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Simple Summary: The evolutionary events, carcinogenesis and speciation, are presumably based
on a phase of ‘genome instability’ caused by DNA breakage and mis-repair leading to chromosome
rearrangement. Subsequently, the corresponding initial cells pass bottlenecks of selection, yielding
either a tumor or an organism with a balanced genome, structurally different from the ancestral one.

Abstract: It is argued that carcinogenesis and speciation are evolutionary events which are based on
changes in the ‘karyotypic code’ through a phase of ‘genome instability’, followed by a bottleneck of
selection for the viability and adaptability of the initial cells. Genomic (i.e., chromosomal) instability
is caused by (massive) DNA breakage and the subsequent mis-repair of DNA double-strand breaks
(DSBs) resulting in various chromosome rearrangements. Potential tumor cells are selected for
rapid somatic proliferation. Cells eventually yielding a novel species need not only to be viable and
proliferation proficient, but also to have a balanced genome which, after passing meiosis as another
bottleneck and fusing with an identical gamete, can result in a well-adapted organism. Such new
organisms should be genetically or geographically isolated from the ancestral population and possess
or develop an at least partial sexual barrier.

Keywords: chromosome mutations; DNA double-strand break repair; karyotype; meiosis; evolution;
carcinogenesis; speciation

A long-lasting discussion refers to whether speciation is based on the gradual accu-
mulation of ‘micromutations’ (gene mutations), or rather on saltatory ‘macromutations’
(chromosome rearrangements which change the order of sequences) (for a recent reviews,
see [1–3]). Among the various alternative hypotheses and explanations, the punctuated
equilibrium theory, proposed by Niles Eldredge and Stephen Jay Gould about thirty years
ago, has been the most influential one [4]. According to this theory, evolution should be
characterized by long periods of relative stability (stasis), punctuated by brief episodes
of rapid change. Unfortunately, due to difficulties in proposing the mechanisms of both
stasis and punctuated fossil changes under neo-Darwinism’s gene-centered framework, i.e.,
assuming that micro- and macroevolution are both based on gene mutations, Gould later
retreated from this vital concept [5]. In the following, the arguments for either option will be
compared based on recent advances in cancer evolutionary research, which provides both
a new experimental platform and a genome-based evolutionary perspective. Observations
about tumor development led to the idea of a ‘two-step-evolution’ of cancer, with the first
step being a chaotic event, and the second one a selection step through a bottleneck of
genome instability. The chaotic event leads to genome instability via massive chromosome
rearrangements, after which only a small minority of cells with the ability to proliferate
quickly and to escape from immune surveillance can be rescued from ‘genomic chaos’
and yield tumors with diverse structural and/or numerical chromosome mutations. In
fact, karyotype alterations are universally observed in the vast majority of cancer cases [2].
Furthermore, massive karyotype changes in cancer are well documented in the literature
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following the cancer genome sequencing project [6–8]. In principle, the same scheme
can also apply to speciation. Environmental disasters resulting in mass extinctions—for
instance, of dinosaurs ~66 million years ago—provided reduced competition and nearly
empty ecological niches. This offered the opportunity for the fast radiation of mammals
via adaptation, mediated by novel genetic variants (for review see [2,9]). Also, under less
dramatic circumstances, events causing multiple chromosome breakages and rearrange-
ments in one or few individuals could initiate speciation. The observation that even related
species differ in their genome arrangement, i.e., in their karyotypes, favors this assumption.

Usually, genome chaos occurs after (multiple) breakages of genomic DNA, elicited
by external, e.g., ionizing irradiation or other genotoxin exposure (as in drug-mediated
cancer therapy), or by endogenous impacts. Endogenous impacts include, for example, the
mechanical rupture of anaphase bridges formed by dicentric chromosomes and result in
mitotic bridge-breakage fusion cycles [10] that yield complex rearrangements (Figure 1).
Alternatively, micronuclei could be endonucleolytically degraded, and, after fragment
tethering and their re-integration into one daughter nucleus, may lead to massive re-
arrangements without an essential loss of genetic information (chromothripsis) [11–13].
Micronuclei harbor mis-segregated chromosomes (mainly acentric chromosome fragments),
wrapped by a nuclear membrane during the exit from mitosis.
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Figure 1. After replication of a dicentric translocation product, and a twist of its sister chromatids
between centromeres, an anaphase bridge can form (left part of the figure). The chance for twisting
increases with the distance of centromeres. After random rupture of the bridge and another round
of replication, the break-ends of the sister chromatids ‘fuse’, yielding again a bridge and another
random break in the next anaphase, mediating complex rearrangements (right part of the figure),
modified after Schubert (2021) [14].

Broken DNA fragments may trigger various pathways of DNA double-strand break
(DSB) repair (see Figure 2). The different DSB repair pathways can either precisely re-
store the pre-break situation or erroneously lead to deletions, insertions, or, via the lig-
ation of break ends different to the original ones, to chromosome rearrangements (see
Figures 2 and 3). A repair bias towards deletions results in genome shrinkage. A bias
towards insertion causes genome expansion (including the spreading of retroelements).
Such repair biases can also explain the so-called genome-size paradox (=”C-value para-
dox” [15]), according to which the genome size is not correlated with the genetic complexity
of organisms [16]. A switch towards or between these biases may occur via mutations in
individual components of the protein complexes involved in DSB repair [17]. Ligating
ends from different breaks rearrange the genome, leading to inversions, translocations, or
transpositions (Figure 3). The more break ends that are present simultaneously, the lower
the chance of ‘correct’ repair, which restores the pre-break situation. Instead, any types
of ‘mis-repair’ yielding sequence alterations at a genic or karyotype level, i.e., deletions,
insertions, or other rearrangements, become abundant. Comparable to cancer evolution,
after the (mis-)repair of DSBs, only a single or few cells may pass the bottleneck of selection.
Independent of the type of the respective chromosome aberrations, the harboring cells
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have to be genetically balanced and able to proliferate to eventually reach meiosis via the
germline in animals, or via the apical meristem in plants.
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Meiosis is another bottleneck for cells with rearranged karyotypes. Through meiotic
crossover and the random segregation of paternal and maternal chromosomes, parental
alleles become stirred into a new combination. True genetic novelty, however, is exclusively
obtained via mutagenesis. Among mutations, ‘macromutations’, as consequences of DSB
mis-repair, alter the arrangement of genetic information along chromosomes (large duplica-
tions, deletions, inversions, transpositions, as well as translocations). Such rearrangements
are usually counter-selected during meiosis. This happens because the homologous re-
combination repair of Spo11-induced DSBs, involving paired homologous chromosomes,
may be disturbed between structurally heterozygous homologs. Even more importantly,
structurally heterozygous chromosomes form multivalent pairing configurations during
meiosis I and may (frequently) lead, via mis-segregation, to imbalanced gametes (Figure 4).
Only if altered chromosome complements are genetically balanced, and gametes carry the
same alteration fuse, will the resulting homozygous organism, in turn, perform correct
meiotic division. Backcrossing with the ‘wildtype’ would again cause meiotic disturbance,
yield a reduced number of fertile gametes, and thus result in less progeny. Therefore,
meiosis assures the stable inheritance of genetic material, discriminating against structural
chromosome variations, as shown experimentally in yeast [19]. In this way, meiosis leads, in
general at least, to the genetic isolation of individuals with different karyotypes [20] because
karyotypes preserve the order of genes along the chromosome. This species-specific order
of genes organizes the genetic network of a given species, as the topological relationships
among different sequences on the chromosome represent system-level information beyond
the genes.
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Mis-repair of DSBs in proliferation-proficient somatic cells generates genetic nov-
elty, which as genome-rearranging macromutations may lead to evolutionarily new kary-
otypes [21] and form a (more or less strict) sexual barrier. Whether the new karyotypic
information, the ‘karyotype code’, with an altered sequence order [22,23] results directly
in a new species, which then gradually accumulates genic micromutations and epigenetic
alterations, i.e., morphological and/or physiological peculiarities, depends on the degree
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of hybrid incompatibility (under sympatric conditions), and/or on the duration of the
geographic isolation of the new variant. In general, hybrid incompatibility should increase
with the size and number of genome rearrangements. Smaller inversions, duplications,
or transpositions do not necessarily disturb meiotic processes. For multiple chromosome
rearrangements—for instance, those which distinguish the karyotypes of the sister duck-
weed species, Spirodela polyrhiza and S. intermedia [24,25]—it is likely that many, if not
all, occurred simultaneously, via a chaotic event, rather than step-by-step individually
(Figure 5). In the former case, a sexual barrier would have arisen immediately.
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S. intermedia as revealed by fluorescent in situ hybridisation with bacterial artificial chromosomes
mapped to S. polyrhiza (Hoang & Schubert 2017 [24]; modified according to Hoang et al. 2022 [25]).
Frames in different color indicate (groups of) rearrangements. In particular, the first complex group
of rearrangements likely occurred simultaneously.

New species can also result via reticulate evolution, if the (rare) fusion of gametes of
two already established species with differentiated karyotypes occurs. A prerequisite is
bivalent formation and correct chromosome segregation in meiosis I of the hybrid organism.
Meiotic stability is achieved if, after the fusion of reduced gametes, a chromosome doubling
occurs, or if unreduced gametes fuse. In both cases, regular bivalent formation and correct
segregation take place in meiosis I, enabling stable propagation of the carrier organism as a
novel species. If stabile hybrids maintain the parental chromosome complements, they are
called ‘neopolyploids’. If such hybrids are ‘diploidizing’ via further rearrangements within
or between the parental karyotypes—often by translocations which reduce the chromosome
number and genome size, e.g., via loss of centromeres and telomeres (=descending dys-
ploidy, for review see [26])—they are called ‘mesopolyploids’. If the hybridization events
are revealed only by genomic approaches, detecting multiple variants of individual genes,
the corresponding species are considered as ‘paleopolyploids’, which are already largely
diploidized. Stress-mediated ‘genomic shock’ [27] may be induced directly by interspecific
hybridization, or by the subsequent meiotic loss of so-called ‘gametocidal chromosomes’,
as occurs in some interspecific hybrids in cereals (for a review, see [28]) and appears as
multiple DNA breakage. The reasons and pathways are not yet clear, but such events yield
genomic chaos, i.e., genome rearrangement via DSB mis-repair, and thereby contribute to
sexual isolation and speciation.



Cancers 2024, 16, 554 6 of 8

Alternatively, speciation might occasionally be initiated by one (or few) genetic mutation
(e.g., in plants altering flowering time), if such mutations cause an immediate sexual barrier.

Thus, it seems evident that cancer formation and speciation share many key features.
More fundamentally, both cases share processes of creating a new system from an old
one and involve the preservation and growth of these new systems through population
expansion. In particular, both exhibit a pattern of two-phased evolution with genome
reorganization-mediated punctuated macroevolution, followed by gene mutation-mediated
microevolution. Interestingly, these evolutionary mechanisms can be simply described as
information creation (by changing the karyotype), information preservation (by largely
maintaining gene synteny), information modification (via gene mutations and epigenetic
alterations), and information usage (in various physiological processes). Significantly, this
view on carcinogenesis and speciation links macroevolution to chromosome structural
changes, while microevolution is linked to gene-level changes, and is distinct from the
traditional viewpoint that equates macroevolution with either special gene mutations or
with the accumulation of microevolutionary events over time. Additionally, it explains the
phenomenon of massive speciation following massive extinction well, as well as the long
periods of stasis in the fossil record, given that the function of sex can preserve the karyotype
code. It is noteworthy that the induced genome chaos observed in cancer research bears
a striking resemblance to the ‘genetic earthquake’ experiments of Barbara McClintock in
corn. Her observed karyotype changes might potentially lead to the emergence of novel
species. Recently, numerous large-scale comparative sequencing experiments in both plants
and animals have revealed that karyotype reorganization is a universal mechanism for
biodiversification (e.g., [29–31]). Now, with the new concepts of karyotype coding and
the two-phased evolution, the time is ripe to establish the genome and information-based
evolutionary framework [22,23].

The implications of structural (and/or numerical) chromosomal variability (chromo-
somal instability = CIN) for cancer research and treatment are profound. The molecular
genetic tradition often emphasizes gene mutations in discussions about cancer, with less
appreciation for the creation of a new system with an altered karyotype. Prioritizing the
importance of CIN in many cancers parallels karyotype alteration towards speciation,
given that cancer is an unstable system, involving both karyotypic macro- and genic mi-
croevolution similarly as speciation does. Understanding the diverse triggering factors of
cancer, and its response to mutagenic treatments, is now closely tied to the level of CIN
through environmental and internal mutagenic-induced stress, mediating evolutionary
processes [32]. The challenge lies in the chaotic character of evolutionary processes during
which the same mechanisms, such as DNA repair or meiosis, can contribute either to
evolutionary innovation (by macroevolution) or to restore or (more or less) maintain the
original state (during microevolution). This insight is of clinical relevance and should be
integrated into treatment plans because treatment options could induce rapid genome
chaos leading to swift drug resistance and increased cancer aggressiveness [33–35].

Conclusions

In conclusion, it seems reasonable to state that speciation at a diploid level is most
likely based on the genetic isolation of individuals with karyotypes differing from ancestral
ones by rearrangements (macromutations) after the mis-repair of multiple DNA double-
strand breaks. Thus, chromosome rearrangements are initial phenomena in most cases of
speciation, as well as in cancer development.

This is why chromosome instability via DNA breakage and mis-repair is a driver
of carcinogenesis and speciation, and is a genotypic as well as phenotypic feature of the
initial cells for both evolutionary processes. The main difference between speciation and
carcinogenesis is that cancer development is not limited by sexual constraints and thus
multiple cycles of two-phased evolution may happen within one organism, proceeding
much faster than speciation in multicellular eukaryotic organisms.
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