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Simple Summary: Small-target classification in an image is still challenging in spite of emerging
deep learning-based techniques. This study focused on the development of deep learning models for
small-lesion classification. The proposed Rense block and edge conservative module enables deep
learning models to extract better features of small lesions in images. Our RenseNet was validated
with quantitative classification accuracy and a qualitative explanation heatmap for kidney stone and
lung tumor computed tomography (CT) image datasets.

Abstract: Deep learning has become an essential tool in medical image analysis owing to its re-
markable performance. Target classification and model interpretability are key applications of deep
learning in medical image analysis, and hence many deep learning-based algorithms have emerged.
Many existing deep learning-based algorithms include pooling operations, which are a type of
subsampling used to enlarge the receptive field. However, pooling operations degrade the image
details in terms of signal processing theory, which is significantly sensitive to small objects in an
image. Therefore, in this study, we designed a Rense block and edge conservative module to effec-
tively manipulate previous feature information in the feed-forward learning process. Specifically, a
Rense block, an optimal design that incorporates skip connections of residual and dense blocks, was
demonstrated through mathematical analysis. Furthermore, we avoid blurring of the features in the
pooling operation through a compensation path in the edge conservative module. Two independent
CT datasets of kidney stones and lung tumors, in which small lesions are often included in the images,
were used to verify the proposed RenseNet. The results of the classification and explanation heatmaps
show that the proposed RenseNet provides the best inference and interpretation compared to current
state-of-the-art methods. The proposed RenseNet can significantly contribute to efficient diagnosis
and treatment because it is effective for small lesions that might be misclassified or misinterpreted.

Keywords: classification; deep learning; explainable AI; heatmap; small lesion

1. Introduction

The success of deep learning (DL) in computer vision has led to the increased appli-
cation of artificial intelligence (AI) in medical image analysis [1,2]. DL-based AI models
have been applied to clinical vision applications, such as lesion detection, classification,
and segmentation, thereby outperforming conventional machine learning models [3–6].
Moreover, explainable AI (XAI) allows users to interpret and trust the results predicted by
the AI model [7]. Clinical vision applications often require high reliability; therefore, there
might be limitations in directly applying DL models in real practice, as the internal process
of DL models is a black box type. XAI, an emerging technique in the field of vision, helps
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to build trust and confidence in model prediction, which can lead to a wider application of
DL in the clinical field. Gradient-weighted class activation mapping (Grad-CAM) is the
principal XAI algorithm for comprehending the prediction results without modifying the
model [8]. Grad-CAM is a generalization of the class activation map (CAM) [9], and recent
advanced techniques such as Grad-CAM++ [10], Ablation-CAM [11], and XGrad-CAM [12]
are also based on Grad-CAM. Layer-wise relevance propagation (LRP) has been introduced
as another method to explain model decisions [13]. However, the explanations are differ-
ent across DL models, even though the same dataset and XAI algorithm are applied [14].
Therefore, there is room to improve the explanation of results using a DL model design.

Accurate classification of small lesions in medical images for early diagnosis and
efficient treatment leads to more effective recovery; however, small-object classification
is a challenging and important problem in computer vision research. In general, small
objects often exhibit non-evident visual features. Previous studies [3,4] showed that the
detection and segmentation accuracy of small lesions is not comparable to that of large
targets, despite using DL techniques. This is because information loss of small lesions
owing to subsampling (e.g., pooling) is crucial. To overcome the limitations, those studies,
which focused on the segmentation task, enhanced performance of a U-Net-based structure
by introducing adaptive loss function and task-consistency regularization schemes. In
terms of XAI, the natural image dataset (for example, the ImageNet dataset) includes
evident and bulky objects; therefore, the heatmap result of Grad-CAM from the DL-based
classification model is consistent with human cognition. However, in the medical image
dataset, there are many small-lesion scenarios, such as kidney stones, tumors, and blood
vessels. The heatmaps estimated from XAI algorithms for small-lesion classification do not
provide a reasonable interpretation at times because the prediction results for classification
are not propagated backward well in the DL model owing to information loss in the model.
Hence, existing DL models exhibit the problem of misprediction and misinterpretation in
small-target tasks, which hinders their common use in clinical sites.

In this study, we propose a deep-learning model to improve the classification of small
lesions. Our model generates a more reliable explanation heatmap in comparison with
state-of-the-art models. The key contributions of this study are as follows.

• A backbone network, which is composed of Rense blocks merged with residual and
dense blocks, was proposed using mathematical analysis such that we can utilize the
skip connections more efficiently and provide an insight for model structures.

• The edge conservative module was designed in the compensation paths, by preserving
the image detail lost from the subsampling (pooling) operation. Auxiliary features
were then extracted in this module for better inference.

• The performance of the proposed model was evaluated using a public CT dataset of
lung tumors and a private CT dataset of kidney stones, where there are often small-
lesion scenarios. Validation results in terms of classification and Grad-CAM-based
heatmaps show that the proposed model classifies small lesions better and can provide
more trust to clinical users in their decision-making compared with cutting-edge
techniques.

2. Related Works

Object classification is a basic task in the field of computer vision. With the develop-
ment of machine learning, object classification in medical images has also advanced. Before
DL was receiving significant attention, classical machine learning algorithms were applied
to medical images. Machine learning techniques often require handcrafted features (or man-
ually extracted features), which rely on human intervention, to build a mathematical model
in a data-driven manner [15]. For feature engineering in medical image analysis, Haralick
features calculated by a gray-level co-occurrence matrix of neighboring gray levels (GLCM)
in the image were introduced and compared with other feature descriptors—local binary
patterns (LBP), gray-level run-length method (GLRLM), and gray-level difference method
(GLDM)—which are well-known statistical texture-based feature descriptors [16]. The
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auto-correlation Gabor feature (AGF), which is invariant to scale, rotation, and illumination
changes in an image, was applied to gastroenterology images [17]. Further, scale-invariant
feature transform (SIFT) feature-based representations have achieved gains [18,19]. Over
the last few years, aggressive investigations using DL have shifted the paradigm, and
convolutional neural networks (CNNs) have been widely applied to object classification
with big success. The basic modules of CNNs, such as inception [20], residual [21], and
dense [22] blocks, were developed. Recently, EfficientNet [23], which proposed compound
scaling for model depth, width, and resolution, and a vision transformer (ViT) [24], which
adopted the transformer in natural language processing to the vision field, have been
applied to biomedical images [25,26]. In the meantime, various deep learning models
that use and combine residual and dense blocks have been studied [27,28]; however, most
of them are employed empirically. As such, in this paper, we provide the mathematical
analysis and insight for the optimal combination of residual and dense blocks instead of
relying on empirical results.

3. Materials and Methods

A full schematic of the proposed network composed of Rense blocks and edge con-
servative modules is shown in Figure 1. The remainder of this section includes a detailed
mathematical and theoretical description of the proposed model.
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Figure 1. Schematic diagram of the proposed RenseNet (Rense blocks with an edge conservative module).

3.1. Residual and Dense Blocks

Currently, deep neural network (DNN) models often use skip connections to increase
learning efficiency. A residual block is defined by a skip connection that learns the residual
functions concerning the layer input signal. Then, the main path and skip connection are
added before applying nonlinear activation [21]. To easily provide insight, the 2D residual
block can be simplified, as shown in Figure 2a. The output of the nth residual block is
expressed as:

y = A{ f (x) + x} ∈ ℜWn×Hn×Cn , where x ∈ ℜWn×Hn×Cn . (1)

In Equation (1), A(·) is the activation operator and f (·) is a function that includes the
convolution, activation, and normalization schemes, where f : ℜWn×Hn×Cn → ℜWn×Hn×Cn .
A dense block also employs skip connections to accumulate layer input signal along the
channel direction. Then, the nth dense block with skip connection [1] in Figure 2b results in:

y = f (x)⊚ x ∈ ℜWn×Hn×2Cn , (2)
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where ⊚ denotes the concatenation along the channel direction. The residual block effec-
tively reduces the search range in the feature space because it learns only residual signals
instead of full output signals. A dense block flexibly utilizes previous features because of
their accumulation. Basically, the model can avoid the gradient vanishing problem by skip
connections in both blocks such that gradients propagate backward well.
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dense block (orange layer: activation, gray layer: 1 × 1 convolution for channel reduction).

3.2. Rense Block

To take advantage of both blocks, two cases were considered, as shown in Figure 2c,d.
Figure 2c shows the case where the dense block is inside the residual block. The output of
this block is calculated as follows:

y = A[g{ f (x)⊚ x}+ x] ∈ ℜWn×Hn×Cn , (3)

where g(·) is the 1 × 1 convolution operator used to reduce the dimension of the channels.
A 1 × 1 convolution generates a channel-wise weighted sum; therefore, concatenation and
a 1 × 1 convolution can be demonstrated with linear operations, as shown in Figure 3. In
other words, the element of y in the ith channel location, that is, the output feature map in
the ith channel, is reformulated as

yi = A
[
∑Cn−1

k=0

{
αi,k f k(x) + βi,kxk

}
+ bi + xi

]
,

= A
{

∑Cn−1
k=0 αi,k f k(x) + ∑Cn−1

k=0 (βi,k + δi,k)xk + bi
}
∈ ℜWn×Hn .

(4)

Here, f k(x) ∈ ℜWn×Hn and xk ∈ ℜWn×Hn are the elements of f (x) and x at the kth

channel location, respectively; bi is the aggregated bias term of all 1 × 1 convolutions
for the ith channel location of the output; and δi,k = 1 when k = i; otherwise, δi,k = 0.
αi,k and βi,k are the kernel weights of f k(x) and xk for the output element of y in the ith
channel location, respectively. Consequently, this block can generalize the residual block
in Equation (1) because an element of y in the ith channel location of Equation (1) can be
rewritten with that of Equation (4), as follows:

yi = A
{

f i (x) + xi
}
∈ ℜWn×Hn , (5)

where both αi,k = 1 and βi,k = 1 when k = i; otherwise, αi,k = 0 and βi,k = 0. Here, the
additional bias term bi, which can shift the activation function, equals zero. Thus, the
original residual block in Figure 2a is a special case of a dense block inside the residual
block in Figure 2c because the dense block inside the residual block does not exhibit any
limitations for αi,k, βi,k, or bi. Subsequently, this block can obtain a gain from the flexibility
of the residual learning, but the original dense effect does not move the needle significantly.
In this study, it is defined as a switched Rense (sRense) block.
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Equation (5) cannot be further expanded by other linear operations, so we can expect
the full effects from addition and concatenation of identity in Equation (5). In other words,
the respective skip connections in the residual and dense blocks have their original power,
and they are clearly formulated into the sum and concatenation of the input, that is, this
block learns the residual function and simultaneously retains the previous features. This
block is called Rense, and is the basic block of the proposed RenseNet.
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3.3. Edge Conservative Module

Generally, most DNNs comprise a series of layers, including convolution, activation,
and pooling operations. The pooling operation is a type of subsampling scheme used to
overcome the small receptive field in the convolution kernels. Otherwise, the inference
of the model is biased toward the local features of the input data. To extract the global
features effectively, the feature maps are resized in two ways—pooling operations and
stride factor—in convolution, as follows:

D : ℜWn×Hn×Cn → ℜWn/Sn×Hn/Sn×Cn , (6)

where D is a subsampling operator; Sn, Cn, Wn/Sn, and Hn/Sn are integers; and Wn, Hn,
and Cn represent the width, height, and channel dimensions in the nth layer, respectively.
After the subsampling operation in the nth layer, the size of the feature maps in the spatial
dimension is reduced by a factor of Sn in Equation (6), which causes information loss in
the original pixel grids and results in blurring: Blurring, owing to max pooling, is also
explained in terms of the frequency domain. Subsampling generates aliasing artifacts in
the frequency domain [29]. Specifically, max pooling, which is commonly applied in CNNs,
is a type of incoherent (pseudo-random) sampling. Its filter does not have a predefined
shape because sampling within a 2 × 2 window depends on the input signals. Inspired
by compressed-sensing theory, incoherent sampling causes noise-like aliasing artifacts
(incoherent interferences) in the frequency domain [30]. Subsequently, noise-like aliased
signals are mixed with the original frequency components. In general images, the energy of
the high-frequency component is basically lower than that of the low-frequency component;
therefore, the high-frequency component is more sensitive to aliasing perturbation, which
degrades the image details.

In the computer vision problem, blurring confuses object recognition, and it is a more
crucial issue in small object classification because pixels in a small object might merge
into neighboring pixels and easily lose their original shape. Therefore, to fully utilize the
structural information of the object, we proposed an edge conservative module, as shown



Cancers 2024, 16, 570 6 of 13

in Figures 1 and 4. The degradation of the image detail is compensated by a combination of
the residual path and upsampling after the pooling operation, as shown in Figure 4. In the
edge conservative module, all compensated features are incorporated into another CNN
path to extract auxiliary features. Here, a shallow structure was applied to avoid overfitting
because the auxiliary features were sparse.
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3.4. RenseNet Details

Our network had two parallel forward paths, as shown in Figure 1: first, the baseline
path composed of the Rense blocks in Figure 2d, where the other configurations are the
same as those of ResNet50 [21], but all residual blocks are replaced by the proposed Rense
blocks and there are transitions before pooling layers; and second, an edge conservative
path that has eight 3 × 3 convolution layers and three 1 × 1 layers. Three output layers,
then, were used to calculate the classification scores after linear projections (fully connected
layers) in this module. The cross-entropy (CE) loss was adopted, and the weights for each
CE loss were 1:0.3:0.3 for the baseline, ensemble, and edge conservative paths, respectively.
They were empirically set, and the batch size was set to eight. All learning processes were
stopped at 150 epochs owing to performance saturation and computation time.

3.5. Dataset and Preparation

In this study, the proposed model was verified using two datasets. The first dataset
was composed of CT images obtained from patients with kidney stones. This dataset was
acquired from the Samsung Medical Center (SMC), Seoul, South Korea, with Institutional
Review Board approval (IRB 2021-04-113). There were 60 patient scans and 1468 slice
images (positive stone cases 367 slices and negative cases 1101 slices). Each slice image was
512 × 512, and annotations were made by urologists, radiologists, and clinical experts to
determine the presence of kidney stones in the CT images. The dataset was separated into
1236 images of training (positive 309, negative 927) and 232 images of validation (positive
58, negative 174) for fivefold cross-validation. In this dataset, there were only classification
labels; therefore, quantitative comparisons were applied to the classification accuracy. The
second dataset consisted of CT images of lung cancer tumors. These data were from the
Decathlon Challenge [31] in the public domain and included 60 scans with 512 × 512
slice images. There were a total of 3314 slice images (positive tumor cases 1657 slices and
negative tumor cases 1657 slices). Specifically, 2814 training images (positive 1407, negative
1407) and 500 validation images (positive 250, negative 250) were prepared for fivefold
validation. This public dataset provided segmentation labels such that we could evaluate
both classification and explanation accuracy. In our experiments, all data separation for
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training and validation complied with the patient-level splits. In the training process,
random cropping, flip, rotation, and translation were applied for data augmentation.

3.6. Grad-CAM-Based Heatmap

To validate the interpretability, heatmaps were estimated by the Grad-CAM algo-
rithm [9] at the final feature extraction layer of all models. The Grad-CAM results were
binarized over an 80% threshold. The public lung dataset provides segmentation labels.
Thus, heatmaps can be evaluated using the exact shape and location of the target. The dice
similarity coefficient (DSC) between the masks generated by the Grad-CAM-based heatmap
and segmentation labels was calculated. Thus, we checked that the models examined the
target lesion when they made a decision.

4. Results
4.1. Kidney Stone Dataset

The classification accuracy, precision, recall, specificity, and F1 score for the kidney
stone dataset are presented in Table 1, where they are compared against seven models.
Their 95% confidence intervals are calculated in Table 2. The proposed RenseNet stands for
Rense block with an edge conservative module (W/E).

First, we ensured the effectiveness of the edge conservation module. Most metrics
showed improved scores when combined with the edge conservative module (W/E). The
maximum gains were 9.05, 26.81, 8.62, 9.20, and 16.60% for accuracy, precision, sensitivity,
specificity, and F1 score, respectively. In terms of the basic block, the network based on
Rense blocks, instead of sRense blocks, provided the best scores in accuracy, sensitivity,
specificity, and F1. The F1 score indicates that the proposed RenseNet (Rense blocks + W/E)
has the highest performance in harmonic of precision and sensitivity. A vision transformer
(ViT) [24] where pretrained parameters are applied inferred biased results for specificity.
The guided attention inference network (GAIN) [32], which was devised for weakly su-
pervised detection with classification labels and general performance improvement, was
not effective for small-lesion classification. We conducted t-tests under the null hypothesis
H0: µRense block = µm, where m stands for the compared methods with respect to metrics
and µ the mean values in Table 1. We can reject H0 at the significance level 0.05 because all
p-values are less than 0.05.

Table 1. Quantitative comparisons for kidney stone dataset. Here, WO/E and W/E are without and
with the edge conservative module, respectively. Our RenseNet is the combined Rense block with
edge conservative module.

Kidney Stone

Metrics ResNet50 DenseNet121 EfficientNet [23] ViT [24] GAIN [32] sRense Block Rense Block

Accuracy
WO/E 96.98 95.26 95.69 75.86 70.37 83.19 97.80

W/E 97.41 96.98 96.12 - - 92.24 97.84

Precision
WO/E 96.36 91.23 91.38 75.00 39.98 66.67 96.41

W/E 96.43 98.11 98.04 - - 93.48 96.49

Sensitivity
WO/E 91.38 89.53 91.38 5.17 81.25 65.52 94.75

W/E 93.10 89.66 86.21 - - 74.14 94.83

Specificity
WO/E 96.82 97.09 97.05 95.37 85.94 89.08 97.13

W/E 98.86 99.41 98.85 - - 98.28 99.43

F1 score
WO/E 93.80 90.37 91.38 9.67 53.59 66.09 95.57

W/E 94.74 93.69 91.75 - - 82.69 95.65
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Table 2. 95% confidence intervals for kidney stone dataset. Here, WO/E and W/E are without and
with the edge conservative module, respectively. Our RenseNet is the combined Rense block with
edge conservative module.

Kidney Stone

Metrics ResNet50 DenseNet121 EfficientNet [23] ViT [24] GAIN [32] sRense Block Rense Block

Accuracy
WO/E 0.0061 0.0004 0.0102 0.0037 0.0032 0.0023 0.0127

W/E 0.0069 0.0108 0.0037 0.0048 0.0153

Precision
WO/E 0.0007 0.0158 0.0094 0.0136 0.0157 0.0076 0.0057

W/E 0.0052 0.0057 0.0064 0.0053 0.0071

Sensitivity
WO/E 0.0036 0.0069 0.0073 0.0037 0.0035 0.0058 0.0027

W/E 0.0032 0.0115 0.0161 0.0014 0.0024

Specificity
WO/E 0.0128 0.0111 0.0090 0.0104 0.0127 0.0140 0.0090

W/E 0.0142 0.0110 0.0086 0.0167 0.0029

F1 score
WO/E 0.0037 0.0045 0.0119 0.0065 0.0146 0.0067 0.0071

W/E 0.0145 0.0087 0.0064 0.0003 0.0039

4.2. Lung Tumor Dataset

Similarly, the classification accuracy, precision, recall, specificity, and F1 score for the
lung tumor dataset are presented in Table 3. Their 95% confidence intervals are calculated
in Table 4.

The trend for the quantitative results with the lung tumor dataset was similar to that
with the kidney stone dataset. The edge conservative module improved the scores in
most cases.

Table 3. Quantitative comparisons for lung stone dataset. Here, WO/E and W/E are without and
with the edge conservative module, respectively. Our RenseNet is the combined Rense block with
edge conservative module.

Lung Tumor

Metrics ResNet50 DenseNet121 EfficientNet [23] ViT [24] GAIN [32] sRense Block RENSE
Block

Accuracy
WO/E 66.67 76.98 68.45 71.63 65.43 71.43 77.01

W/E 75.59 77.58 73.61 - - 73.41 79.58

Precision
WO/E 71.72 71.04 82.31 65.37 20.81 69.37 76.73

W/E 80.54 79.39 84.68 - - 70.69 84.97

Sensitivity
WO/E 56.89 91.23 48.41 91.40 90.58 78.87 83.55

W/E 58.41 84.00 58.84 - - 82.04 84.23

Specificity
WO/E 77.63 62.01 78.68 51.45 57.07 65.29 89.56

W/E 94.04 94.40 76.36 - - 66.12 94.85

F1 score
WO/E 63.45 79.88 60.96 76.22 33.84 73.82 79.99

W/E 67.71 81.63 69.43 - - 75.94 84.59

DSC
WO/E 25.49 40.86 22.84 28.01 26.65 42.33 49.13

W/E 31.77 52.27 28.20 - - 58.97 63.52
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Table 4. 95% confidence intervals for lung stone dataset. Here, WO/E and W/E are without and with
the edge conservative module, respectively. Our RenseNet is the combined Rense block with edge
conservative module.

Lung Tumor

Metrics ResNet50 DenseNet121 EfficientNet [23] ViT [24] GAIN [32] sRense Block Rense Block

Accuracy
WO/E 0.0124 0.0017 0.0052 0.0039 0.0152 0.0175 0.0076

W/E 0.0144 0.0078 0.0029 0.0186 0.0208

Precision
WO/E 0.0028 0.0084 0.0070 0.0116 0.0070 0.0174 0.0109

W/E 0.0084 0.0202 0.0197 0.0149 0.0001

Sensitivity
WO/E 0.0170 0.0146 0.0153 0.0197 0.0061 0.0008 0.0175

W/E 0.0168 0.0092 0.0160 0.0022 0.0093

Specificity
WO/E 0.0042 0.0018 0.0112 0.0210 0.0171 0.0185 0.0109

W/E 0.0051 0.0154 0.0202 0.0138 0.0089

F1 score
WO/E 0.0125 0.0101 0.0140 0.0024 0.0204 0.0051 0.0099

W/E 0.0083 0.0057 0.0159 0.0053 0.0195

DSC
WO/E 2.7190 3.0903 3.8134 1.7193 2.7462 2.2437 1.7087

W/E 1.6711 2.4934 3.4014 1.9083 3.3200 1.6607 2.9846

The maximum gains were 8.92, 8.82, 10.43, 32.39, and 8.47% for accuracy, precision,
sensitivity, specificity, and F1 score, respectively. RenseNet (Rense block with an edge
conservative module) showed the best scores in terms of accuracy, precision, specificity,
and F1 score. Here, ViT and GAIN were not powerful for lung tumor datasets. From
the t-test, all p-values are found to be less than 0.05, so score differences in Table 3 are
statistically meaningful.

We can quantify the interpretability of the model because the lung dataset provided
segmentation labels. From the DSC scores in Table 3, the tendency is similar to results of
the other metrics in Tables 1 and 3. The network composed of Rense blocks outperformed
other networks, and an edge conservative module enhanced interpretability. Specifically,
the network combined with the Rense block and an edge conservative module (RenseNet)
exhibited the best performance. Graphical results for the explainable heatmaps are pre-
sented in Figures 5 and 6. For the kidney stone dataset (Figure 5), most models focused
on the kidney stone in the CT images, except ResNet50 WO/E, EffieicntNet WO/E, ViT,
and GAIN.
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However, RenseNet had a more refined and localized heatmap. Heatmaps from the
lung dataset accurately indicated the lung tumors in DenseNet121 W/E and the proposed
RenseNet. Moreover, RenseNet provided the best localized heatmap, as shown in Figure 6.
The visual results of the explainable heatmaps are well aligned with the DSC results in
Table 3. Therefore, the Rense block and an edge conservative module contributed to
the accurate interpretability of the model. Furthermore, the computational cost for each
model was compared. Table 5 implies RenseNet is economical and that there is not a
big difference from the best, as transition layers effectively reduce feature size along the
channel dimension.

Table 5. Total number of parameters of the models. Here, WO/E and W/E are without and with
the edge conservative module, respectively. Our RenseNet is the combined Rense block with edge
conservative module.

ResNet50 DenseNet121 EfficientNet [23] ViT [24] GAIN [32] sRense
Block

Rense
Block

Total Number of
Parameters [×106]

WO/E 23.51 6.95 63.58 85.64 103.45 0.13 0.15

W/E 41.91 24.66 91.39 - - 0.41 0.43

5. Discussion

Many DL models are used to classify targets in images. However, most models
are designed for large and evident target objects, for example, the ImageNet dataset. In
medical images, the size of the lesions varies, and the boundaries might not be evident [33].
Therefore, it is difficult to match the performance of a model dedicated to large objects
with medical image applications. Furthermore, the clinical purposes of DL models require
greater reliability and confidence. Thus, XAI can be used to break the bottleneck for
widespread DL in real clinical practice. Several algorithms have been developed, and
Grad-CAM has become one of the principal algorithms for explaining model decisions.
Despite its intuitive analysis for model inference, the explanations from Grad-CAM as
well as other XAI algorithms often rely on DL models. Furthermore, model accuracy and
interpretability for small lesions might not be appropriate, because most DL models lose
their spatial information during inference, which is critical for small-lesion objects [3,33].

To improve both model accuracy and interpretability, we propose a Rense block
with an edge conservative module that allows flexible use of skip connection paths in
residual and dense blocks, and it compensates for spatial information lost in pooling layers.
Through the mathematical analysis of skip connections, we found a way to effectively
utilize previous features in feed-forward learning. The compensation module for the edge
can prevent distortion or damage to small-lesion features. Basically, the Rense block and an
edge conservative module allow the model to fully use information about small lesions.

The overall scores in the kidney stone dataset were better than those in the lung
tumor dataset. Kidney stones have brighter HU (Hounsfield unit) than other tissues, which
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makes the inference easier. The results from both the kidney stone and lung tumor dataset
show that RenseNet (Rense blocks with an edge conservative module) performed the best.
Specifically, the sRense block is not as powerful as the Rense block, because the sRense
block is a generalization of the residual block. We can expect a gain from the flexibility of
residual learning, but it weakens the effect of dense learning. However, the Rense block
has the merits of both residual and dense blocks, as formulated in Equation (6). This can
be observed in the results of the Grad-CAM-based heatmap (Figures 5 and 6) as well.
GAIN [32] is the algorithm to refine the result of a Grad-Cam-based heatmap, which can be
applied to weakly supervised detection. However, it does not work well in small lesions,
because GAIN has a process that hides pixels relevant to the attention regions contributing
to classification decision as complete as possible. For small lesions, attention regions are
basically small in the heatmap and there are still enough areas not hidden in the image that
the model can look over for inference. Thus, the model might be biased if large regions
in the image that are not hidden provide other misinformation to the model, as shown in
Tables 1 and 3. The low performance of the ViT can be attributed to the pretrained model
that does not describe small lesions well.

6. Conclusions

The proposed network aims to achieve high classification accuracy and reliable ex-
planation of model decisions for small lesions in medical images. The Rense block and
edge conservative module satisfied the main goal of this study. The experimental results
presented in this study demonstrate the accuracy and reliability of the proposed RenseNet
for small lesion lesions. Therefore, the proposed network provides new opportunities
for clinical applications. In our network, we introduce an optimized integration of dense
and residual blocks; however, we have not yet attained the optimal number of Rense
blocks. Future research will focus on determining the ideal number of Rense blocks for im-
proved computational efficiency and analyzing the target lesion size that can be effectively
classified by our RenseNet.
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