Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Overview of Lung Cancer and Its Global Burden
1.2. Role of Immunotherapy in Lung Cancer Treatment
1.3. Importance of Delta Radiomics in Predicting Treatment Outcomes
1.4. Objectives and Hypothesis of the Meta-Analysis
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.1.1. Databases and Search Terms
2.1.2. Inclusion and Exclusion Criteria
2.2. Data Extraction and Quality Assessment
2.2.1. Data Extraction Process
2.2.2. Quality Assessment
2.3. Definitions of 6-Month Progression-Free Survival and Overall Survival
2.4. Meta-Analysis
2.5. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.1.1. Flow Diagram of Study Selection
3.1.2. Characteristics of Included Studies
3.1.3. Radiomics and Image Analysis
3.2. Quality Assessment Results
3.3. Delta Radiomic Features and Prognostic Performance
4. Discussion
4.1. Summary of Key Findings
4.2. Comparison with Previous Studies and Literature
4.3. Comparison of Radiomic Features in the Enrolled Studies
4.4. Strength and Limitations
4.5. Future Directions and Research Opportunities
4.5.1. External Validation
4.5.2. Biomarker Interpretation
4.5.3. Trial Registration and Quality Insurance
4.5.4. Data Sharing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- World Health Organization. Cancer: Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 October 2023).
- Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med. 2008, 359, 1367–1380. [Google Scholar] [CrossRef]
- Wakelee, H.A.; Chang, E.T.; Gomez, S.L.; Keegan, T.H.; Feskanich, D.; Clarke, C.A.; Holmberg, L.; Yong, L.C.; Kolonel, L.N.; Gould, M.K.; et al. Lung cancer incidence in never smokers. J. Clin. Oncol. 2007, 25, 472–478. [Google Scholar] [CrossRef]
- Alberg, A.J.; Samet, J.M. Epidemiology of lung cancer. Chest 2003, 123, 21S–49S. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Herbst, R.S. Treatment of Advanced Non-Small Cell Lung Cancer in 2018. JAMA Oncol. 2018, 4, 569–570. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes. Clin. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczesna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Ozguroglu, M.; Ji, J.H.; et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): A randomised, controlled, open-label, phase 3 trial. Lancet 2019, 394, 1929–1939. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Perez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.; Liao, Z.; et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci. Rep. 2017, 7, 588. [Google Scholar] [CrossRef]
- Tunali, I.; Stringfield, O.; Guvenis, A.; Wang, H.; Liu, Y.; Balagurunathan, Y.; Lambin, P.; Gillies, R.J.; Schabath, M.B. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients. Oncotarget 2017, 8, 96013–96026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fried, D.V.; Fave, X.J.; Hunter, L.A.; Yang, J.; Court, L.E. IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics. Med. Phys. 2015, 42, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallieres, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Grooten, W.J.A.; Tseli, E.; Ang, B.O.; Boersma, K.; Stalnacke, B.M.; Gerdle, B.; Enthoven, P. Elaborating on the assessment of the risk of bias in prognostic studies in pain rehabilitation using QUIPS-aspects of interrater agreement. Diagn. Progn. Res. 2019, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Sanduleanu, S.; Woodruff, H.C.; de Jong, E.E.C.; van Timmeren, J.E.; Jochems, A.; Dubois, L.; Lambin, P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother. Oncol. 2018, 127, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rucker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Farina, B.; Guerra, A.D.R.; Bermejo-Pelaez, D.; Miras, C.P.; Peral, A.A.; Madueno, G.G.; Jaime, J.C.; Vilalta-Lacarra, A.; Perez, J.R.; Munoz-Barrutia, A.; et al. Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. J. Transl. Med. 2023, 21, 174. [Google Scholar] [CrossRef]
- Cousin, F.; Louis, T.; Dheur, S.; Aboubakar, F.; Ghaye, B.; Occhipinti, M.; Vos, W.; Bottari, F.; Paulus, A.; Sibille, A.; et al. Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers 2023, 15, 1968. [Google Scholar] [CrossRef]
- Xie, D.; Xu, F.; Zhu, W.; Pu, C.; Huang, S.; Lou, K.; Wu, Y.; Huang, D.; He, C.; Hu, H. Delta radiomics model for the prediction of progression-free survival time in advanced non-small-cell lung cancer patients after immunotherapy. Front. Oncol. 2022, 12, 990608. [Google Scholar] [CrossRef]
- Gong, J.; Bao, X.; Wang, T.; Liu, J.; Peng, W.; Shi, J.; Wu, F.; Gu, Y. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. Oncoimmunology 2022, 11, 2028962. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, J.; Shen, L.; Chen, J.; Xia, L.; Ni, B.; Ge, L.; Wang, Y.; Lu, S. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J. Transl. Res. 2021, 13, 743–756. [Google Scholar] [PubMed]
- Trebeschi, S.; Bodalal, Z.; Boellaard, T.N.; Tareco Bucho, T.M.; Drago, S.G.; Kurilova, I.; Calin-Vainak, A.M.; Delli Pizzi, A.; Muller, M.; Hummelink, K.; et al. Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy. Front. Oncol. 2021, 11, 609054. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, M.; Zhang, Y.; Luo, Y.; He, S.; Wang, Y.; Chen, F.; Liu, Y.; Yang, Q.; Li, Y.; et al. Imaging Biomarkers to Predict and Evaluate the Effectiveness of Immunotherapy in Advanced Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 657615. [Google Scholar] [CrossRef] [PubMed]
- Farina, B.; Guerra, A.R.; Miras, C.P.; Madueño, G.G.; Muñoz-Barrutia, A.; Peces-Barba, G.; Maceiras, L.S.; Corral, J.; Gil-Bazo, I.; Gómez, M.D. Delta-Radiomics Signature For Prediction Of Survival In Advanced Nsclc Patients Treated With Immunotherapy. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), IEEE, Nice, France, 3–16 April 2021; pp. 886–890. [Google Scholar]
- Khorrami, M.; Prasanna, P.; Gupta, A.; Patil, P.; Velu, P.D.; Thawani, R.; Corredor, G.; Alilou, M.; Bera, K.; Fu, P.; et al. Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer. Cancer Immunol. Res. 2020, 8, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, X.; Li, Q.C.; Fan, R.R.; Chen, R.T.; Shao, Y.; Chen, Y.B.; Gao, Y.Z.; Liu, A.E.; Chen, L.; et al. A cascade and heterogeneous neural network for CT pulmonary nodule detection and its evaluation on both phantom and patient data. Comput. Med. Imaging Graph. 2021, 90, 101889. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, L.; Mo, X.; You, J.; Chen, L.; Fang, J.; Wang, F.; Jin, Z.; Zhang, B.; Zhang, S. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 345–360. [Google Scholar] [CrossRef]
- Zhang, C.; de, A.F.F.L.; Shi, Z.; Zhu, C.; Dekker, A.; Bermejo, I.; Wee, L. Systematic review of radiomic biomarkers for predicting immune checkpoint inhibitor treatment outcomes. Methods 2021, 188, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.W.; Hsu, M.S.; Lin, Y.H.; Chiu, H.Y.; Chao, H.S.; Liao, C.Y.; Lu, C.F.; Wu, Y.T.; Huang, J.W.; Chen, Y.M. Application of Radiomics in Prognosing Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 3542. [Google Scholar] [CrossRef] [PubMed]
- Davnall, F.; Yip, C.S.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012, 3, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fujimoto, J.; Zhang, J.; Wedge, D.C.; Song, X.; Zhang, J.; Seth, S.; Chow, C.W.; Cao, Y.; Gumbs, C.; et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 2014, 346, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litiere, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Ramspek, C.L.; Jager, K.J.; Dekker, F.W.; Zoccali, C.; van Diepen, M. External validation of prognostic models: What, why, how, when and where? Clin. Kidney J. 2021, 14, 49–58. [Google Scholar] [CrossRef]
- He, S.; Feng, Y.; Grant, P.E.; Ou, Y. Segmentation ability map: Interpret deep features for medical image segmentation. Med. Image Anal. 2023, 84, 102726. [Google Scholar] [CrossRef]
- Lee, M.H.; Shomanov, A.; Kudaibergenova, M.; Viderman, D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J. Clin. Med. 2023, 12, 3446. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; Group, Q QUADAS-2. A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Author | Dataset | Study Duration | Country | Study Design | Patients | Age | Sex (Female) | Smoker | Stage | Adeno | Immunotherapy Agent | Immunotherapy Regimen |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Benito, F. (2023) [32] | D | 2013–2021 | Spain | Retrospective | 200 | 65 (58–70) | 58 (29) | 174 (87.9) | IV | 151 (75.5) | Immunotherapy | Monotherapy or combination |
François, C. (2022) [33] | D | 2015–2020 | Belgium | Retrospective | 121 | 65 (41– 85) | 45 (37) | 119 (98) | III–IV | 71 (59) | Pembrolizumab, nivolumab, atezolizumab | Monotherapy |
E | 2015–2018 | Belgium | Retrospective | 39 | 64 (44– 95) | 19 (49) | 32 (82) | III–IV | 29 (74) | Pembrolizumab, nivolumab, atezolizumab | Monotherapy | |
Dong, X. (2022) [34] | D | 2016–2021 | China | Retrospective | 68 | NA | 6 | 35 | III–IV | 23 | Camrelizumab, sintilimab, tislelizumab, nivolumab, atezolizumab | Monotherapy or combination |
V | 2016–2021 | China | Retrospective | 29 | NA | 3 | 15 | III–IV | 6 | Camrelizumab, sintilimab, tislelizumab, nivolumab, atezolizumab | Monotherapy or combination | |
Jing, G. (2022) [35] | D | 2015–2018 | China | Retrospective | 93 | 67 (31–85) | 13 (14) | 42 (45.2) | III–IV | 57 (61.3) | Immunotherapy | Monotherapy |
E | 2016–2020 | China | Retrospective | 68 | 61 (27–76) | 16 (23.5) | 46 (67.6) | III–IV | 54 (79.4) | Immunotherapy | Monotherapy | |
E | 2018–2020 | China | Retrospective | 63 | 66 (29–86) | 11 (17.5) | 19 (30.2) | III–IV | 38 (60.3) | Immunotherapy | Monotherapy | |
Yi, Y. (2021) [36] | D | 2016–2019 | China | Retrospective | 200 | NA | 35 | 119 | IIIB–IV | 132 (66) | Nivolumab, pembrolizumab, atezolizumab | Monotherapy |
Stefano, T. (2021) [37] | D | 2014–2016 | Netherlands | Retrospective | 152 | 64.4 (57.8–68.9) | 64 | x | IV | 92 (60.5) | Anti-PD1 immunotherapy | Monotherapy |
Ying, L. (2021) [38] | D | 2018–2019 | China | Retrospective | 112 | NA | 14 | 81 | NA | 61 | Immunotherapy | Monotherapy or combination |
V | 2018–2019 | China | Retrospective | 49 | NA | 13 | 35 | NA | 23 | Immunotherapy | Monotherapy or combination | |
Benito, F. (2021) [39] | D | 2013–2019 | Spain | Retrospective | 88 | NA | NA | NA | NA | NA | Immunotherapy | Monotherapy or combination |
Mohammadhadi, K. (2020) [40] | D | 2012–2017 | America | Retrospective | 112 | 65 (42–83) | 54 (48) | 96 (86) | NA | 80 (71) | Nivolumab, pembrolizumab, atezolizumab | Monotherapy |
E | 2012–2017 | America | Retrospective | 27 | 63 (42–83) | 18 (67) | 21 (78) | NA | 21 (78) | Nivolumab, pembrolizumab, atezolizumab | Monotherapy | |
Laurent, D. (2020) [41] | D | NA | America | Retrospective | 92 | NA | NA | NA | III–IV | 0 | Nivolumab | Monotherapy |
Author | Segmentation | VOI | Clinical Feature | Radiomics | Formula | Software | Validation | Classifier | EndPoints |
---|---|---|---|---|---|---|---|---|---|
Benito, F. (2023) [32] | Manual | primary tumor | NLR, SII, Hb, MLR, neutrophil, liver metastasis, histology, platelet, smoking, PLR, BMI, age | longitudinal radiomics | concatenate pretreat and follow | NoduleX (deep learning) | Cross validation | Random forest | PFS, OS |
François, C. (2022) [33] | Manual | primary tumor | sex, clinical stage, ANC, eosinophil, and NLR | delta radiomics | follow-pretreat | Radiomics (Oncoradiomics SA, Belgium) | External testing | RF, CoxPH | Response, OS |
Dong, X. (2022) [34] | Manual | tumor | tumor anatomical classification and brain metastasis | delta radiomics | follow-pretreat | Pyradiomics | Split sample | LASSO-Cox | PFS |
Jing, G. (2022) [35] | Manual | primary tumor | NA | delta radiomics | follow-pretreat | Pyradiomics | External testing | SVM | Response, PFS, OS |
Yi, Y. (2021) [36] | Manual | primary tumor | clinical + blood test | longitudinal radiomics | SimTa module | Pyradiomics | Cross validation | SimTA | Response, PFS, OS |
Stefano, T. (2021) [37] | NA | whole lung | NA | longitudinal radiomics | deep feature | VGG-like network | Split sample | RF | PFS, OS |
Ying, L. (2021) [38] | Manual | primary tumor | distant metastasis | delta radiomics | (follow-pretreat)/pretreat | Analysis Kit, version 3.2.5, GE Healthcare | Split sample | LASSO-Cox | Response |
Benito, F. (2021) [39] | Manual | primary tumor | NA | delta radiomics | follow-pretreat | Pyradiomics | External testing | LASSO-Cox | OS |
Mohammadhadi, K. (2020) [40] | Manual | tumor | NA | delta radiomics | follow-pretreat | In-house developed toolbox with MATLAB 2018b | External testing | LDA | Response, OS |
Laurent, D. (2020) [41] | Manual | primary tumor | NA | delta radiomics | size: (follow-pretreat)/pretreat, other: follow-pretreat | In-house developed toolbox | Split sample | RF | Response |
Domain 1 | Domain 2 | Domain 3 | Domain 4 | Domain 5 | Domain 6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Image Protocol Quality | Multiple Segmentation | Phantom Study on All Scanner | Imaging at Multiple Time Points | Feature Reduction or Adjustment for Multiple Testing | Validation | Multivariable Analysis with Non -Radiomic Features | Detect and Discuss Biological Correlates | Comparison to ’Gold Standard’ | Potential Clinical Utility | Cut-Off Analyses | Discrimination Statistics | Calibration Statistics | Prospective Study Registered in a Trial Database | Cost-Effectiveness Analysis | Open Science and Data | Total |
Benito, F. (2023) [32] | 1 | 0 | 0 | 1 | 3 | 3 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 12 |
François, C. (2022) [33] | 1 | 0 | 0 | 1 | 3 | 3 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 12 |
Dong, X. (2022) [34] | 1 | 1 | 0 | 1 | 3 | 2 | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 14 |
Jing, G. (2022) [35] | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 10 |
Yi, Y. (2021) [42] | 1 | 1 | 0 | 0 | 3 | 3 | 1 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 13 |
Stefano, T. (2021) [37] | 1 | 0 | 0 | 0 | 3 | 3 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 1 | 12 |
Ying, L. (2021) [38] | 1 | 0 | 0 | 0 | 3 | 3 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 12 |
Benito, F. (2021) [39] | 1 | 1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 11 |
Mohammadhadi, K. (2020) [40] | 1 | 0 | 0 | 0 | 3 | 4 | 1 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 13 |
Laurent, D. (2020) [41] | 1 | 1 | 0 | 0 | 3 | 2 | 1 | 1 | 0 | 2 | 1 | 2 | 2 | 7 | 0 | 0 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, H.-Y.; Wang, T.-W.; Hsu, M.-S.; Chao, H.-S.; Liao, C.-Y.; Lu, C.-F.; Wu, Y.-T.; Chen, Y.-M. Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 615. https://doi.org/10.3390/cancers16030615
Chiu H-Y, Wang T-W, Hsu M-S, Chao H-S, Liao C-Y, Lu C-F, Wu Y-T, Chen Y-M. Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis. Cancers. 2024; 16(3):615. https://doi.org/10.3390/cancers16030615
Chicago/Turabian StyleChiu, Hwa-Yen, Ting-Wei Wang, Ming-Sheng Hsu, Heng-Shen Chao, Chien-Yi Liao, Chia-Feng Lu, Yu-Te Wu, and Yuh-Ming Chen. 2024. "Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis" Cancers 16, no. 3: 615. https://doi.org/10.3390/cancers16030615
APA StyleChiu, H. -Y., Wang, T. -W., Hsu, M. -S., Chao, H. -S., Liao, C. -Y., Lu, C. -F., Wu, Y. -T., & Chen, Y. -M. (2024). Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis. Cancers, 16(3), 615. https://doi.org/10.3390/cancers16030615