Statistical Analyses

The cancer registry and population census data were merged to integrate records from
both sources. Patients’ characteristics between early- and late-stage diagnosis were com-
pared in a bivariate analysis using chi-square tests for categorical variables and t-tests for
continuous variables. Similarly, t-tests were utilized to compare the SDOH characteristics
at the census tract levels.

In the exploratory data analysis phase, several machine learning models from the
scikit-learn library to predict late-stage cancer diagnosis were used. This array included
lasso logistic regression, employing L1 regularization with the ‘saga’ solver; decision tree;
random forest; gradient boosting; and a variant of support vector machine (SVM), specifi-
cally the SGD (stochastic gradient descent) classifier with hinge loss function. Notably, this
method serves as a computationally efficient approximation of SVMs, leveraging stochastic
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gradient descent for optimization in high-volume data scenarios. The random forest model
was configured with its default number of tree estimators, while the gradient boosting
classifier utilized Scikit-learn’s default settings. These default hyperparameter settings
were chosen for an initial broad assessment. Each model was configured to address class
imbalance using class weights.

To minimize overfitting and rigorously evaluate the performance of the models, a
5-fold cross-validation approach was used. This approach involved splitting the data into
five distinct subsets or ‘folds’. In each iteration, four folds were used for training while
the remaining fold served as the validation set. This process was repeated five times,
ensuring each fold was used for validation once. By doing so, this method offers a more
comprehensive assessment of a model’s performance across different data subsets, reducing
biases and providing an indication of its generalization capabilities. Performance metrics
including ROC-AUC, accuracy, sensitivity, and specificity were computed, capturing dif-
ferent aspects of model efficacy. Additionally, for a comprehensive geographical analysis,
the best-performing model, based on these metrics, was used to estimate late-stage cancer
probabilities across various census tracts in Virginia, employing spatial–temporal analysis
for visualizing and identifying significant clusters over time.

All data management and spatial analyses were conducted using SAS and ArcGIS,
respectively, with Python and Scikit-learn serving as the primary tools for machine learning
model fitting and evaluation. The level of significance was set at p < 0.05, ensuring statistical
rigor in our findings.

3. Results
3.1. Baseline Characteristics

Baseline characteristics between early-stage ((42.74%) and late-stage (57.26%) diagnosis
are summarized in Table 1. Patients diagnosed at an early stage had a slightly higher
mean age (66.72 years) than those diagnosed at a late stage (65.85 years, p < 0.0001).
A significantly greater proportion of patients aged 40–49 were diagnosed at late stage
(p < 0.0001). Concerning race and ethnicity, there were slight variations, with Hispanics
and NH Asians being marginally overrepresented in the late diagnosis group (p = 0.005).

Table 1. Selected baseline characteristics by stage of diagnosis status.

Patient Characteristics Early
n = 17,884 (42.74%)

Late
n = 23,955 (57.26%)

Frequency (%) or Mean (SE) Frequency (%) or Mean (SE) p-Value

Age at Diagnosis <0.0001

Age in years, Mean (SE) 66.72 (0.1) 65.85 (0.1)

Age Group <0.0001

18–39 471 (2.63%) 790 (3.30%)

40–49 1262 (7.06%) 2288 (9.55%)

50–64 5678 (31.75%) 7578 (31.63%)

65+ 10,473 (58.56%) 13,299 (55.52%)

Race & Ethnicity 0.005

NH White 12,263 (68.67%) 16,305 (68.19%)

NH Black 3263 (18.27%) 4279 (17.89%)

Hispanic 1786 (10.00%) 2517 (10.53%)

NH Asian 440 (2.46%) 702 (2.94%)

NH Pacific Islander 68 (0.38%) 74 (0.31%)

Unknown/Not Documented 39 (0.22%) 35 (0.15%)
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Table 1. Cont.

Patient Characteristics Early
n = 17,884 (42.74%)

Late
n = 23,955 (57.26%)

Frequency (%) or Mean (SE) Frequency (%) or Mean (SE) p-Value

Marital Status at Diagnosis <0.0001

Married 9578 (57.00%) 11,935 (53.95%)

Unmarried 6523 (38.82%) 9437 (42.66%)

Unknown 702 (4.18%) 752 (3.40%)

Primary Payer at Diagnosis <0.0001

Medicaid 284 (1.70%) 636 (2.83%)

Medicare 9267 (55.52%) 11,762 (52.28%)

Private Insurance 6124 (36.69%) 8295 (36.87%)

Military 601 (3.60%) 680 (3.02%)

Indian/Public Health Service 2 (0.01%) 1 (0.00%)

Self-pay/Uninsured 413 (2.47%) 1122 (4.99%)

Year of Diagnosis <0.0001

2000–2004 5346 (29.89%) 7242 (30.23%)

2005–2009 4836 (27.04%) 5882 (24.55%)

2010–2014 3763 (21.04%) 4917 (20.53%)

2015–2019 3821 (21.37%) 5705 (23.82%)

2020 118 (0.66%) 209 (0.87%)

Stage of disease at diagnosis <0.0001

In Situ 2594 (14.50%) 0 (0.00%)

Localized 15,290 (85.50%) 0 (0.00%)

Regional 0 (0.00%) 16,005 (66.81%)

Distant 0 (0.00%) 7950 (33.19%)

Not Staged/Unknown 0 (0.00%) 0 (0.00%)

Primary Site <0.0001

Colon 12,521 (70.01%) 17,645 (73.66%)

Rectum 5363 (29.99%) 6310 (26.34%)

Grade <0.0001

Grade I 3421 (19.13%) 2390 (9.98%)

Grade II 8589 (48.03%) 13,067 (54.55%)

Grade III 1069 (5.98%) 4162 (17.37%)

Grade IV 194 (1.08%) 570 (2.38%)

T-cell 1 (0.01%) 1 (0.00%)

B-cell 89 (0.50%) 92 (0.38%)

NK Cell 1 (0.01%) 0 (0.00%)

Unknown Grade 4520 (25.27%) 3673 (15.33%)

Treatment Status <0.0001

No treatment given 351 (4.54%) 711 (6.54%)

Treatment given 7256 (93.88%) 10,044 (92.44%)
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Table 1. Cont.

Patient Characteristics Early
n = 17,884 (42.74%)

Late
n = 23,955 (57.26%)

Frequency (%) or Mean (SE) Frequency (%) or Mean (SE) p-Value

Active surveillance (watchful
waiting) 17 (0.22%) 5 (0.05%)

Unknown if treatment was
given 105 (1.36%) 106 (0.98%)

Days between date of initial
diagnosis and date first course
of treatment

0.2142

Time Lag, Mean (SE) 9.93 (1.97) 13.67 (2.28)

Surgery <0.0001

Yes 16,627 (92.97%) 19,698 (82.23%)

No 1077 (6.02%) 4060 (16.95%)

Unknown 180 (1.01%) 197 (0.82%)

Chemotherapy <0.0001

Yes 1835 (10.26%) 13,276 (55.42%)

No 15,575 (87.09%) 10,330 (43.12%)

Unknown 474 (2.65%) 349 (1.46%)

Radiation Therapy <0.0001

Yes 1384 (7.75%) 4063 (16.97%)

No 15,541 (86.98%) 18,717 (78.19%)

Unknown 943 (5.28%) 1157 (4.83%)

Vital Status <0.0001

Dead 7275 (40.68%) 14,859 (62.03%)

Alive 10,609 (59.32%) 9096 (37.97%)

Marital status significantly affected the stage at diagnosis. Married individuals were
more frequently diagnosed early, while a larger percentage of unmarried patients were
diagnosed at late stage (p < 0.0001). The primary payer at diagnosis showed that Medicaid
beneficiaries and the self-pay/uninsured group were more prone to late stage (p < 0.0001).
The year of diagnosis revealed temporal differences in staging. For instance, the period
between 2015 and 2019 saw a surge in late diagnoses (p < 0.0001). The stage of the disease
at diagnosis was as expected, with in situ and localized stages in the early diagnosis group,
contrasted by regional and distant stages in the late group.

Primary site analysis showed that colon diagnoses were more predominant in the
late diagnosis group, whereas rectum diagnoses leaned towards the early diagnosis group
(p < 0.0001). Regarding disease grade, early diagnoses had a greater proportion of Grade I,
while late diagnoses were rich in Grade II and III cases (p < 0.0001).

Treatment patterns displayed notable differences between the groups. Surgery was
more common in the early diagnosis group, whereas chemotherapy and radiation therapy
were more prevalent in the late diagnosis group (p < 0.0001). The vital status highlighted
a concerning trend, with a majority (62.03%) of the late diagnosis group succumbing to
the disease, in comparison to 40.68% in the early diagnosis group (p < 0.0001). Detailed
information on the baseline characteristics can be found in the Supplementary Content in
Table S1: Baseline Characteristics by Stage of Diagnosis Status.
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3.2. Census Tracts Characteristics by Stage at Diagnosis

The bivariate analysis of census tract SDOH characteristics and stage at diagnosis,
displayed in Table 2, reveals some intriguing disparities between early- (42.74%) and late-
stage (57.26%) patients. Access to healthcare, socio-economic status, education, lifestyle
behaviors, ethnicity, and environmental exposure all display certain associations with the
stage of diagnosis. Key differences include a higher percentages of uninsured individ-
uals, less routine check-ups, and lower access to healthy food in tracts with late-stage
patients. Socio-economic factors such as lower household income, higher expenditure on
transportation, and less workforce participation also correlate with late-stage diagnoses.
Educationally, those areas tend to have more people with less than high school education,
but fewer with some college education but no degree. Interestingly, areas with late-stage
diagnoses also recorded higher levels of binge drinking and a higher Hispanic population
percentage. Environmental exposure factors, including slightly elevated diesel particulate
matter levels and more prevalent underground storage tanks, were also more common
in areas with late-stage diagnoses. These findings suggest that a range of socioeconomic,
behavioral, and environmental factors may influence the stage at which patients are diag-
nosed with cancer. Detailed information on the census tracts characteristics can be found in
the Supplementary Content in Table S2: Neighborhood Census Tracts Characteristics by
Stage of Diagnosis Status.

3.3. Results of the Predictive Machine Learning Models

Table 3 presents the performance metrics from the cross-validation of five different
machine-learning models to predict CRC late-stage diagnosis. In the comparative analysis
of the ML models, the gradient boosting model exhibited superior performance with the
highest ROC-AUC score of 0.8549, indicating a strong capability in distinguishing between
late-stage and non-late-stage CRC diagnoses. It also achieved the highest prediction
accuracy at 77.25%, suggesting it is the most reliable model for correct predictions among
those tested. In terms of sensitivity, which measures the correct identification of actual
late-stage CRC cases, the lasso logistic regression model was the most proficient, with a
sensitivity score of 0.7405.

The random forest model, despite its highest specificity (80.72%), fell short in sensitiv-
ity (56.40%), indicating a tendency to miss a significant number of late-stage cases. This
could be a critical drawback in medical diagnostics where failing to identify late-stage
disease could have dire consequences. On the other hand, the decision tree and SVM (SGD
classifier) models showed a balance between sensitivity and specificity but lagged in overall
accuracy and exhibited low ROC-AUC scores of 0.7298 and 0.7006, respectively, suggesting
they might not be as effective for this particular diagnostic challenge.

In conclusion, the gradient boosting stands out as the most promising model, offering
a particularly robust approach for this prediction task.

3.4. Performance of the Best ML Predictive Model

To validate the performance of our gradient boosting model (GBM), which has proven
to be the most performant in predicting late-stage colorectal cancer, we conducted a single-
run evaluation. This involved partitioning our dataset into an 80–20 split, where 20%
constituted the testing set. The model was recalibrated on the training set, then we applied
it to the test set to compute critical metrics. The Receiver Operating Characteristic (ROC)
curve, depicted in Figure 2, was generated, resulting in an Area Under Curve (AUC) of
0.86—a strong indicator of the model’s discriminative power. To refine the model’s pre-
dictive precision, an optimal decision threshold was calculated at 0.446, which improved
the model’s sensitivity to 79.54% and specificity to 75.92%, thereby balancing the trade-off
between detecting actual cases and avoiding false alarms. Furthermore, the calibration
curve, illustrated in Figure 3, was derived from this evaluation, showcasing a close align-
ment between predicted probabilities and actual outcomes, further confirming the model’s
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reliability. These measures collectively confirm the robustness of the gradient boosting
model as a reliable tool for clinical prognostic applications.

Table 2. Selected neighborhood census tracts characteristics by stage of diagnosis status.

Census Tract Characteristics Early
n = 17,884 (42.74%)

Late
n = 23,955 (57.26%)

Mean (SE) Mean (SE) p-Value

Access to Healthcare

Percent Uninsured 7.816 (0.04) 7.9552 (0.04) 0.0085
Doctor Checkup in Past Year Among Adults (2020) 76.7273 (2.98) 76.5405 (3.03) <0.0001
Doctor Checkup in Past Year Among Adults (2020) 76.7273 (2.98) 76.5405 (3.03) <0.0001
Population with a Disability (2017–2021) 13.2833 (0.05) 13.1551 (0.04) 0.0372

Socio Economic

% Spent on Housing & Transportation 53.5814 (0.06) 53.2928 (0.05) 0.0003
%Spent on Housing 26.0618 (0.01) 26.0798 (0.01) 0.2533
% Spent on Transportation 27.5196 (0.06) 27.213 (0.06) 0.0003
Employment Access Index (2016) 20,613.6 (177) 21,241.2 (158) 0.0082
Labor Force Participation Rate (2017–2021) 63.3817 (0.08) 63.6564 (0.07) 0.0093
Median Household Income (2017–2021) 82,806.2 (326.1) 83,742.1 (285.2) 0.0311
% Pop with Access to Healthy Food 0.7214 (0.002) 0.7144 (0.001) 0.0088

Educational Attainment

Less than High school education 9.8888 (0.05) 10.027 (0.05) 0.0446
Educational Attainment—Some College No
Degree (2017–2021) 8.1371 (0.03) 8.0137 (0.02) 0.0005

Behaviors

Binge Drinking Among Adults (2020) 15.3011 (0.02) 15.3652 (0.01) 0.0017

Race and Ethnicity

White per capita 0.633 (0.002) 0.6335 (0.002) 0.8212
Black per capita 0.2003 (0.002) 0.1952 (0.001) 0.0141
Asian per capita 0.0483 (0.006) 0.0495 (0.005) 0.0987
Hispanic per capita 0.0789 (0) 0.0821 (0) 0.0008

Environmental Exposures

Air Quality: Respiratory Hazard Index (2014) 0.4039 (0.005) 0.4051 (0.004) 0.0707
Diesel Particulate Matter Environmental Justice
Index (2021) 14.1463 (0.1) 14.398 (0.09) 0.0501

Diesel Particulate Matter Level in Air (2021) 0.2206 (0.008) 0.224 (0.007) 0.0026
Underground Storage Tanks (2021) 5.044 (0.05) 5.2027 (0.04) 0.0114

Population Weighted Density 3359.9 (43.17) 3546.9 (39.87) 0.0015

Table 3. Results of machine learning model evaluation for late-stage diagnosis prediction.

Model ROC-AUC Overall Prediction
Accuracy Sensitivity Specificity

Lasso (Penalized
Logistic Regression) 0.7864 0.7159 0.7405 0.6975

Decision Tree 0.7006 0.7068 0.6580 0.7432
Random Forest 0.7554 0.7032 0.5640 0.8072
Gradient Boosting 0.8549 0.7725 0.7263 0.8070
SVM (SGD Classifier) 0.7298 0.6760 0.6793 0.6735
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3.5. Feature Importance

The feature importance scores from the gradient boosting model, displayed in Figure 4,
are indicative of the relative contribution of each predictor to the model’s performance
for making predictions. These scores are calculated based on how much each feature
contributes to reducing the model’s loss function across all the trees in the ensemble. Each
feature’s score is a sum of the reduction in the loss attributed to that feature across all trees
in the model.
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The anatomic site exhibits the highest importance with an importance score of 0.019238.
This signifies that the location of the cancer within the body significantly impacts the
stage at diagnosis. The year of diagnosis follows with an importance score of 0.018704,
reflecting how advancements or changes in diagnostic methods over time may affect
late-stage diagnosis rates. Notably, specific years, such as 2015 and 2016, have been
highlighted due to an increased demand for screening [83,84] and the potential delays in
diagnosis [85] which can impact the stage at which CRC is identified. Age at diagnosis
is also a crucial factor, with an importance score of 0.007015. It is worth noting that
age has been established as a significant factor influencing the stage at which CRC is
diagnosed [54,70]. Environmental factors such as proximity to superfund sites, though less
impactful, still provide meaningful predictive power, suggesting a potential link between
environmental factors and disease progression. Socioeconomic factors such as expenditures
on transportation and housing, along with the primary payer, are also amongst the top
predictors, hinting at the socioeconomic dimensions of healthcare access and outcomes.
Social factors such as marital status may reflect the impact of support networks on health,
while ‘black per capita’ indicates the potential influence of racial factors and disparities on
late-stage diagnosis. Environmental quality indices, including respiratory hazard index
and proximity to pollution and waste facilities, alongside health behaviors such as regular
checkups and mental health status represented by the percentage with depression, show
lower but non-negligible influence. Overall, it is important to note that these importance
scores are not indicative of causation or statistical significance. These scores assist in
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emphasizing the multifaceted nature of cancer diagnosis stages, influenced by a blend of
medical, environmental, socioeconomic, and behavioral factors.

3.6. Results of the Spatio-Temporal Analysis

A preliminary examination of the spatial distribution of anticipated probabilities at the
census tract level as displayed in Figure 5, indicates that the greatest likelihood for late stage
is observed inside a rural crescent spanning from the Appalachia Mountains to southwest
Virginia and in northern Virginia. The analysis presented in Figure 6 highlights several
hotspots of late-stage CRC diagnosis across Virginia. Deep red tracts in the southwestern
counties, including Lee, Scott, Buchanan, and Tazewell, are predominantly within rural
settings and are marked by significant challenges related to socio-economic and healthcare
access, potentially contributing to delayed CRC diagnoses. Historically, these areas were
heavily reliant on coal mining, which served as a major source of employment and played a
significant role in mitigating poverty. However, the decline of the coal industry has not only
led to economic challenges but also left a legacy of health exposures for former coal miners.
In the western and central regions of Virginia, counties such as Rockingham, Augusta,
Albemarle, Amherst, Bedford, and Campbell, exhibit hotspots despite their mixed rural–
suburban landscapes and generally favorable socio-economic conditions and healthcare
access. Notably, these counties are also characterized by a significant retiree population,
suggesting that the age demographic, with a larger proportion of elderly residents, could
be influencing the incidence of CRC. Interestingly, northern Virginia, represented by Fairfax
County, also emerges as a hotspot highlighting the multifaceted nature of healthcare access
and utilization. This county, while boasting a higher socio-economic status (SES), has its
own set of challenges that come with affluence, such as increased traffic and resultant
air quality concerns. The presence of hotspots across varied socio-economic landscapes
underscores the complex interrelation of factors influencing late-stage CRC diagnoses and
emphasizes the need for region-specific interventions.
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4. Discussion

In this work, we presented a ML framework for predicting CRC outcomes. More
specifically, the study incorporates an ML model along with spatial accessibility measure-
ment to highlight the spatial disparities in the probability of a late-stage CRC diagnosis
based on an array of social determinants of health variables, drawn from diverse yet in-
terconnected domains. The study also introduced an innovative theoretical framework,
integrating a wealth of SDOH variables to cancer registry data with a primary emphasis
on its generalizability and potential for reuse to predict cancer outcomes using ML tech-
niques. After rigorous data preprocessing, we evaluated the performance of five distinct
machine-learning algorithms using the ROC-AUC and other metrics. Notably, the gradient
boosting model achieved a superior ability to predict late-stage diagnosis. In contrast to
previous studies that predominantly focused on validating machine-learning techniques for
predicting cancer diagnoses within the general population, our research extends beyond the
validation of the gradient boosting model. We specifically targeted high-risk demographic
cohorts and conducted an exhaustive analysis of social determinants of health.

According to our gradient boosting model, the top five contributors to the diagnosis of
late-stage CRC, ranked in order of importance, are anatomic site, year of diagnosis, age at
diagnosis, proximity to superfund sites, and payer at the time of diagnosis. These findings
offer a novel perspective for examining the hierarchy of significance among contributors
to late-stage CRC diagnosis when utilizing national data. At a more comprehensive level,
encompassing all 20 contributors pinpointed by the gradient boosting model, the factors
contributing to the prediction of late-stage CRC diagnosis is ascribed to the intricate
interplay among individual-level, community-level, and environmental factors. These
results align with established literature, where each of these contributors has previously
been recognized as a potential risk factor for late-stage CRC diagnosis [54,86,87]. It goes
without saying that the gradient boosting model accurately discerned the key drivers of
late-stage CRC diagnosis, marking the initial crucial phase in the development of targeted
intervention strategies to enhance outcomes in CRC.

The gradient boosting model has become increasingly instrumental in oncology, of-
fering a multifaceted approach to cancer research, diagnosis, treatment, and prognosis.
This powerful algorithm leverages ensemble learning to enhance the accuracy of predictive
models and has proven particularly valuable in various facets of cancer management.
Gradient boosting finds notable applications in predicting cancer risk, [88] survival, [89,90]
and diagnosis stages, as well as assisting in cancer classification [91,92]. The capacity of
the gradient boosting model to integrate diverse data sources and discern intricate pat-
terns has proven transformative in advancing the understanding of cancer and improving
patient outcomes.
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Historical space–time analysis of cancer data has typically entailed examining aggre-
gated data to detect patterns in order to understand how areas with varying levels of risk
evolve over time [93,94]. In this study, we also identified spatio-temporal clusters of high
and low predicted probability for late-stage CRC. Using the census tract as the unit, the
analyses identified about 10 statistically significant clusters in Virginia. The spatio-temporal
analysis facilitated the refinement of estimates related to area-level factors and established
risk factors for CRC, including their interactive dynamics. Furthermore, this analysis
yielded tangible, location-specific evidence that can guide targeted intervention strategies.

5. Limitations

Since the gradient boosting model employed in this study adopts a data-driven ap-
proach, the model’s performance and predictive capabilities are contingent upon the
availability and quality of the data. For example, previous literature has identified several
SDOHs that have been associated with poor CRC health outcomes that were unable to be
obtained. Some of these include social isolation, neighborhood disadvantage/deprivation,
health literacy, and transportation options [45,54,95,96]. Data were analyzed from a single
state cancer registry. To further determine and verify the robustness and broad applicability
of the results, national cancer databases such as the surveillance, epidemiology, and end
results should be analyzed. Regarding the aforementioned limitations, we intend to further
investigate them in subsequent studies. Finally, in these analyses default hyperparam-
eter settings were chosen from Scikit-learn for an initial broad assessment, with future
work planned to fine-tune these parameters using techniques such as GridSearchCV or
RandomizedSearchCV for optimized performance.

6. Conclusions

In conclusion, this study has not only showcased the advanced capabilities of machine
learning algorithms in predicting late-stage colorectal cancer but also underscored the
critical role of spatial accessibility measurements in understanding the disparities in late-
stage CRC diagnosis. The spatio-temporal analysis implemented here is particularly
instrumental, revealing statistically significant clusters of late-stage CRC diagnoses that
necessitate focused public health strategies. These strategies are vital in addressing the
observed disparities, reducing the incidence of late-stage CRC, and moving towards the
eradication of health inequities. The study’s multifaceted ML approach, with gradient
boosting leading the way, has not only validated its predictive accuracy but also illuminated
the path for future research to fortify and refine these predictive models, with the ultimate
aim of enhancing cancer care and management across diverse populations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16030540/s1, Table S1: Baseline Characteristics by Stage of
Diagnosis Status; Table S2: Neighborhood Census Tracts Characteristics by Stage of Diagnosis Status.

Author Contributions: Conceptualization, H.G., R.A.-D., A.J., G.B., G.A. and J.B.; methodology,
H.G., G.B. and R.A.-D.; software, H.G. and R.A.-D.; validation, H.G. and G.B.; formal analysis, H.G.;
investigation, H.G.; data curation, H.G.; writing—original draft preparation, H.G., R.A.-D., A.J., G.B.,
G.A. and J.B.; writing—review and editing, H.G., R.A.-D., A.J., G.B., G.A. and J.B.; visualization, H.G.
and R.A.-D.; supervision, H.G.; funding acquisition, H.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the School of Public Health Initiatives (SPHI) grant from Old
Dominion University, project number 300852-011 awarded to Hadiza Galadima.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Human Subjects Review Committee of the Old Dominion University
(protocol code [1993954-1] and approved on 5 January 2023).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

https://www.mdpi.com/article/10.3390/cancers16030540/s1
https://www.mdpi.com/article/10.3390/cancers16030540/s1


Cancers 2024, 16, 540 18 of 21

Acknowledgments: The authors would like to express their gratitude to the Virginia Department of
Health and the Virginia Cancer Registry for their invaluable assistance in data acquisition.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
2. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [CrossRef]
3. Moyer, V.A.; US Preventive Services Task Force. Screening for prostate cancer: US Preventive Services Task Force recommendation

statement. Ann. Intern. Med. 2012, 157, 120–134. [CrossRef]
4. Zauber, A.G. The impact of screening on colorectal cancer mortality and incidence: Has it really made a difference? Dig. Dis. Sci.

2015, 60, 681–691. [CrossRef]
5. Zauber, A.G.; Winawer, S.J.; O’Brien, M.J.; Lansdorp-Vogelaar, I.; van Ballegooijen, M.; Hankey, B.F.; Shi, W.; Bond, J.H.; Schapiro,

M.; Panish, J.F. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N. Engl. J. Med. 2012, 366,
687–696. [CrossRef] [PubMed]

6. Siegel, R.L.; Fedewa, S.A.; Anderson, W.F.; Miller, K.D.; Ma, J.; Rosenberg, P.S.; Jemal, A. Colorectal cancer incidence patterns in
the United States, 1974–2013. JNCI J. Natl. Cancer Inst. 2017, 109, djw322. [CrossRef] [PubMed]

7. Levin, B.; Lieberman, D.A.; McFarland, B.; Andrews, K.S.; Brooks, D.; Bond, J.; Dash, C.; Giardiello, F.M.; Glick, S.; Johnson, D.
Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from
the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology.
Gastroenterology 2008, 134, 1570–1595. [CrossRef] [PubMed]

8. Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.;
Gansler, T. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of
cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2012, 62, 30–67. [CrossRef]

9. Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Gastroenterol.
Rev. 2019, 14, 89–103. [CrossRef] [PubMed]

10. Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer
incidence and mortality. Gut 2017, 66, 683–691. [CrossRef] [PubMed]

11. Jasperson, K.W.; Tuohy, T.M.; Neklason, D.W.; Burt, R.W. Hereditary and familial colon cancer. Gastroenterology 2010, 138,
2044–2058. [CrossRef]

12. Commission on Social Determinants of Health. Closing the Gap in a Generation: Health Equity through Action on the Social Determinants
of Health: Final Report of the Commission on Social Determinants of Health; World Health Organization: Geneva, Switzerland, 2008.

13. Braveman, P.; Gottlieb, L. The social determinants of health: It’s time to consider the causes of the causes. Public Health Rep. 2014,
129, 19–31. [CrossRef]

14. Pinheiro, L.C.; Reshetnyak, E.; Akinyemiju, T.; Phillips, E.; Safford, M.M. Social determinants of health and cancer mortality in
the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort study. Cancer 2022, 128, 122–130. [CrossRef]

15. Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [CrossRef]
16. Chen, M.; Decary, M. Artificial Intelligence in Healthcare: An Essential Guide for Health Leaders; SAGE Publications: Los Angeles, CA,

USA, 2020; pp. 10–18.
17. Silva, T.C.; Zhao, L. Machine Learning in Complex Networks; Springer: Berlin/Heidelberg, Germany, 2016.
18. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;

Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.
19. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
20. Fakoor, R.; Ladhak, F.; Nazi, A.; Huber, M. Using Deep Learning to Enhance Cancer Diagnosis and Classification; ACM: New York, NY,

USA, 2013; pp. 3937–3949.
21. Aliferis, C.F.; Tsamardinos, I.; Massion, P.P.; Statnikov, A.R.; Fananapazir, N.; Hardin, D.P. Machine Learning Models for

Classification of Lung Cancer and Selection of Genomic Markers Using Array Gene Expression Data. In Proceedings of the
FLAIRS Conference, St. Augustine, FL, USA, 12–14 May 2003; pp. 67–71.

22. Passos, I.C.; Mwangi, B.; Kapczinski, F. Big data analytics and machine learning: 2015 and beyond. Lancet Psychiatry 2016, 3,
13–15. [CrossRef] [PubMed]

23. Hornbrook, M.C.; Goshen, R.; Choman, E.; O’Keeffe-Rosetti, M.; Kinar, Y.; Liles, E.G.; Rust, K.C. Early colorectal cancer detected
by machine learning model using gender, age, and complete blood count data. Dig. Dis. Sci. 2017, 62, 2719–2727. [CrossRef]
[PubMed]

24. Liu, W.C.; Li, Z.Q.; Luo, Z.W.; Liao, W.J.; Liu, Z.L.; Liu, J.M. Machine learning for the prediction of bone metastasis in patients
with newly diagnosed thyroid cancer. Cancer Med. 2021, 10, 2802–2811. [CrossRef] [PubMed]

25. Yang, H.J.; Cho, C.W.; Jang, J.; Kim, S.S.; Ahn, K.S.; Park, S.K.; Park, D.I. Application of deep learning to predict advanced
neoplasia using big clinical data in colorectal cancer screening of asymptomatic adults. Korean J. Intern. Med. 2021, 36, 845–856.
[CrossRef] [PubMed]

https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21763
https://doi.org/10.7326/0003-4819-157-2-201207170-00459
https://doi.org/10.1007/s10620-015-3600-5
https://doi.org/10.1056/NEJMoa1100370
https://www.ncbi.nlm.nih.gov/pubmed/22356322
https://doi.org/10.1093/jnci/djw322
https://www.ncbi.nlm.nih.gov/pubmed/28376186
https://doi.org/10.1053/j.gastro.2008.02.002
https://www.ncbi.nlm.nih.gov/pubmed/18384785
https://doi.org/10.3322/caac.20140
https://doi.org/10.5114/pg.2018.81072
https://www.ncbi.nlm.nih.gov/pubmed/31616522
https://doi.org/10.1136/gutjnl-2015-310912
https://www.ncbi.nlm.nih.gov/pubmed/26818619
https://doi.org/10.1053/j.gastro.2010.01.054
https://doi.org/10.1177/00333549141291S206
https://doi.org/10.1002/cncr.33894
https://doi.org/10.1038/s41551-018-0305-z
https://doi.org/10.1016/S2215-0366(15)00549-0
https://www.ncbi.nlm.nih.gov/pubmed/26772057
https://doi.org/10.1007/s10620-017-4722-8
https://www.ncbi.nlm.nih.gov/pubmed/28836087
https://doi.org/10.1002/cam4.3776
https://www.ncbi.nlm.nih.gov/pubmed/33709570
https://doi.org/10.3904/kjim.2020.020
https://www.ncbi.nlm.nih.gov/pubmed/33092313


Cancers 2024, 16, 540 19 of 21

26. Gupta, S.; Tran, T.; Luo, W.; Phung, D.; Kennedy, R.L.; Broad, A.; Campbell, D.; Kipp, D.; Singh, M.; Khasraw, M.; et al. Machine-
learning prediction of cancer survival: A retrospective study using electronic administrative records and a cancer registry. BMJ
Open 2014, 4, e004007. [CrossRef] [PubMed]

27. Hung, M.; Park, J.; Hon, E.S.; Bounsanga, J.; Moazzami, S.; Ruiz-Negrón, B.; Wang, D. Artificial intelligence in dentistry:
Harnessing big data to predict oral cancer survival. World J. Clin. Oncol. 2020, 11, 918–934. [CrossRef]

28. Manz, C.R.; Chen, J.; Liu, M.; Chivers, C.; Regli, S.H.; Braun, J.; Draugelis, M.; Hanson, C.W.; Shulman, L.N.; Schuchter, L.M.; et al.
Validation of a Machine Learning Algorithm to Predict 180-Day Mortality for Outpatients with Cancer. JAMA Oncol. 2020, 6,
1723–1730. [CrossRef]

29. Lynch, C.M.; Abdollahi, B.; Fuqua, J.D.; de Carlo, A.R.; Bartholomai, J.A.; Balgemann, R.N.; van Berkel, V.H.; Frieboes, H.B.
Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int. J. Med. Inform. 2017, 108,
1–8. [CrossRef]

30. Praiss, A.M.; Huang, Y.; St Clair, C.M.; Tergas, A.I.; Melamed, A.; Khoury-Collado, F.; Hou, J.Y.; Hu, J.; Hur, C.; Hershman, D.L.;
et al. Using machine learning to create prognostic systems for endometrial cancer. Gynecol. Oncol. 2020, 159, 744–750. [CrossRef]

31. Kudo, S.E.; Ichimasa, K.; Villard, B.; Mori, Y.; Misawa, M.; Saito, S.; Hotta, K.; Saito, Y.; Matsuda, T.; Yamada, K.; et al. Artificial
Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology 2021, 160, 1075–1084.
[CrossRef] [PubMed]

32. She, Y.; Jin, Z.; Wu, J.; Deng, J.; Zhang, L.; Su, H.; Jiang, G.; Liu, H.; Xie, D.; Cao, N.; et al. Development and Validation of a Deep
Learning Model for Non-Small Cell Lung Cancer Survival. JAMA Netw. Open 2020, 3, e205842. [CrossRef] [PubMed]

33. Bergquist, S.L.; Brooks, G.A.; Keating, N.L.; Landrum, M.B.; Rose, S. Classifying Lung Cancer Severity with Ensemble Machine
Learning in Health Care Claims Data. Proc. Mach. Learn. Res. 2017, 68, 25–38. [PubMed]

34. Wang, R.; Weng, Y.; Zhou, Z.; Chen, L.; Hao, H.; Wang, J. Multi-objective ensemble deep learning using electronic health records
to predict outcomes after lung cancer radiotherapy. Phys. Med. Biol. 2019, 64, 245005. [CrossRef]

35. Nartowt, B.J.; Hart, G.R.; Muhammad, W.; Liang, Y.; Stark, G.F.; Deng, J. Robust Machine Learning for Colorectal Cancer Risk
Prediction and Stratification. Front. Big Data 2020, 3, 6. [CrossRef]

36. Levitsky, A.; Pernemalm, M.; Bernhardson, B.M.; Forshed, J.; Kölbeck, K.; Olin, M.; Henriksson, R.; Lehtiö, J.; Tishelman, C.;
Eriksson, L.E. Early symptoms and sensations as predictors of lung cancer: A machine learning multivariate model. Sci. Rep.
2019, 9, 16504. [CrossRef] [PubMed]

37. Council, N.R. Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase 1; National Academies Press: Cambridge, MA,
USA, 2012.

38. Elena, J.W.; Travis, L.B.; Simonds, N.I.; Ambrosone, C.B.; Ballard-Barbash, R.; Bhatia, S.; Cerhan, J.R.; Hartge, P.; Heist, R.S.; Kushi,
L.H. Leveraging epidemiology and clinical studies of cancer outcomes: Recommendations and opportunities for translational
research. J. Natl. Cancer Inst. 2013, 105, 85–94. [CrossRef] [PubMed]

39. Rodgers, K.M.; Udesky, J.O.; Rudel, R.A.; Brody, J.G. Environmental chemicals and breast cancer: An updated review of
epidemiological literature informed by biological mechanisms. Environ. Res. 2018, 160, 152–182. [CrossRef]

40. Patel, C.J.; Kerr, J.; Thomas, D.C.; Mukherjee, B.; Ritz, B.; Chatterjee, N.; Jankowska, M.; Madan, J.; Karagas, M.R.; McAllister,
K.A. Opportunities and challenges for environmental exposure assessment in population-based studies. Cancer Epidemiol. Prev.
Biomark. 2017, 26, 1370–1380. [CrossRef]

41. McClish, D.; Penberthy, L. Using Medicare data to estimate the number of cases missed by a cancer registry: A 3-source
capture-recapture model. Med. Care 2004, 42, 1111–1116. [CrossRef]

42. Izquierdo, J.N.; Schoenbach, V.J. The potential and limitations of data from population-based state cancer registries. Am. J. Public
Health 2000, 90, 695. [PubMed]

43. McClure, L.A.; Miller, E.A.; Tannenbaum, S.L.; Hernandez, M.N.; MacKinnon, J.A.; He, Y.; LeBlanc, W.G.; Lee, D.J. Linking the
National Health Interview Survey with the Florida Cancer Data System: A Pilot Study. J. Regist. Manag. 2016, 43, 16.

44. Sugarman, J.R.; Holliday, M.; Ross, A.; Castorina, J.; Hui, Y. Improving American Indian cancer data in the Washington State
Cancer Registry using linkages with the Indian Health Service and tribal records. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1996,
78, 1564–1568.

45. Coughlin, S.S. Social determinants of breast cancer risk, stage, and survival. Breast Cancer Res. Treat. 2019, 177, 537–548. [CrossRef]
[PubMed]

46. Buehler, J.W.; Castro, J.C.; Cohen, S.; Zhao, Y.; Melly, S.; Moore, K. Personal and Neighborhood Attributes Associated with
Cervical and Colorectal Cancer Screening in an Urban African American Population. Prev. Chronic Dis. 2019, 16, E118. [CrossRef]
[PubMed]

47. Shariff-Marco, S.; Breen, N.; Stinchcomb, D.G.; Klabunde, C.N. Multilevel predictors of colorectal cancer screening use in
California. Am. J. Manag. Care 2013, 19, 205–216.

48. Mitchell, J.A.; Watkins, D.C.; Modlin, C.S., Jr. Social Determinants Associated with Colorectal Cancer Screening in an Urban
Community Sample of African-American Men. J. Mens. Health 2013, 10, 14–21. [CrossRef] [PubMed]

49. Leech, M.M.; Weiss, J.E.; Markey, C.; Loehrer, A.P. Influence of Race, Insurance, Rurality, and Socioeconomic Status on Equity of
Lung and Colorectal Cancer Care. Ann. Surg. Oncol. 2022, 29, 3630–3639. [CrossRef] [PubMed]

50. Tawk, R.; Abner, A.; Ashford, A.; Brown, C.P. Differences in Colorectal Cancer Outcomes by Race and Insurance. Int. J. Environ.
Res. Public Health 2015, 13, 48. [CrossRef] [PubMed]

https://doi.org/10.1136/bmjopen-2013-004007
https://www.ncbi.nlm.nih.gov/pubmed/24643167
https://doi.org/10.5306/wjco.v11.i11.918
https://doi.org/10.1001/jamaoncol.2020.4331
https://doi.org/10.1016/j.ijmedinf.2017.09.013
https://doi.org/10.1016/j.ygyno.2020.09.047
https://doi.org/10.1053/j.gastro.2020.09.027
https://www.ncbi.nlm.nih.gov/pubmed/32979355
https://doi.org/10.1001/jamanetworkopen.2020.5842
https://www.ncbi.nlm.nih.gov/pubmed/32492161
https://www.ncbi.nlm.nih.gov/pubmed/30542673
https://doi.org/10.1088/1361-6560/ab555e
https://doi.org/10.3389/fdata.2020.00006
https://doi.org/10.1038/s41598-019-52915-x
https://www.ncbi.nlm.nih.gov/pubmed/31712735
https://doi.org/10.1093/jnci/djs473
https://www.ncbi.nlm.nih.gov/pubmed/23197494
https://doi.org/10.1016/j.envres.2017.08.045
https://doi.org/10.1158/1055-9965.EPI-17-0459
https://doi.org/10.1097/00005650-200411000-00010
https://www.ncbi.nlm.nih.gov/pubmed/10800415
https://doi.org/10.1007/s10549-019-05340-7
https://www.ncbi.nlm.nih.gov/pubmed/31270761
https://doi.org/10.5888/pcd16.190030
https://www.ncbi.nlm.nih.gov/pubmed/31469069
https://doi.org/10.1016/j.jomh.2012.09.003
https://www.ncbi.nlm.nih.gov/pubmed/30532802
https://doi.org/10.1245/s10434-021-11160-1
https://www.ncbi.nlm.nih.gov/pubmed/34997420
https://doi.org/10.3390/ijerph13010048
https://www.ncbi.nlm.nih.gov/pubmed/26703651


Cancers 2024, 16, 540 20 of 21

51. Balan, N.; Petrie, B.A.; Chen, K.T. Racial Disparities in Colorectal Cancer Care for Black Patients: Barriers and Solutions. Am.
Surg. 2022, 88, 2823–2830. [CrossRef]

52. Salem, M.E.; Puccini, A.; Trufan, S.J.; Sha, W.; Kadakia, K.C.; Hartley, M.L.; Musselwhite, L.W.; Symanowski, J.T.; Hwang, J.J.;
Raghavan, D. Impact of Sociodemographic Disparities and Insurance Status on Survival of Patients with Early-Onset Colorectal
Cancer. Oncologist 2021, 26, e1730–e1741. [CrossRef] [PubMed]

53. Warren Andersen, S.; Blot, W.J.; Lipworth, L.; Steinwandel, M.; Murff, H.J.; Zheng, W. Association of Race and Socioeconomic
Status with Colorectal Cancer Screening, Colorectal Cancer Risk, and Mortality in Southern US Adults. JAMA Netw. Open 2019,
2, e1917995. [CrossRef] [PubMed]

54. Coughlin, S.S. Social determinants of colorectal cancer risk, stage, and survival: A systematic review. Int. J. Color. Dis. 2020, 35,
985–995. [CrossRef]

55. Bauer, C.; Zhang, K.; Xiao, Q.; Lu, J.; Hong, Y.R.; Suk, R. County-Level Social Vulnerability and Breast, Cervical, and Colorectal
Cancer Screening Rates in the US, 2018. JAMA Netw. Open 2022, 5, e2233429. [CrossRef]

56. Korn, A.R.; Walsh-Bailey, C.; Pilar, M.; Sandler, B.; Bhattacharjee, P.; Moore, W.T.; Brownson, R.C.; Emmons, K.M.; Oh, A.Y. Social
determinants of health and cancer screening implementation and outcomes in the USA: A systematic review protocol. Syst. Rev.
2022, 11, 117. [CrossRef]

57. Siegel, R.L.; Sahar, L.; Robbins, A.; Jemal, A. Where Can Colorectal Cancer Screening Interventions Have the Most Impact?
Where Can Colorectal Cancer Screening Have the Most Impact? Cancer Epidemiol. Biomark. Prev. 2015, 24, 1151–1156. [CrossRef]
[PubMed]

58. Rogers, C.R.; Moore, J.X.; Qeadan, F.; Gu, L.Y.; Huntington, M.S.; Holowatyj, A.N. Examining factors underlying geographic
disparities in early-onset colorectal cancer survival among men in the United States. Am. J. Cancer Res. 2020, 10, 1592–1607.
[PubMed]

59. Kuo, T.-M.; Meyer, A.M.; Baggett, C.D.; Olshan, A.F. Examining determinants of geographic variation in colorectal cancer
mortality in North Carolina: A spatial analysis approach. Cancer Epidemiol. 2019, 59, 8–14. [CrossRef]

60. Centers for Disease Control and Prevention. The Social-Ecological Model: A Framework for Prevention; Centers for Disease Control and
Prevention: Atlanta, GE, USA, 2015. Available online: https://www.cdc.gov/violenceprevention/about/social-ecologicalmodel.
html (accessed on 30 August 2023).

61. US Department of Health and Human Services; Office of Disease Prevention and Health Promotion. Healthy People 2030. 2021.
Available online: https://health.gov/healthypeople/objectives-and-data/social-determinants-health (accessed on 30 August
2023).

62. Artiga, S.; Hinton, E. Beyond Health Care: The Role of Social Determinants in Promoting Health and Health Equity; Kaiser Family
Foundation: San Francisco, CA, USA, 2018; Volume 10.

63. Health, V.D.o. Virginia Cancer Registry (VCR)—Data. Available online: https://www.vdh.virginia.gov/virginia-cancer-registry/
data/ (accessed on 1 May 2023).

64. United States Census Bureau. 2015–2019 American Community Survey 5-Year Estimates; US Department of Commerce: Washington,
DC, USA, 2019.

65. mySidewalk. Data Is for the People. Available online: https://www.mysidewalk.com/ (accessed on 28 November 2023).
66. Cui, W.; Finkelstein, J. Using EHR Data to Identify Social Determinants of Health Affecting Disparities in Cancer Survival. Stud.

Health Technol. Inform. 2022, 290, 967–971. [CrossRef]
67. Gehlert, S.; Hudson, D.; Sacks, T. A Critical Theoretical Approach to Cancer Disparities: Breast Cancer and the Social Determinants

of Health. Front. Public Health 2021, 9, 674736. [CrossRef]
68. Yu, Y.; Carey, M.; Pollett, W.; Green, J.; Dicks, E.; Parfrey, P.; Yilmaz, Y.E.; Savas, S. The long-term survival characteristics of a

cohort of colorectal cancer patients and baseline variables associated with survival outcomes with or without time-varying effects.
BMC Med. 2019, 17, 150. [CrossRef]

69. He, Z.; Zhang, J.; Yuan, X.; Xi, J.; Liu, Z.; Zhang, Y. Stratification of Breast Cancer by Integrating Gene Expression Data and
Clinical Variables. Molecules 2019, 24, 631. [CrossRef]

70. Galadima, H.I.; Adunlin, G.; Hughes, M.S.; Cropp, C.D.; Lucero, L.; Akpinar-Elci, M. Racial disparities and treatment trends
among young-onset colorectal cancer patients: An analysis of a hospital cancer registry. Cancer Epidemiol. 2021, 72, 101911.
[CrossRef]

71. Harvey, V.M.; Enos, C.W.; Chen, J.T.; Galadima, H.; Eschbach, K. The Role of Neighborhood Characteristics in Late Stage
Melanoma Diagnosis among Hispanic Men in California, Texas, and Florida, 1996–2012. J. Cancer Epidemiol. 2017, 2017, 8418904.
[CrossRef] [PubMed]

72. Zahnd, W.E.; Gomez, S.L.; Steck, S.E.; Brown, M.J.; Ganai, S.; Zhang, J.; Arp Adams, S.; Berger, F.G.; Eberth, J.M. Rural-urban and
racial/ethnic trends and disparities in early-onset and average-onset colorectal cancer. Cancer 2021, 127, 239–248. [CrossRef]
[PubMed]

73. Abualkhair, W.H.; Zhou, M.; Ochoa, C.O.; Lacayo, L.; Murphy, C.; Wu, X.C.; Karlitz, J.J. Geographic and intra-racial disparities in
early-onset colorectal cancer in the SEER 18 registries of the United States. Cancer Med. 2020, 9, 9150–9159. [CrossRef] [PubMed]

74. Missouri Census Data Center. MABLE/Geocorr: Geographic Correspondence Engine. 2018. Available online: https://mcdc.
missouri.edu/applications/geocorr.html (accessed on 3 May 2023).

https://doi.org/10.1177/00031348221111513
https://doi.org/10.1002/onco.13908
https://www.ncbi.nlm.nih.gov/pubmed/34288237
https://doi.org/10.1001/jamanetworkopen.2019.17995
https://www.ncbi.nlm.nih.gov/pubmed/31860105
https://doi.org/10.1007/s00384-020-03585-z
https://doi.org/10.1001/jamanetworkopen.2022.33429
https://doi.org/10.1186/s13643-022-01995-4
https://doi.org/10.1158/1055-9965.EPI-15-0082
https://www.ncbi.nlm.nih.gov/pubmed/26156973
https://www.ncbi.nlm.nih.gov/pubmed/32509399
https://doi.org/10.1016/j.canep.2019.01.002
https://www.cdc.gov/violenceprevention/about/social-ecologicalmodel.html
https://www.cdc.gov/violenceprevention/about/social-ecologicalmodel.html
https://health.gov/healthypeople/objectives-and-data/social-determinants-health
https://www.vdh.virginia.gov/virginia-cancer-registry/data/
https://www.vdh.virginia.gov/virginia-cancer-registry/data/
https://www.mysidewalk.com/
https://doi.org/10.3233/shti220224
https://doi.org/10.3389/fpubh.2021.674736
https://doi.org/10.1186/s12916-019-1379-5
https://doi.org/10.3390/molecules24030631
https://doi.org/10.1016/j.canep.2021.101911
https://doi.org/10.1155/2017/8418904
https://www.ncbi.nlm.nih.gov/pubmed/28702054
https://doi.org/10.1002/cncr.33256
https://www.ncbi.nlm.nih.gov/pubmed/33112412
https://doi.org/10.1002/cam4.3488
https://www.ncbi.nlm.nih.gov/pubmed/33094553
https://mcdc.missouri.edu/applications/geocorr.html
https://mcdc.missouri.edu/applications/geocorr.html


Cancers 2024, 16, 540 21 of 21

75. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013;
Volume 398.

76. Rafique, R.; Islam, S.R.; Kazi, J.U. Machine learning in the prediction of cancer therapy. Comput. Struct. Biotechnol. J. 2021, 19,
4003–4017. [CrossRef] [PubMed]

77. Wang, X.; Bo, D.; Shi, C.; Fan, S.; Ye, Y.; Philip, S.Y. A survey on heterogeneous graph embedding: Methods, techniques,
applications and sources. IEEE Trans. Big Data 2022, 9, 415–436. [CrossRef]

78. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
79. Bertsimas, D.; Wiberg, H. Machine learning in oncology: Methods, applications, and challenges. JCO Clin. Cancer Inform. 2020,

4, CCI.20.00072. [CrossRef] [PubMed]
80. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
81. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
82. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
83. Levin, T.R.; Corley, D.A.; Jensen, C.D.; Schottinger, J.E.; Quinn, V.P.; Zauber, A.G.; Lee, J.K.; Zhao, W.K.; Udaltsova, N.; Ghai,

N.R. Effects of organized colorectal cancer screening on cancer incidence and mortality in a large community-based population.
Gastroenterology 2018, 155, 1383–1391.e1385. [CrossRef] [PubMed]

84. Shapiro, J.A.; Soman, A.V.; Berkowitz, Z.; Fedewa, S.A.; Sabatino, S.A.; de Moor, J.S.; Clarke, T.C.; Doria-Rose, V.P.; Breslau, E.S.;
Jemal, A. Screening for colorectal cancer in the United States: Correlates and time trends by type of test. Cancer Epidemiol. Biomark.
Prev. 2021, 30, 1554–1565. [CrossRef]

85. Hubers, J.; Sonnenberg, A.; Gopal, D.; Weiss, J.; Holobyn, T.; Soni, A. Trends in wait time for colorectal cancer screening and
diagnosis 2013–2016. Clin. Transl. Gastroenterol. 2020, 11, e00113. [CrossRef]

86. Demb, J.; Earles, A.; Martínez, M.E.; Bustamante, R.; Bryant, A.K.; Murphy, J.D.; Liu, L.; Gupta, S. Risk factors for colorectal
cancer significantly vary by anatomic site. BMJ Open Gastroenterol. 2019, 6, e000313. [CrossRef]

87. Parikh-Patel, A.; Bates, J.H.; Campleman, S. Colorectal cancer stage at diagnosis by socioeconomic and urban/rural status in
California, 1988–2000. Cancer 2006, 107, 1189–1195. [CrossRef] [PubMed]

88. Li, Y.; Zou, Z.; Gao, Z.; Wang, Y.; Xiao, M.; Xu, C.; Jiang, G.; Wang, H.; Jin, L.; Wang, J. Prediction of lung cancer risk in Chinese
population with genetic-environment factor using extreme gradient boosting. Cancer Med. 2022, 11, 4469–4478. [CrossRef]
[PubMed]

89. Bibault, J.-E.; Chang, D.T.; Xing, L. Development and validation of a model to predict survival in colorectal cancer using a
gradient-boosted machine. Gut 2021, 70, 884–889. [CrossRef] [PubMed]

90. Chen, Y.; Jia, Z.; Mercola, D.; Xie, X. A gradient boosting algorithm for survival analysis via direct optimization of concordance
index. Comput. Math. Methods Med. 2013, 2013, 873595. [CrossRef] [PubMed]

91. Aryal, S.; Paudel, B.; Aryal, S.; Paudel, B. Supervised classification using gradient boosting machine: Wisconsin breast cancer
dataset. Int. J. Sci. Res. Eng. Trends 2020, 6, 1887–1892.

92. Vo, D.M.; Nguyen, N.-Q.; Lee, S.-W. Classification of breast cancer histology images using incremental boosting convolution
networks. Inf. Sci. 2019, 482, 123–138. [CrossRef]

93. Liu, B.; Zhu, L.; Zou, J.; Chen, H.-S.; Miller, K.D.; Jemal, A.; Siegel, R.L.; Feuer, E.J. Updated methodology for projecting US-and
state-level cancer counts for the current calendar year: Part I: Spatio-temporal modeling for cancer incidence. Cancer Epidemiol.
Biomark. Prev. 2021, 30, 1620–1626. [CrossRef]

94. Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.G.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The association between
lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis. Environ. Res. 2016, 144, 60–65. [CrossRef]

95. Brady, L.A.; Tumiel-Berhalter, L.M.; Schad, L.A.; Bentham, A.; Vitale, K.; Norton, A.; Noronha, G.; Swanger, C.; Morley, C.P.
Increasing Breast, Cervical, and Colorectal Cancer Screenings: A Qualitative Assessment of Barriers and Promoters in Safety-Net
Practices. J. Patient Cent. Res. Rev. 2021, 8, 323–330. [CrossRef]

96. Choy, A.M.; Lebwohl, B.; Krigel, A. Impact of social determinants of health on colorectal cancer screening and surveillance in the
COVID reopening phase. Eur. J. Gastroenterol. Hepatol. 2022, 34, 739–743. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.csbj.2021.07.003
https://www.ncbi.nlm.nih.gov/pubmed/34377366
https://doi.org/10.1109/TBDATA.2022.3177455
https://doi.org/10.1007/BF00116251
https://doi.org/10.1200/CCI.20.00072
https://www.ncbi.nlm.nih.gov/pubmed/33058693
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/BF00994018
https://doi.org/10.1053/j.gastro.2018.07.017
https://www.ncbi.nlm.nih.gov/pubmed/30031768
https://doi.org/10.1158/1055-9965.EPI-20-1809
https://doi.org/10.14309/ctg.0000000000000113
https://doi.org/10.1136/bmjgast-2019-000313
https://doi.org/10.1002/cncr.22016
https://www.ncbi.nlm.nih.gov/pubmed/16835910
https://doi.org/10.1002/cam4.4800
https://www.ncbi.nlm.nih.gov/pubmed/35499292
https://doi.org/10.1136/gutjnl-2020-321799
https://www.ncbi.nlm.nih.gov/pubmed/32887732
https://doi.org/10.1155/2013/873595
https://www.ncbi.nlm.nih.gov/pubmed/24348746
https://doi.org/10.1016/j.ins.2018.12.089
https://doi.org/10.1158/1055-9965.EPI-20-1727
https://doi.org/10.1016/j.envres.2015.11.004
https://doi.org/10.17294/2330-0698.1857
https://doi.org/10.1097/MEG.0000000000002350

	Introduction 
	Machine Learning Approaches in Predicting Cancer Outcomes—A Literature Review 
	Role of Social Determinants of Health in Cancer Research 
	Study Purpose 

	Materials and Methods 
	Study Design and Setting 
	Theoretical Framework 
	Data Sources 
	Study Population 
	Data Collection and Variables Definitions 
	Data Linkage and Management 
	An Overview of Machine Learning Techniques in Predicting Cancer Outcomes 
	Statistical Analyses 

	Results 
	Baseline Characteristics 
	Census Tracts Characteristics by Stage at Diagnosis 
	Results of the Predictive Machine Learning Models 
	Performance of the Best ML Predictive Model 
	Feature Importance 
	Results of the Spatio-Temporal Analysis 

	Discussion 
	Limitations 
	Conclusions 
	References

